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Abstract: The surface characteristics and friction behaviour of titanium Grade 2 with modified
nitride (TiN, Ti2N) and boride (TiB) compound layers were investigated. It was shown that during
non-contact boriding in oxygen-containing medium of titanium, the diffusion processes take place
mainly by the interscale mechanism; however, during nitriding, besides the traditional interscale
diffusion mechanism, the grain boundary mechanism of diffusion of nitrogen atoms is also realized.
The optimal set of surface roughness parameters (height and step parameters, a combination of
kurtosis and asymmetry, and profile reference curve parameters) was obtained after boriding. It was
determined that the intensity of the adhesive wear of the tribo-pairs with stainless steel and ultrahigh
molecular weight polyethylene under dry sliding conditions was influenced not only by the hardness
but also roughness of the modified surface layer. The lowest friction coefficient was fixed for the TiB
compound layer in both tribo-pairs.
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1. Introduction

Titanium is well known because of its high specific strength, corrosion resistance,
and biocompatibility, which makes it a necessary material for load-bearing biomedical
applications (such as hip and knee joints, dental posts, or heart pumps) [1–4]. However,
its tribological properties are poor compared to other biomaterials such as Co–Cr alloys
and Al2O3 ceramics. During friction, there is a local destruction of the native passive
oxide film, resulting in the generation of fragments of titanium oxides and local corrosion
on the interface. The continuous process of destruction–reconstruction of the oxide film
leads to the migration and chemical interaction of fretting wear debris with physiological
environment of human body, causing the biological complications (toxicity, carcinogenicity,
and inflammation of tissue), and, consequently, implant rejection. Therefore, the wear
resistance of titanium is a limiting factor for its use as a bearing material in articulated
joint implants. There are many methods for increasing wear and fretting resistance of
titanium [5–21], among which diffusion methods (thermochemical treatment) [11–17] are
attractive. This is explained by the fact that these methods are technologically simple
and provide stable physicochemical and mechanical characteristics of the treated surface.
The formed modified surface layers after such treatments have increased hardness, wear
resistance, and good adhesion with the base material, etc. Among the large number
of diffusion methods, gas nitriding is the most used and attractive one for increasing
the functional properties of titanium for medical applications. This method ensures the
formation of nitride layers characterized by higher bioinertness, biocompatibility, and wear
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and corrosion resistance compared with untreaded titanium and its alloys [14,17,22,23]. For
example, the nitride layer formed after gas nitriding provides 4–5 times higher hardness
compared with untreated titanium alloy [24]. A better corrosion resistance and a significant
decrease in ion release rates for the nitrided alloy (ion release of 1.41 ng/cm2 compared
with 163.58 ng/cm2 obtained for the commercially pure titanium at pH = 7.48 in artificial
Carter–Brugirard saliva) was observed. The cytocompatibility was not compromised and
the cell viability performed on human osteoblasts, fibroblastic cells, and epithelial cells
was enhanced on the nitrided surface in comparison with the non-nitrided surface. These
combined properties make the nitrided Ti-27Nb alloy a good candidate for dental implant
applications. Nitriding of Ti-6Al-4V alloy at 850–900 ◦C improved not only hardness and
wear and corrosion resistance but also biocompatibility [25–27]. It was demonstrated that
the cell growth and vitality on the nitrided alloy is higher than that on the untreated
one [27].

Recently, the attention of scientists has been drawn to diffusion boride layers, which
have higher hardness than nitride ones (35 GPa for TiB2 [28] and 21 GPa for TiB [29] vs.
24 GPa for TiN [30]). Therefore, they allow expected higher wear resistance compared with
nitride layers, which indicates the prospect of using boride layers in medical tribocouples.
It was also shown in [31] that boride layers on titanium have good cytocompatibility
compared with untreated titanium. The good biocompatibility of borides is evidenced by
the results [32], where it was shown that TiB2–Ti composites had a favourable growth rate
of cells on their surface within 48 h, as well as excellent compatibility with blood with a
low level of haemolysis (<0.12). It was shown that boriding increases corrosion resistance
and biocompatibility and decreases the tribocorrosion rate of Ti-6Al-4V alloy [33,34].

However, the main disadvantage of boriding compared with nitriding is the process
temperature (for boriding—1100...1500 ◦C; for nitriding—750...1050 ◦C) [34,35]. At such
high boriding temperatures, the structure of the titanium matrix degrades catastrophically
(the rapid growth of grains), which worsens the mechanical and fatigue properties [36–39].

In this research, the prospect of non-contact boriding of titanium in an oxygen-
containing medium was considered. Such technology will reduce the temperature of
thermodiffusion saturation with boron due to the increasing reactive activity of the boron-
containing powder in the abovementioned medium. Because of the presence of an oxygen-
containing medium, in addition to a hardened boride layer, a transitional diffusion layer
Ti(O) will be formed to avoid a sharp gradient of properties between the boride layer and
titanium matrix, and thus this will prevent cracking and detachment of the boride layer.
Also, the advantage of this method is the elimination of sticking powder particles to the
titanium surface, which improves the quality of the treated surface significantly compared
with the traditional solid boriding [39,40].

Therefore, the purpose of this work is to investigate the surface and tribological
properties of titanium Grade 2 after non-contact boriding in an oxygen-containing medium
and compare them with the properties of titanium after gas nitriding as one of the most
well-known and used methods.

2. Materials and Methods
2.1. Investigated Material

The samples of titanium Grade 2 were used. The structure of titanium in the initial
state is represented by polyhedral α-grains with a size of 20...40 µm (Figure 1b). The
chemical composition and mechanical properties of titanium Grade 2 are given in Table 1
Samples with dimensions of 30 mm × 10 mm × 3 mm were cut from the sheet material by
the electroerosion method. The surface of the samples was previously ground and polished
to a mirror surface (Figure 1a); the roughness parameter Ra was 0.05 µm.
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Figure 1. Surface topography (a) and microstructure (b) of titanium Grade 2 in the initial state.

Table 1. Chemical composition and mechanical properties of titanium Grade 2 (according to ISO 5832-2).

Chemical Composition

Element N C H Fe O Ti

wt. %
Maximum

Balance0.030 0.100 0.015 0.300 0.250
Mechanical properties

Hardness, HV 145
Ultimate tensile strength σ, MPa 345
Tensile yield strength σ0,2, MPa 275
Elongation at break δ, % 20
Reduction of area ψ, % 35
Modulus of elasticity E, GPa 105
Shear modulus G, GPa 110

2.2. Surface Engineering

Thermochemical treatment of titanium was carried out using an equipment developed
and manufactured at the Karpenko Physico-Mechanical Institute of the National Academy
of Sciences of Ukraine. It allows us to carry out saturation both in a rarefied dynamic
atmosphere and in static conditions at atmospheric gas pressure, as well as to reproduce the
technological regulation of heat treatment (cyclic changes of temperature and heating and
cooling rates) and provides the time–temperature and gas-dynamic regime of saturation in
one technological cycle. The methods of gas nitriding [41] and non-contact boriding [38–40]
were chosen as the thermochemical treatments of titanium.

Gas nitriding. For gas nitriding, gaseous nitrogen of commercial purity (GOST 9293-74)
was used, which before supplying into the reaction chamber of the furnace was dried and
freed from oxygen by filtering it through a capsule with silica gel and titanium chips heated
up to ~50 ◦C above the saturation temperature. The titanium samples were placed into
the reaction chamber of the furnace in a cylindrical container made of stainless steel and
heated in a vacuum to the saturation temperature. The heating rate was 5 ◦C/min. The
reaction gas N2 was fed into the working chamber after reaching saturation temperature.
The nitrogen pressure in the reaction chamber of the furnace was constant (1 atm). After the
isothermal holding, the samples were cooled with the furnace (cooling rate ≈ 5 ◦C/min) in
a nitrogen atmosphere to a temperature of 500 ◦C. Then, the gaseous nitrogen was pumped
off and cooling occurred in a vacuum (10−3 Pa) (Figure 2a). Based on previous investiga-
tions [38,41], the saturation temperatures of 750 ◦C and 900 ◦C were chosen because they
provide the formation of a layer of compounds consisting only of Ti2N or a mixture of
nitrides (TiN + Ti2N), respectively.
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Figure 2. Scheme for fixing of samples during gas nitriding (a) and non-contact boriding (b).

Non-contact boriding. Boron carbide powder (B4C) was used as a boron-containing
mixture for non-contact boriding. The titanium samples were placed into the reaction
chamber of the furnace in a cylindrical container made of stainless steel. A 32 mm-thick
layer of boron carbide powder was added into the container. Above the boron-containing
powder, the test samples were suspended in a layer at a distance of about 5 mm (Figure 2b).
Then, they were heated in a vacuum to the saturation temperature of 900 ◦C and rarefied
oxygen (partial pressure of oxygen ≈ 1 Pa) was added. It circulated both in the furnace
chamber and in the container. After the isothermal holding, the samples were cooled with
the furnace (cooling rate ≈ 5 ◦C/min) in rarefied oxygen to a temperature of 500 ◦C. Then,
the oxygen was pumped off and cooling occurred in a vacuum (10−3 Pa). It should be
noted that the peculiarity of such boriding [38–40] is the presence of an oxygen-containing
medium in the furnace atmosphere. In the process of such saturation, the oxygen-containing
medium will affect the reaction activity of the components of the medium (backfill). The
transport of boron to the surface is realized through the vapour–gas phase, that is, by the
reaction of oxygen with boron carbide (oxidation of the powder). As a result, volatile
boron suboxide B2O2 is formed and it is moved towards the working surface. Then it
disproportionates with the formation of boric anhydride B2O3 and atomic boron, which
diffuses through the interface into titanium and forms the chemical compound TiB on the
surface. Under such conditions of boriding, the internal energy of oxygen is sufficient for
overcoming the energy barrier, dissolution into titanium, and formation of a solid solution
Ti(O) (diffusion layer) [39,42].

2.3. Surface Characterization

The phase composition of the surface layers was determined by X-ray phase analysis
using a DRON-3.0 diffractometer in monochromatic CuKα radiation with Bragg–Brentano
focusing. The voltage at the anode of the X-ray tube was 30 kV at a current of 25 mA.
Diffraction patterns were registered with the help of a step scan in the 2θ angles range
30 . . . 80◦. The scan step was 0.05◦, and exposure time was 5 s. Sietronix, Powder Cell
2.4 and FullProf software were used to define the locations of diffraction maxima of
reflection and identify them according to the JCPDS–ASTM card-file. The analysis of surface
topography was carried out using a ZEISS EVO-40XVP scanning electron microscope (SEM)
equipped with an INCA Energy 350 energy dispersive X-ray (EDX) microanalysis and
backscattered detector (BSD). This allows us to carry out qualitative and quantitative
analyses of the content of impurities with an accuracy of 0.01% and automatic scaling
and marking of peaks on the spectrum and their reconstruction and comparison. The
surface roughness of the samples was investigated via the method of two-step phase-
shifting interferometry based on the Twyman–Green interferometer. The microhardness
was determined using a PMT-3M durometer under a Vickers indenter with loads of 0.49
and 0.981 N. The nanoindentation was performed using a Micro Combi Tester device with
a Vickers diamond indenter. The maximum load during nanoindentation was 200 mN,
and the loading and unloading speed was 400 mN/min. The depth of the hardened layer
was determined both by the direct method—by changing microstructure of the surface



Coatings 2023, 13, 282 5 of 16

layers—and by using the microhardness profile across the near-surface layers as the area
the microhardness of which exceeds the microhardness of the titanium matrix by 0.2 GPa.
The microstructural analysis of the hardened layers and matrix was performed using an
Epiquant optical microscope. The sections were etched with Kroll’s reagent.

2.4. Friction Testing

The frictional behaviour of titanium after surface engineering was evaluated using the
LK-1 friction machine. The friction scheme was «pin-on-plate» during the reciprocating
motion. Both 316L stainless steel and ultrahigh molecular weight polyethylene (UHMWPE)
were used as the counterbody material. The sliding speed was 0.015 m/s, and the load
on the sample was 1 MPa [43–45]. The tests were performed for 1300 cycles with relative
displacement stroke between the plate and pin for 30 min. The length of the working stroke
of the sample was 20 mm, and the sliding distance was 26 m. The tests were conducted in
air (dry sliding). The wear mechanism was evaluated by the worn surface topography.

3. Results and Discussion
3.1. Surface Characteristics

The colour and reflective ability of the titanium surface depended on the method and
temperature of the surface treatment. After nitriding at a temperature of 750 ◦C, the surface
is shiny light grey with a golden hue. By increasing temperature to 900 ◦C, the surface
becomes matte with a dark golden hue. The surface of titanium after boriding changes
from shiny metallic grey to matte ash-gray (Figure 3). This colour of the surface mainly
depends on the titanium nitride or boride, their stoichiometry, thickness, integrity, density,
and other characteristics.
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Figure 3. XRD analysis of titanium Grade 2 in the initial state (a), after nitriding at temperatures of
750 ◦C (b) and 900 ◦C (c), and after boriding (d).

According to the results of the XRD analysis, after nitriding at a temperature of 750 ◦C,
a compound layer of titanium nitride Ti2N (ε-phase) (77–1893) is formed on the surface of
the samples. The (111), (002), and (211) reflections dominate in the diffraction spectrum of
Ti2N. The interplanar distances of α-Ti (44–1294) reflections increase, which indicates the
formation of a saturated Ti(N) solid solution under the single-phase nitride layer (Figure 3b).
An increase in the nitriding temperature up to 900 ◦C leads to the formation of a two-phase
compound layer that contains both the nitride Ti2N and the mononitride TiN (δ-phase)
(74–1214) (Figure 3c). The (111) and (200) lines dominate in the diffraction spectrum of TiN
nitride. The relative intensity of the reflections of the ε-phase of titanium nitride is higher
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than the intensity of the reflections of the δ-phase of titanium nitride, which indicates a
greater amount of the first phase in the surface layer. The intensity of Ti2N reflections
in the [111] direction increases slightly, but there is a tendency for the appearance of the
dominant orientation in the [002] direction, which is evidenced by an increase in the texture
coefficient of the (002) plane. It should be noted that by increasing the nitriding temperature,
the intensity of the reflections in the nitride phases increases when the intensity of the
reflections of α-titanium decreases (Figure 3), which qualitatively indicates the growth and
thickening of the nitride film.

After boriding, a wide range of reflections of titanium monoboride TiB (73–2148) of
low intensity was fixed in a diffraction spectrum, i.e., a boride layer of compounds was
formed (Figure 3d). The intensities of TiB reflections are not high and are fixed in the range
of 400–500 relative units, which indicates a negligible content of the latter on the surface.
The intensity of α-Ti reflections in the [101] direction decreases, but there is a tendency for
an appearance of the dominant orientation in the [102] and [103] directions, as evidenced
by an increase of the texture coefficient of the (102) and (103) planes. We also observed a
shift in the reflections of the matrix phase (α-titanium) towards the near reflection angles,
which indicates greater deformation of the crystal lattice of titanium due to an increase
in the amount of interstitial atoms (oxygen). This indirectly indicates the formation of a
saturated solid solution of oxygen in titanium Ti(O).

The surface topography of the studied samples in the initial state is mirror-like with
individual microscratches. The subsequent nitriding at a temperature of 750 ◦C slightly
changes the surface relief, which indicates uniform penetration of nitrogen atoms into
the titanium matrix (Figure 4a). The change in surface relief can be explained by the
increased intensity of penetration of the atoms through the grain boundaries, as they are
favourable paths for their facilitated diffusion [46–48]. To confirm this hypothesis, an EDX
microanalysis of samples after surface treatment was performed, which fixed an increased
concentration of nitrogen at the boundaries of titanium grains (Figure 5a and Table 2). This
allows assertion that the grain boundaries are new centres of nucleation of nitride films, i.e.,
on the titanium surface; besides the traditional interscale diffusion mechanism, the grain
boundary mechanism of diffusion of nitrogen atoms is also realized. The surface relief
increases when the nitriding temperature increases to 900 ◦C (Figure 4b). The tendency
towards greater intensity of penetration of nitrogen atoms through the grain boundaries
persists (Figure 5b and Table 2). The surface morphology is complex, resembling a layer-
by-layer alternation of nitride layers. It is obvious that by increasing the temperature, the
nitride layers grow beyond the grain boundaries, unite, grow one on top of the other, and
gradually fill the entire treated surface. As a result, the surface topography repeats the
grain boundaries, and this is more pronounced the higher nitriding temperature. It should
be noted that according to the results of the EDX microanalysis, the nitrogen content is
underestimated, which is explained by the fact that nitrogen has only the N (Kα1) peak
(0.392 keV), which unfortunately overlaps with the Ti (Lα1) peak (0.452 keV). Therefore,
this analysis does not give a reliable quantitative result regarding the concentration of
nitrogen (the content is lower) but allows us to estimate its content qualitatively.

After boriding, the surface topography of the titanium changes. The segregation of
spherical TiB monoboride inclusions that cover the entire surface was observed (Figure 4c).
A uniform homogeneous layer is formed during boriding, which indicates that under
these conditions the diffusion processes take place mainly via the interscale mechanism
(Figure 5c). It should also be noted that after boriding from the B4C powder, only the boride
phase of TiB without obvious traces of TiC was fixed. This is explained by the fact that
the interaction and formation of titanium carbides during boriding of titanium from B4C
powder is possible at a temperature of 1080 ◦C [35].
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Table 2. EDX analysis of titanium Grade 2 surface after surface treatment (see Figure 5).

Surface
Treatment Element

Spectrum №1 Spectrum №2

wt., % at., % wt., % at., %

Nitriding at
750 ◦C

TiK 99.57 89.55 96.29 89.57
NK 0.43 1.45 3.71 10.43

Nitriding at
900 ◦C

TiK 91.33 87.13 84.05 80.65
NK 8.67 12.87 15.95 19.35

Boriding at
900 ◦C

TiK 58.55 58.22 57.56 54.01
BK 41.5 41.78 42.44 45.99
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The formation of nitride or boride layers on titanium also effects the parameters
of surface roughness that were analysed before and after surface treatment using three-
dimensional interferograms (Figure 6).
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Figure 6. Micro-relief of titanium Grade 2 surface recovered by interferometric method in the initial
state (a), after nitriding at 750 ◦C (b) and 900 ◦C (c), and after boriding (d).

According to the obtained results, it was determined that after nitriding at a tempera-
ture of 750 ◦C, the height parameters of the surface roughness increase by ~2.5...2.7 times
and the step parameters decrease slightly (Table 3) due to the fact that a new microrelief is
formed on the surface after nitriding where nitride phases of Ti2N are the new peaks, which
are formed at the grain boundaries. By increasing the nitriding temperature to 900 ◦C, the
height parameters increase by 8.5...10.0 times and the step parameters decrease by 2.2...3.3
times (Table 3) due to the formation of the additional peaks of the surface profile because
of the formation of the TiN nitride phase.

Table 3. Parameters of surface roughness of titanium Grade 2 after surface treatment.

Surface Treatment Ra, µm Rt, µm Rp, µm Rv, µm Rsk Rku S, µm Sm, µm Rmr, %

Untreated 0.054 0.241 0.124 0.117 −0.06 2.88 2.21 3.51 0.51
Nitriding at 750 ◦C 0.134 0.587 0.284 0.303 −0.17 2.89 2.04 3.23 0.47
Nitriding at 900 ◦C 0.465 1.704 0.741 0.963 −0.042 2.81 1.01 1.06 0.58
Boriding at 900 ◦C 0.405 1.612 0.854 0.758 −0.04 2.14 1.04 1.44 0.61

After boriding, the height parameters of the surface roughness increase by 6.5...7.5 times
and the step parameters decrease by 2.1...2.5 times (Table 3). It should be noted that boriding
under the same time–temperature regimen of treatment has a lesser effect on the increase
in the height parameters of the surface roughness compared with nitriding. However, both
boriding and nitriding reduce the step parameters (Table 3).

The standard height and step characteristics of surface roughness are not always key
factors during the prediction of tribological properties of the hardened surface. Therefore,
the additional characteristics of surface roughness were determined, namely, the material
ratio curve (Abbott–Firestone curve), asymmetry, and kurtosis, which are very important
for describing surface relief [49,50].

Nitriding at a temperature of 750 ◦C leads to a slight decrease in the value of the
kurtosis of the surface and reduces the asymmetry parameter by 2.9 times, which character-
izes the surface with low peaks and deep valleys (Figure 7). Increasing the temperature
of gas nitriding slightly reduces the kurtosis. The coefficient of asymmetry increases and
approaches the initial state (untreated) (Figure 7). Such an increase in the asymmetry
coefficient occurs due to the growth of the nitride layer, which leads to the formation of
a new microrelief and a significant increase in the height parameters of the roughness.
The boriding of titanium slightly increases the asymmetry but significantly reduces the
kurtosis of the surface (~1.3 times). This is explained by the formation of a new relief
with a characteristic surface texture (borides of a spherical shape), which creates low and
spreading peaks.
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According to the analysis of the material ratio curve (Figure 7b) of the surface, it was
established that nitriding at a temperature of 750 ◦C reduces the value of the material ratio
of the profile. However, nitriding and boriding at a temperature of 900 ◦C increases this
value. This is explained by the nucleation and growth of the surface film and the formation
of a characteristic relief (Figure 4) that is characterized by low and spreading peaks and
deep valleys. It should be noted that the tail part of the material ratio curve rises after all
regimes of diffusion treatment, which is evidence of the formation of the wide valleys of
the profile. According to studies [38,41], it can be assumed that increasing the material ratio
of the profile after nitriding and boriding at a temperature of 900 ◦C will have a positive
effect on the tribological characteristics, especially at runnig-in.

The metallographic analysis established that after surface treatment, near-surface
hardened layers are formed on titanium due to the diffusional penetration of the interstitial
elements (nitrogen, boron, and oxygen) into the depth of the material. Thus, after nitriding
at a temperature of 750 ◦C, a hardened layer is formed, consisting of a 3 µm-thick nitride
Ti2N layer and a 25 µm-thick diffusion zone. By increasing the nitriding temperature to
900 ◦C, the hardened layer thickness almost doubles as a result of the intensification of
both the processes of nitride formation and gas saturation during nitriding (Figure 8b).
Moreover, the morphology of the boride layer differs from nitride one: a continuous layer
of compounds is formed during nitriding, and small whiskers of borides TiB with the
thickness of 2...5 µm are formed during boriding. They grow deep into the near-surface
layer of titanium. Also, as a result of boriding in an oxygen-rich medium, a deep diffusion
zone (~80 µm) is formed, consisting of a supersaturated solution of oxygen in titanium
Ti(O). It should be noted that at similar temperatures, boriding in an oxygen-containing
medium provides a deeper diffusion layer than nitriding due to the higher diffusion
coefficient of oxygen against nitrogen in titanium and, as a result, the higher intensity of
gas saturation [39].

Considering the fact that nitriding or boriding is carried out at high temperatures, this
affects the microstructure of the titanium matrix. Thus, nitriding at a temperature of 750 ◦C
increases the size of titanium grains by ~4 times, which is associated with the processes of
recrystallization of the alloy. Increasing the temperature to 900 ◦C intensifies the processes
of recrystallization and leads to an increase in the size of the grains. It should also be noted
that at temperatures close to β-transus, the processes of recrystallization of some α-grains
with the formation of secondary acicular α-grains against the background of the primary
ones also occur (Figure 9).
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Furthermore, the formation of nitride or boride layers effects the level of the surface
hardening of titanium. The surface microhardness of titanium increases by 2.5 times after
nitriding at a temperature of 750 ◦C (Table 4). Nitriding at a temperature of 900 ◦C increases
the microhardness by almost 8 times compared with the initial state due to the activation
of phase formation processes and the formation of TiN mononitride. The formation of a
TiB boride layer on the surface provides higher microhardness than a Ti2N layer but does
not exceed the hardness of a TiN + Ti2N layer.

Based on the results of nanoindentation, it was established that the relationship
between surface treatment and hardness is preserved. With an increase in the nanohardness
and the Young’s modulus, the resistance to elastic deformation of the surface layer increases.
Young’s modulus characterizes the ability of samples to resist elastic deformation. When
Young’s modulus was large, the amount of elastic recovery was large during the unit time.
As shown in Figure 10, the sample has better resistance to deformation after nitriding at
900 ◦C. This phenomenon can be interpreted by the fundamental theory of indentation
based on the Oliver–Pharr method. It was shown in [51] that residual tensile stress will
increase the indent depth and shift the load-depth curve toward the right, which results in
lower hardness. Also during indentation of untreated titanium, a sudden displacement
burst at shallow indentation depths was observed. This appeared as a plateau in the
loading curve (so-called pop-in) (Figure 10a) due to the destruction of a thin passive film
on the titanium (Figure 11a). It should be noted that for nitride layers we observed a rather
high scatter for the nanoindentation data, which can be explained as follows: the intensity
of nitride formation is higher at the grain boundaries than in the grain body (Figure 5);
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therefore, there is a deeper nitride layer and, as a result, higher hardness (Figures 10 and 11).
This effect was not observed for borided titanium, which indicates the homogeneity of the
surface layer.

Table 4. Results of durometric analysis of titanium Grade 2 after surface treatment.

Surface Treatment
Microindentation Nanoindentation Deep of Layer, µm

HV0.98, ГΠa HV0.49, ГΠa HIT, ГΠa EIT, ГΠa CIT, % ηIT

Untreated 1.47 1.51 2.66 134.7 2.48 12.8 –
Nitriding at 750 ◦C 3.56 3.84 11.47 191.3 1.25 38.2 26
Nitriding at 900 ◦C 12.23 14.46 16.29 238.9 0.48 50.2 49
Boriding at 900 ◦C 8.91 9.12 13.37 191.6 0.41 38.4 86
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Figure 11. Imprint of Vickers pyramid on surface of titanium Grade 2 in initial state (a), after nitriding
at 750 ◦C (b) and 900 ◦C (c), and after boriding (d): 1 and 2—nanoindentation near grain boundary
and in grain body, respectively.

The results of the microhardness distribution (Figure 12) in the near-surface layer
agree well with the metallographic analysis. Boriding in an oxygen-containing medium
provides the deepest layer and a smoother gradient with a higher level of hardening.
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Figure 12. Hardness distribution in the surface layer of titanium Grade 2 in initial state (1), after
nitriding (2, 3), and after boriding (4).

3.2. Friction Behaviour
3.2.1. Friction Behaviour of Surface Hardened Titanium Grade 2 in a Tribo-Pair with
Stainless Steel

According to the results of the tribological tests, it was established that the worst
antifriction properties (the highest friction coefficient) are fixed for untreated titanium
(Figure 13a). This is explained by the fact that during the friction of untreated titanium in
the tribo-pair with steel, an adhesive wear mechanism is realized. That is, due to the high
chemical activity and low thermal conductivity of titanium, processes of microwelding and
tearing of titanium from the surface occur during friction. As a result, we fix the adhesive
craters on the contact surface of the samples with lower hardness (titanium), which later
stick to the surface of harder material (steel) (Figure 14a).
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The thermochemical treatment (nitriding and boriding) improves the antifriction
properties of titanium (Figure 13a). It is associated with the formation of chemically inert
and hard nitride and boride layers, which change the nature of adhesive wear: steel wears
more intensively. This is confirmed by the metallographic analysis of the wear surfaces: the
sticking of the counterbody material (steel) on the surface of the treated titanium was fixed
(Figure 14b–d).
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It should be noted that nitriding at a temperature of 750 ◦C improves the antifriction
properties of titanium the least (Figure 13a). It is obvious that under such friction conditions
the thin nitride (compound) layer on the titanium surface is destroyed easily due to the
high specific load at the contact points, which leads to the baring of the chemically clean
surface. As a result, the partial seizure and tearing of titanium along the grain boundaries
occurred. Thus, according to the SEM analysis, the Ti2N wear surface is characterized by
deep grooves along the grain boundaries where the material is pulled out (Figure 14b).

The highest antifriction properties for titanium are provided by nitriding and boriding
at a temperature of 900 ◦C. Thus, according to the metallographic analysis, a decrease
in the adhesive and an increase in the abrasive component of wear is observed on the
topography of TiN and TiB wear surfaces. It obviously improves the frictional behaviour of
titanium. It should be noted that the better antifriction characteristics of titanium are fixed
after boriding of titanium, which is obviously related to the higher surface quality (lower
roughness parameter Ra) of the TiB surface than the TiN surface (Figure 4).

3.2.2. Friction Behaviour of Surface Hardened Titanium Grade 2 in a Tribo-Pair
with UHMWPE

In the tribo-pairs with UHMWPE, the lowest antifriction properties of titanium are
fixed in the initial state (untreated) (Figure 13b). The wear mechanism of this tribo-pair is
adhesive where we fixed the transfer of UHMWPE to the titanium surface (Figure 15a). It
should be noted that we fixed burrs on the surface, which are located perpendicular to the
direction of friction. It is obvious that such burrs promote the destruction of the natural
oxide film, which will worsen the frictional behaviour of titanium.
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The thermochemical treatment improves the antifriction properties of titanium in
a tribo-pair with UHMWPE. However, in contrast to the tribo-pair with steel, the main
characteristics that affect the frictional behaviour of titanium to a greater extent are the
surface quality, roughness, and morphology of the layer and to a lesser extent, the hardness.
Thus, nitriding at 750 ◦C provides less surface roughness and relief, which contributes to
better antifriction properties for titanium than nitriding at 900 ◦C. This is explained by the
fact that during nitriding, a characteristic nitride layer is formed, which reproduces the
boundaries of titanium grains. Thus, during friction, the relief nitride film, like an abrasive,
will plow through the soft material of the counterbody, i.e., the adhesive wear will intensify
the processes of abrasive wear. By increasing nitriding temperature, the surface roughness
increases and worsens the wear and frictional behaviour of the tribo-pair. Boriding, due to
the formation of a homogeneous boride layer with low roughness, improves the frictional
behaviour of titanium in a tribo-pair with UHMWPE compared with nitriding.

4. Conclusions

In this work, the comparison of the friction behaviour of titanium Grade 2 after non-
contact boriding in oxygen-containing medium with gas nitriding was studied. The main
conclusions are as follows:

1. It was determined that the single-phase (Ti2N) or two-phase (Ti2N + TiN) compound
layers were formed during the nitriding of titanium at temperatures of 750 ◦C or
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900 ◦C. The single-phase (TiB) compound layer was formed after non-contact boriding
in oxygen-containing medium.

2. It was shown that non-contact boriding allows formation of a homogeneous com-
pound layer with better surface roughness (height, step, and other parameters) com-
pared with gas nitriding. According to the results of micro- and nanoindentation
tests, boriding provides a deeper hardened layer but lower surface hardness and
elastic modulus.

3. It was found that borided titanium has better friction behaviour under dry sliding
in tribo-pairs with stainless steel (friction coefficient is lower by ~1.5 times) and
UHMWPE (friction coefficient is lower by ~2 times) in comparison with nitriding.

4. According to the SEM analysis, it was determined that formation of the compound
layers on titanium leads to a decrease in the adhesive component and an increase in the
abrasive one of the wear mechanism in tribo-pairs. Boriding, due to better roughness,
provides the decrease in adhesive and abrasive wear compared with nitriding.
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