Comparison of Friction Behaviour of Titanium Grade 2 after Non-Contact Boriding in Oxygen-Containing Medium with Gas Nitriding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigated Material
2.2. Surface Engineering
2.3. Surface Characterization
2.4. Friction Testing
3. Results and Discussion
3.1. Surface Characteristics
3.2. Friction Behaviour
3.2.1. Friction Behaviour of Surface Hardened Titanium Grade 2 in a Tribo-Pair with Stainless Steel
3.2.2. Friction Behaviour of Surface Hardened Titanium Grade 2 in a Tribo-Pair with UHMWPE
4. Conclusions
- It was determined that the single-phase (Ti2N) or two-phase (Ti2N + TiN) compound layers were formed during the nitriding of titanium at temperatures of 750 °C or 900 °C. The single-phase (TiB) compound layer was formed after non-contact boriding in oxygen-containing medium.
- It was shown that non-contact boriding allows formation of a homogeneous compound layer with better surface roughness (height, step, and other parameters) compared with gas nitriding. According to the results of micro- and nanoindentation tests, boriding provides a deeper hardened layer but lower surface hardness and elastic modulus.
- It was found that borided titanium has better friction behaviour under dry sliding in tribo-pairs with stainless steel (friction coefficient is lower by ~1.5 times) and UHMWPE (friction coefficient is lower by ~2 times) in comparison with nitriding.
- According to the SEM analysis, it was determined that formation of the compound layers on titanium leads to a decrease in the adhesive component and an increase in the abrasive one of the wear mechanism in tribo-pairs. Boriding, due to better roughness, provides the decrease in adhesive and abrasive wear compared with nitriding.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernández-López, J.M.; Conde, A.; de Damborenea, J.J.; Arenas, M.A. Electrochemical response of TiO2 anodic layers fabricated on Ti6Al4V alloy with nanoporous, dual and nanotubular morphology. Corros. Sci. 2016, 112, 194–203. [Google Scholar] [CrossRef]
- Xiu, P.; Jia, Z.; Li, J.; Yin, C.; Cai, H.; Song, C.; Cheng, Y. Hierarchical micropore/nanorod apatite hybrids in-situ grown from 3-D printed macroporous Ti6Al4V implants with improved bioactivity and osseointegration. J. Mater. Sci. Technol. 2017, 33, 179–186. [Google Scholar] [CrossRef]
- Xin, Z.; Ren, N.; Ren, Y.; Yue, X.; Han, Q.; Zhou, W.; Tao, Y.; Ye, Y. In-situ nitriding on the textured titanium alloy using femtosecond laser. J. Mater. Res. Technol. 2022, 19, 466–471. [Google Scholar] [CrossRef]
- Subramanian, B.; Muraleedharan, C.V.; Ananthakumar, R.; Jayachandran, M. A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surf. Coat. Technol. 2011, 205, 5014–5020. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Zhang, C.; Liao, Z.; Liu, W. The improvement of wettability, biotribological behavior and corrosion resistance of titanium alloy pretreated by thermal oxidation. Tribol. Int. 2014, 79, 174–182. [Google Scholar] [CrossRef]
- Nykyforchyn, H.M.; Agarwala, V.S.; Klapkiv, M.D.; Posuvailo, V.M. Simultaneous reduction of wear and corrosion of titanium, magnesium and zirconium alloys by surface plasma electrolytic oxidation treatment. Adv. Mater. Res. 2008, 38, 27–35. [Google Scholar] [CrossRef]
- Hutsaylyuk, V.; Student, M.; Posuvailo, V.; Student, O.; Hvozdets’kyi, V.; Maruschak, P.; Zakiev, V. The role of hydrogen in the formation of oxide-ceramic layers on aluminum alloys during their plasma-electrolytic oxidation. J. Mater. Res. Technol. 2021, 14, 1682–1696. [Google Scholar] [CrossRef]
- Błoniarz, A.; Cholewa-Kowalska, K.; Gajewska, M.; Grysakowski, B.; Moskalewicz, T. Electrophoretic deposition, microstructure and selected properties of nanocrystalline SnO2/Sr enriched bioactive glass/chitosan composite coatings on titanium. Surf. Coat. Technol. 2022, 450, 129004. [Google Scholar] [CrossRef]
- Bajda, S.; Liu, Y.; Tosi, R.; Cholewa-Kowalska, K.; Krzyzanowski, M.; Dziadek, M.; Kopyscianski, M.; Dymek, S.; Polyakov, A.V.; Semenova, I.P.; et al. Laser cladding of bioactive glass coating on pure titanium substrate with highly refined grain structure. J. Mech. Behav. Biomed. Mater. 2021, 119, 104519. [Google Scholar]
- Liu, S.; Xia, C.; Liu, Z.; Ma, J.; Hu, Y.; Wang, H.; Liang, C.; Yang, L.; Zhou, H. Micro-arc oxidation preparation of a ZnO-Se composite coating on titanium with anti-oxidation and anti-bacterial potentials for osteomyelitis control. Mater. Lett. 2022, 327, 132979. [Google Scholar] [CrossRef]
- Nakai, M.; Niinomi, M.; Akahori, T.; Ohtsu, N.; Nishimura, H.; Toda, H.; Fukui, H.; Ogawa, M. Surface hardening of biomedical Ti–29Nb–13Ta–4.6Zr and Ti–6Al–4V ELI by gas nitriding. Mater. Sci. Eng. A 2008, 486, 193–201. [Google Scholar] [CrossRef]
- Pohrelyuk, I.; Tkachuk, O.; Proskurnyak, R.; Guspiel, J.; Beltowska-Lehman, E.; Morgiel, J. Influence of regulated modification of nitride layer by oxygen on electrochemical behavior of Ti–6Al–4V alloy in Ringer’s solution. Mater. Corros. 2019, 70, 2320–2325. [Google Scholar] [CrossRef]
- Pohrelyuk, I.M.; Padgurskas, J.; Tkachuk, O.V.; Luk’yanenko, A.G.; Trush, V.S.; Lavrys, S.M. Influence of oxynitriding on antifriction properties of Ti–6Al–4V titanium alloy. J. Frict. Wear 2020, 41, 333–337. [Google Scholar] [CrossRef]
- Pohrelyuk, I.M.; Sheykin, S.E.; Dub, S.M.; Mamalis, A.G.; Rostotskii, I.Y.; Tkachuk, O.V.; Lavrys, S.M. Increasing of functionality of c.p. titanium/UHMWPE tribo-pairs by thermodiffusion nitriding of titanium component. Biotribology 2016, 7, 38–45. [Google Scholar] [CrossRef]
- Manhabosco, T.M.; Tamborim, S.M.; dos Santos, C.B.; Müller, I.L. Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution. Corros. Sci. 2011, 53, 1786–1793. [Google Scholar] [CrossRef] [Green Version]
- Anusha Thampi, V.V.; Chukwuike, V.I.; Shtansky, D.V.; Subramanian, B. Biocompatibility study of nanocomposite titanium boron nitride (TiBN) thin films for orthopedic implant applications. Surf. Coat. Technol. 2021, 410, 126968. [Google Scholar]
- Rahmatian, B.; Ghasemi, H.M.; Heydarzadeh Sohi, M.; de Baets, P. Tribocorrosion and corrosion behavior of double borided layers formed on Ti-6Al-4V alloy: An approach for applications to bio-implants. Corros. Sci. 2023, 210, 110824. [Google Scholar] [CrossRef]
- Paleu, C.C.; Munteanu, C.; Istrate, B.; Bhaumik, S.; Vizureanu, P.; Bal, M.S.; Paleu, V. Microstructural analysis and tribological behavior of amdry 1371 (mo–nicrfebsic) atmospheric plasma spray deposited thin coatings. Coatings 2020, 10, 1186. [Google Scholar] [CrossRef]
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Munteanu, C.; Istrate, B. Microstructural analysis and tribological behavior of Ti-based alloys with a ceramic layer using the thermal spray method. Coatings 2020, 10, 1216. [Google Scholar] [CrossRef]
- Cura, A.C.; Zuchua, J.I.; Tribbia, L.T.; Taravini, I.R.; Decco, E.O.A. Sandblasted, acid etched and UV irradiated titanium surface for dental implants: In vitro and in vivo analysis. Materialia 2022, 21, 101302. [Google Scholar] [CrossRef]
- Özmeriç, N.; Çakal, G.Ö.; Gökmenoğlu, C.; Özmeriç, A.; Oduncuoğlu, B.F.; Hacaloğlu, T.; Kaftanoğlu, B. Histomorphometric and biomechanical evaluation of the osseointegration around micro- and nano-level boron-nitride coated titanium dental implants. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.-H.; Aune, R.E.; Espallargas, N. Tribocorrosion studies of metallic biomaterials: The effect of plasma nitriding and DLC surface modifications. J. Mech. Behav. Biomed. Mater. 2016, 63, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, S.P.; Jeevahan, J.; Purusothaman, M.; Venkatesh, S.; Rakesh Vimal, M. Corrosion and mechanical behavior of plasma nitrated metallic biomaterial surfaces. Mater. Today: Proc. 2021, 47, 938–943. [Google Scholar] [CrossRef]
- Bédouin, Y.; Gordin, D.-M.; Pellen-Mussi, P.; Pérez, F.; Tricot-Doleux, S.; Vasilescu, C.; Drob, S.I.; Chauvel-Lebret, D.; Gloriant, T. Enhancement of the biocompatibility by surface nitriding of a low-modulus titanium alloy for dental implant applications. J. Biomed. Mater. Res. B Part B 2019, 107, 1483–1490. [Google Scholar] [CrossRef]
- Jambagi, S.C.; Malik, V.R. A review on surface engineering perspective of metallic implants for orthopaedic applications. JOM 2021, 73, 4349–4364. [Google Scholar] [CrossRef]
- Tamura, Y.; Yokoyama, A.; Watari, F.; Kawasaki, T. Surface properties and biocompatibility of nitrided titanium for abrasion resistant implant materials. Dent. Mater. J. 2002, 21, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Pohrelyuk, I.M.; Tkachuk, O.V.; Proskurnyak, R.V.; Boiko, N.M.; Kluchivska, O.Y.; Stoika, R.S. Effect of thermodiffusion nitriding on cytocompatibility of Ti-6Al-4V titanium alloy. JOM 2016, 68, 1109–1115. [Google Scholar] [CrossRef]
- Sun, L.; Gao, Y.; Xiao, B.; Li, Y.; Wang, G. Anisotropic elastic and thermal properties of titanium borides by first-principles calculations. J. Alloys Compd. 2013, 579, 457–467. [Google Scholar] [CrossRef]
- Sivakumar, B.; Pathak, L.C.; Singh, R. Fretting corrosion response of boride coated titanium in Ringer’s solution for bio-implant use: Elucidation of degradation mechanism. Tribol. Int. 2018, 127, 219–230. [Google Scholar] [CrossRef]
- Siyuan, W.U.; Shoujun, W.U.; Guoyun, Z.; Weiguo, Z. Hardness and elastic modulus of titanium nitride coatings prepared by pirac method. Surf. Rev. Lett. 2018, 25, 1850040. [Google Scholar]
- Miklaszewski, A.; Jurczyk, M.U.; Jurczyk, K.; Jurczyk, M. Plasma surface modification of titanium by TiB precipitation for biomedical applications. Surf. Coat. Technol. 2011, 206, 330–337. [Google Scholar] [CrossRef]
- Makau, F.M.; Morsi, K.; Gude, N.; Alvarez, R.; Sussman, M.; May-Newman, K. Viability of titanium-titanium boride composite as a biomaterial. ISRN Biomater. 2013, 2013, 970535. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, B.; Singh Lokesh, R.; Pathak, C.L. Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer’s solution for bioimplant applications. Mater. Sci. Eng. C 2015, 48, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, B.; Pathak, L.C.; Singh, R. Response of boride coating on the Ti-6Al-4V alloy to corrosion and fretting corrosion behavior in Ringer’s solution for bio-implant application. Appl. Surf. Sci. 2018, 433, 1158–1174. [Google Scholar]
- Duan, Y.; Wang, X.; Liu, D.; Bao, W.; Li, P.; Peng, M. Characteristics, wear and corrosion properties of borided pure titanium by pack boriding near α → β phase transition temperature. Ceram. Int. 2020, 46, 16380–16387. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Fu, L.; Wan, Q. Spark plasma sintering assisted rapid growth of titanium boride layers on titanium: Microstructures and growth kinetics. Surf. Coat. Technol. 2022, 432, 128083. [Google Scholar] [CrossRef]
- Aich, S.; Ravi, K.; Chandran, S. TiB whisker coating on titanium surfaces by solid-state diffusion: Synthesis, microstructure, and mechanical properties. Metall. Mater. Trans. A 2002, 33, 3489–3498. [Google Scholar] [CrossRef]
- Pohrelyuk, I.M.; Lavrys, S.M.; Stasyshyn, I.V.; Penkovyi, O.V. Influence of thermochemical treatment on the surface topography of titanium. Metallofiz. Noveishie Tekhnol. 2017, 39, 1183–1196. [Google Scholar] [CrossRef] [Green Version]
- Prytula, A.O.; Pogrelyuk, I.N.; Fedirko, V.N. Effect of impregnating atmosphere oxygen on boriding of titanium alloys. Met. Sci. Heat Treat. 2008, 50, 232–237. [Google Scholar] [CrossRef]
- Pohrelyuk, I.M.; Vasyliv, K.B.; Fedirko, V.M.; Sambors’kyi, O.V. Structure and topography of the surfaces of titanium alloys after thermodiffusion saturation from boron carbide in vacuum. Mater. Sci. 2010, 46, 348–356. [Google Scholar] [CrossRef]
- Pohrelyuk, I.M.; Lavrys, S.M.; Sakharuk, O.M.; Stasyshyn, I.V.; Penkovyi, O.V. Pretreatment influence on titanium surface properties after gas nitriding. J. Mater. Eng. Perform. 2017, 26, 5072–5078. [Google Scholar] [CrossRef]
- Kaplan, Y.; Cetin Can, A.; Ulukoy, A. A new medium for boriding of Ti6Al4V alloy for biomedical applications. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 109–111. [Google Scholar] [CrossRef]
- Gispert, M.P.; Serro, A.P.; Colaço, R.; Botelho do Rego, A.M.; Alves, E.; da Silva, R.C.; Brogueira, P.; Pires, E.; Saramago, B. Tribological behaviour of Cl-implanted TiN coatings for biomedical applications. Wear 2007, 262, 1337–1345. [Google Scholar] [CrossRef]
- Xiong, D.; Gao, Z.; Jin, Z. Friction and wear properties of UHMWPE against ion implanted titanium alloy. Surf. Coat. Technol. 2007, 201, 6847–6850. [Google Scholar] [CrossRef]
- Kusy, R.P.; Tobin, E.J.; Whitley, J.Q.; Sioshansi, P. Frictional coefficients of ion-implanted alumina against ion-implanted beta-titanium in the low load, low velocity, single pass regime. Dent. Mater. 1992, 8, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Tian, N.; Lu, Z.; You, C. Influence of the surface nanocrystallization on the gas nitriding of Ti–6Al–4V alloy. Appl. Surf. Sci. 2013, 286, 412–416. [Google Scholar] [CrossRef]
- Farokhzadeh, K.; Qian, J.; Edrisy, A. Effect of SPD surface layer on plasma nitriding of Ti–6Al–4V alloy. Mater. Sci. Eng. A 2014, 589, 199–208. [Google Scholar] [CrossRef]
- Takesue, S.; Kikuchi, S.; Akebono, H.; Misaka, Y.; Komotori, J. Effect of pre-treatment with fine particle peening on surface properties and wear resistance of gas blow induction heating nitrided titanium alloy. Surf. Coat. Technol. 2019, 359, 476–484. [Google Scholar] [CrossRef]
- Chen, H.; Xu, C.; Xiao, G.; Yi, M.; Chen, Z.; Zhang, J. Analysis of the relationship between roughness parameters of wear surface and tribology performance of 5CB liquid crystal. J. Mol. Liq. 2022, 352, 118711. [Google Scholar] [CrossRef]
- Sedlaček, M.; Podgornik, B.; Vižintin, J. Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol. Int. 2012, 48, 102–112. [Google Scholar] [CrossRef]
- Chen, T.; Koyama, S. Influence of boriding temperature on microstructure and tribological properties of titanium. Solid State Sci. 2020, 107, 106369. [Google Scholar] [CrossRef]
Chemical Composition | ||||||
---|---|---|---|---|---|---|
Element | N | C | H | Fe | O | Ti |
wt. % | Maximum | Balance | ||||
0.030 | 0.100 | 0.015 | 0.300 | 0.250 | ||
Mechanical properties | ||||||
Hardness, HV | 145 | |||||
Ultimate tensile strength σ, MPa | 345 | |||||
Tensile yield strength σ0,2, MPa | 275 | |||||
Elongation at break δ, % | 20 | |||||
Reduction of area ψ, % | 35 | |||||
Modulus of elasticity E, GPa | 105 | |||||
Shear modulus G, GPa | 110 |
Surface Treatment | Element | Spectrum №1 | Spectrum №2 | ||
---|---|---|---|---|---|
wt., % | at., % | wt., % | at., % | ||
Nitriding at 750 °C | TiK | 99.57 | 89.55 | 96.29 | 89.57 |
NK | 0.43 | 1.45 | 3.71 | 10.43 | |
Nitriding at 900 °C | TiK | 91.33 | 87.13 | 84.05 | 80.65 |
NK | 8.67 | 12.87 | 15.95 | 19.35 | |
Boriding at 900 °C | TiK | 58.55 | 58.22 | 57.56 | 54.01 |
BK | 41.5 | 41.78 | 42.44 | 45.99 |
Surface Treatment | Ra, µm | Rt, µm | Rp, µm | Rv, µm | Rsk | Rku | S, µm | Sm, µm | Rmr, % |
---|---|---|---|---|---|---|---|---|---|
Untreated | 0.054 | 0.241 | 0.124 | 0.117 | −0.06 | 2.88 | 2.21 | 3.51 | 0.51 |
Nitriding at 750 °C | 0.134 | 0.587 | 0.284 | 0.303 | −0.17 | 2.89 | 2.04 | 3.23 | 0.47 |
Nitriding at 900 °C | 0.465 | 1.704 | 0.741 | 0.963 | −0.042 | 2.81 | 1.01 | 1.06 | 0.58 |
Boriding at 900 °C | 0.405 | 1.612 | 0.854 | 0.758 | −0.04 | 2.14 | 1.04 | 1.44 | 0.61 |
Surface Treatment | Microindentation | Nanoindentation | Deep of Layer, µm | ||||
---|---|---|---|---|---|---|---|
HV0.98, ГПa | HV0.49, ГПa | HIT, ГПa | EIT, ГПa | CIT, % | ηIT | ||
Untreated | 1.47 | 1.51 | 2.66 | 134.7 | 2.48 | 12.8 | – |
Nitriding at 750 °C | 3.56 | 3.84 | 11.47 | 191.3 | 1.25 | 38.2 | 26 |
Nitriding at 900 °C | 12.23 | 14.46 | 16.29 | 238.9 | 0.48 | 50.2 | 49 |
Boriding at 900 °C | 8.91 | 9.12 | 13.37 | 191.6 | 0.41 | 38.4 | 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavrys, S.; Pohrelyuk, I.; Tkachuk, O.; Padgurskas, J.; Trush, V.; Proskurnyak, R. Comparison of Friction Behaviour of Titanium Grade 2 after Non-Contact Boriding in Oxygen-Containing Medium with Gas Nitriding. Coatings 2023, 13, 282. https://doi.org/10.3390/coatings13020282
Lavrys S, Pohrelyuk I, Tkachuk O, Padgurskas J, Trush V, Proskurnyak R. Comparison of Friction Behaviour of Titanium Grade 2 after Non-Contact Boriding in Oxygen-Containing Medium with Gas Nitriding. Coatings. 2023; 13(2):282. https://doi.org/10.3390/coatings13020282
Chicago/Turabian StyleLavrys, Serhii, Iryna Pohrelyuk, Oleh Tkachuk, Juozas Padgurskas, Vasyl Trush, and Roman Proskurnyak. 2023. "Comparison of Friction Behaviour of Titanium Grade 2 after Non-Contact Boriding in Oxygen-Containing Medium with Gas Nitriding" Coatings 13, no. 2: 282. https://doi.org/10.3390/coatings13020282
APA StyleLavrys, S., Pohrelyuk, I., Tkachuk, O., Padgurskas, J., Trush, V., & Proskurnyak, R. (2023). Comparison of Friction Behaviour of Titanium Grade 2 after Non-Contact Boriding in Oxygen-Containing Medium with Gas Nitriding. Coatings, 13(2), 282. https://doi.org/10.3390/coatings13020282