Investigation of the Properties of Multilayer Nanostructured Coating Based on the (Ti,Y,Al)N System with High Content of Yttrium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- Pre-washing when exposed to ultrasound in a special solution;
- Washing in purified water;
- Drying and wiping with pure medical alcohol;
- After that, the samples were placed on the special fixture and loaded into the chamber of the unit;
- Before coating deposition, the samples are finely cleaned and thermally activated in a gas and metal plasma flow, with the following process parameters: gas (Ar) pressure = 2.0 Pa, cathode arc current = 110 A, voltage on substrate U = 110 V;
- After the above stages of preparation, coatings were deposited on the samples;
- Key characteristics of the coating process are presented in Table 1.
2.2. Characterization
3. Results and Discussion
4. Conclusions
- The Ti-TiN-(Ti,Y,Al)N coating is characterized by the considerably high hardness (HV 2758 ± 78) with the elastic modulus of 356 ± 24 GPa;
- Two cubic solid solutions (fcc phases)–c-(Ti,Y,Al)N and c-(Y,Ti,Al)N–are formed in the coating;
- The study of the wear resistance of the Ti-TiN-(Ti,Y,Al)N-coated tools during the turning of steel in comparison with the wear resistance of the tools with the reference coating of Ti-TiN-(Ti,Cr,Al)N and the uncoated tools detects a noticeable increase in the wear resistance on the rake face ( by 250%–270%) for the tools with both coatings. With the wear rates of the coated tools being fairly close, the tool life of the tool with the reference coating of (Ti,Cr,Al)N was slightly longer (by 10%–15%);
- During the process of wear, active oxidation processes take place in the layers of the Ti-TiN-(Ti,Y,Al)N coating that are in contact with the cut material flow. The mentioned processes consist in the dominant formation of yttrium oxide of Y2O3 with a possible slight formation of oxides of Al2O3 and TiO2. Thus, for the described cutting conditions, the mechanisms of oxidative wear dominate in the coating.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krella, A. Resistance of PVD coatings to erosive and wear processes: A review. Coatings 2020, 10, 21. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Gershman, I.S.; Veldhuis, S. Thin-film PVD coating metamaterials exhibiting similarities to natural processes under extreme tribological conditions. Nanomaterials 2020, 10, 1720. [Google Scholar] [CrossRef] [PubMed]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef]
- Mehran, Q.M.; Fazal, M.A.; Bushroa, A.R.; Rubaiee, S. A Critical Review on Physical Vapor Deposition Coatings Applied on Different Engine Components. Crit. Rev. Solid State Mater. Sci. 2018, 43, 158–175. [Google Scholar] [CrossRef]
- Bobzin, K. High-performance coatings for cutting tools. CIRP J. Manuf. Sci. Technol. 2017, 18, 1–9. [Google Scholar] [CrossRef]
- Bobzin, K.; Brögelmann, T.; Kruppe, N.C.; Arghavani, M.; Mayer, J.; Weirich, T.E. Plastic deformation behavior of nanostructured CrN/AlN multilayer coatings deposited by hybrid dcMS/HPPMS. Surf. Coat. Technol. 2017, 332, 253–261. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Milovich, F.; Andreev, N.; Sotova, C.; Kutina, N. Investigation of the influence of the thickness of nanolayers in wear-resistant layers of Ti-TiN-(Ti,Cr,Al)N coating on destruction in the cutting and wear of carbide cutting tools. Surf. Coat. Technol. 2020, 385, 125402. [Google Scholar] [CrossRef]
- Teppernegg, T.; Czettl, C.; Michotte, C.; Mitterer, C. Arc evaporated Ti-Al-N/Cr-Al-N multilayer coating systems for cutting applications. Int. J. Refract. Hard Met. 2018, 72, 83–88. [Google Scholar] [CrossRef]
- Ramírez-Montes, L.; López-Pérez, W.; González-García, A.; González-Hernández, R. Structural, optoelectronic, and thermodynamic properties of YxAl1-xN semiconducting alloys. J. Mater. Sci. 2016, 51, 2817–2829. [Google Scholar] [CrossRef]
- Schuster, J.C.; Bauer, J. The ternary systems ScAlN and YAlN. J. Less-Common Met. 1985, 109, 345–350. [Google Scholar] [CrossRef]
- Ben Sedrine, N.; Zukauskaite, A.; Birch, J.; Jensen, J.; Hultman, L.; Schöche, S.; Schubert, M.; Darakchieva, V. Infrared dielectric functions and optical phonons of wurtzite YxAl1-xN (0 < x < 0.22). J. Phys. D 2015, 48, 415102. [Google Scholar]
- Miyake, T.; Kishimoto, A.; Hasegawa, H. Tribological properties and oxidation resistance of (Cr,Al,Y)N and (Cr,Al,Si)N films synthesized by radio-frequency magnetron sputtering method. Surf. Coat. Technol. 2010, 205 (Suppl. 1), S290–S294. [Google Scholar] [CrossRef]
- Ju, H.; Jia, P. Microstructure, Oxidation Resistance and Mechanical Properties of Nb–Y–N Films by Reactive Magnetron Sputtering. Prot. Met. Phys. Chem. Surf. 2020, 56, 328–332. [Google Scholar] [CrossRef]
- Scheerer, H.; Berger, C. Wear mechanisms of (Cr,Al,Y)N PVD coatings at elevated temperatures. Plasma Process Polym. 2009, 6 (Suppl. 1), S157–S161. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kujime, S.; Fox-Rabinovich, G. Effect of alloying element (Si,Y) on properties of AIP deposited (Ti,Cr,Al)N coating. Surf. Coat. Technol. 2008, 203, 579–583. [Google Scholar] [CrossRef]
- Rovere, F.; Music, D.; Schneider, J.M.; Mayrhofer, P.H. Experimental and computational study on the effect of yttrium on the phase stability of sputtered Cr-Al-Y-N hard coatings. Acta Mater. 2010, 58, 2708–2715. [Google Scholar] [CrossRef]
- Aninat, R.; Valle, N.; Chemin, J.-B.; Duday, D.; Michotte, C.; Penoy, M.; Bourgeois, L.; Choquet, P. Addition of Ta and Y in a hard Ti-Al-N PVD coating: Individual and conjugated effect on the oxidation and wear properties. Corros. Sci. 2019, 156, 171–180. [Google Scholar] [CrossRef]
- Wu, Z.; Qi, Z.; Zhang, D.; Wang, Z. Evolution of the microstructure and oxidation resistance in co-sputtered Zr-Y-N coatings. Appl. Surf. Sci. 2014, 321, 268–274. [Google Scholar] [CrossRef]
- Rovere, F.; Mayrhofer, P.H. Thermal stability and thermo-mechanical properties of magnetron sputtered Cr-Al-Y-N coatings. J. Vac. Sci. Technol. A 2008, 26, 29–35. [Google Scholar] [CrossRef]
- Dabees, S.; Mirzaei, S.; Kaspar, P.; Holcman, V.; Sobola, D. Characterization and Evaluation of Engineered Coating Techniques for Different Cutting Tools—Review. Materials 2022, 15, 5633. [Google Scholar] [CrossRef]
- Kovalev, A.; Wainstein, D.; Rashkovskiy, A.; Fox-Rabinovich, G.; Veldhuis, S.; Agguire, M.; Yamamoto, K. Investigation of electronic and atomic structure of tribofilms on the surface of cutting tools with TiAlCrSiYN and multilayer TiAlCrSiYN/TiAlCrN coatings during machining of hardened steels. Surf. Interface Anal. 2010, 42, 1368–1372. [Google Scholar] [CrossRef]
- PalDey, S.; Deevi, S.C. Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review. Mater. Sci. Eng. A 2003, 342, 58–79. [Google Scholar] [CrossRef]
- Smith, I.J.; Münz, W.D.; Donohue, L.A.; Petrov, I.; Greene, J.E. Improved Ti1-xAlxN PVD coatings for dry high speed cutting operations Greene. Surf. Eng. 1998, 14, 37–41. [Google Scholar] [CrossRef]
- Dosbaeva, G.K.; Veldhuis, S.C.; Yamamoto, K.; Wilkinson, D.S.; Beake, B.D.; Jenkins, N.; Elfizy, A.; Fox-Rabinovich, G.S. Oxide scales formation in nano-crystalline TiAlCrSiYN PVD coatings at elevated temperature. Int. J. Refract. Hard Met. 2010, 28, 133–141. [Google Scholar] [CrossRef]
- Vetter, J.; Eriksson, A.O.; Reiter, A.; Derflinger, V.; Kalss, W. Quo vadis: Alcr-based coatings in industrial applications. Coatings 2021, 11, 344. [Google Scholar] [CrossRef]
- Mo, J.; Wu, Z.; Yao, Y.; Zhang, Q.; Wang, Q. Influence of Y-addition and multilayer modulation on microstructure, oxidation resistance and corrosion behavior of Al0.67Ti0.33N coatings. Surf. Coat. Technol. 2018, 342, 129–136. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Ni, W.; Liu, Y. The effect of yttrium on cathodic arc evaporated Ti0.45Al0.55N coating. Surf. Coat. Technol. 2013, 214, 53–58. [Google Scholar] [CrossRef]
- Moser, M.; Kiener, D.; Scheu, C.; Mayrhofer, P.H. Influence of yttrium on the thermal stability of Ti-Al-N thin films. Materials 2010, 3, 1573–1592. [Google Scholar] [CrossRef]
- Li, M.; Wang, F.; Wu, W. High temperature oxidation of (Ti,Al)N and (Ti,Al,Y)N coatings on a steel prepared by arc ion plating (AIP). Mat. Sci. Forum 2004, 461–464, 351–358. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, S.; Tu, J.; Sun, X.; Liu, F.; Li, M. Influence of doping with Si and Y on structure and properties of (Ti,Al)N coating. Acta Metall. Sin. 2012, 48, 99–106. [Google Scholar] [CrossRef]
- Belous, V.; Vasyliev, V.; Luchaninov, A.; Marinin, V.; Reshetnyak, E.; Strel’nitskij, V.; Goltvyanytsya, S.; Goltvyanytsya, V.; Goltvyanytsya, S.; Goltvyanytsya, V. Cavitation and abrasion resistance of Ti-Al-Y-N coatings prepared by the PIII&D technique from filtered vacuum-arc plasma. Surf. Coat. Technol. 2013, 223, 68–74. [Google Scholar]
- Singh, S.; Chauhan, R.; Gour, A. TBI calculations of the elastic properties and structural phase transformation in novel materials: Yttrium nitride. Acta Phys. Pol. 2011, 120, 1021–1025. [Google Scholar] [CrossRef]
- Zerroug, S.; Ali Sahraoui, F.; Bouarissa, N. Ab initio calculations of yttrium nitride: Structural and electronic properties. Appl. Phys. A 2009, 97, 345–350. [Google Scholar] [CrossRef]
- Saha, B.; Sands, T.D.; Waghmare, U.V. Electronic structure, vibrational spectrum, and thermal properties of yttrium nitride: A first-principles study. J. Appl. Phys. 2011, 109, 73720. [Google Scholar] [CrossRef]
- Yang, J.W.; An, L. Ab initio calculation of the electronic, mechanical, and thermodynamic properties of yttrium nitride with the rocksalt structure. Phys. Status Solidi B Basic Res. 2014, 251, 792–802. [Google Scholar] [CrossRef]
- Barve, S.A.; Jagannath Mithal, N.; Deo, M.N.; Biswas, A.; Mishra, R.; Kishore, R.; Bhanage, B.M.; Gantayet, L.M.; Patil, D.S. Effects of precursor evaporation temperature on the properties of the yttrium oxide thin films deposited by microwave electron cyclotron resonance plasma assisted metal organic chemical vapor deposition. Thin Solid Film. 2011, 519, 3011–3020. [Google Scholar] [CrossRef]
- Cho, M.-H.; Ko, D.-H.; Jeong, K.; Whangbo, S.W.; Whang, C.N.; Choi, S.C.; Cho, S.J. Structural transition of crystalline Y2O3 film on Si(111) with substrate temperature. Thin Solid Film. 1999, 349, 266–269. [Google Scholar] [CrossRef]
- Fantozzi, G.; Orange, G.; Liang, K.; Gautier, M.; Duraud, J.-P.; Maire, P.; Le Gressus, C.; Gillet, E. Effect of Nonstoichiometry on Fracture Toughness and Hardness of Yttrium Oxide Ceramics. J. Am. Ceram. Soc. 1989, 72, 1562–1563. [Google Scholar] [CrossRef]
- Ju, H.; Yu, L.; He, S.; Asempah, I.; Xu, J.; Hou, Y. The enhancement of fracture toughness and tribological properties of the titanium nitride films by doping yttrium. Surf. Coat. Technol. 2017, 321, 57–63. [Google Scholar] [CrossRef]
- Zhang, T.G.; Zhuang, H.F.; Zhang, Q.; Yao, B.; Yang, F. Influence of Y2O3 on the microstructure and tribological properties of Ti-based wear-resistant laser-clad layers on TC4 alloy. Ceram. Int. 2020, 46, 13711–13723. [Google Scholar] [CrossRef]
- Tabatchikov, A.S. Appearance of fracture and impact toughness of weld metal alloyed with yttrium. Weld. Int. 1988, 2, 40–41. [Google Scholar] [CrossRef]
- Jun, L.; Huiping, W.; Manping, L.; Zhishui, Y. Effect of yttrium on microstructure and mechanical properties of laser clad coatings reinforced by in situ synthesized TiB and TiC. J. Rare Earths 2011, 29, 477–483. [Google Scholar]
- Li, K.W.; Wang, X.B.; Li, S.M.; Zhong, H.; Xue, Y.L.; Fu, H.Z. Microstructure and fracture toughness of Cr/Cr2Nb alloys with trace Y addition. Mater. Sci. Technol. 2016, 32, 195–199. [Google Scholar] [CrossRef]
- Sun, G.; Jia, L.; Ye, C.; Jin, Z.; Wang, Y.; Li, H.; Zhang, H. Balancing the fracture toughness and tensile strength by multiple additions of Zr and Y in Nb–Si based alloys. Intermetallics 2021, 133, 107172. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Acharya, S.; Ghosh, M.; Suresh, T.N.; Rajam, K.S.; Konchady Manohar, S.; Pai, D.M.; Sankar, J. Performance evaluation of TiAlCrYN nanocomposite coatings deposited using four-cathode reactive unbalanced pulsed direct current magnetron sputtering system. Vacuum 2010, 85, 411–420. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Aksenenko, A.; Sitnikov, N.; Oganyan, G.; Seleznev, A.; Shevchenko, S. Effect of adhesion and the wear-resistant layer thickness ratio on mechanical and performance properties of ZrN-(Zr,Al,Si)N coatings. Surf. Coat. Technol. 2019, 357, 218–234. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Shi, Q.; Ge, X.; Wang, W. Multilayer Coatings for Tribology: A Mini Review. Nanomaterials 2022, 12, 1388. [Google Scholar] [CrossRef]
- Vereschaka, A.; Grigoriev, S.; Tabakov, V.; Migranov, M.; Sitnikov, N.; Milovich, F.; Andreev, N. Influence of the Nanostructure of Ti-TiN-(Ti,Al,Cr)N Multilayer Composite Coating on Tribological Properties and Cutting Tool Life. Tribol. Int. 2020, 150, 106388. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Tabakov, V.; Sitnikov, N.; Andreev, N.; Sviridova, T.; Bublikov, J. Investigation of multicomponent nanolayer coatings based on nitrides of Cr, Mo, Zr, Nb, and Al. Surf. Coat. Technol. 2020, 401, 126258. [Google Scholar] [CrossRef]
- Vereshchaka, A.A.; Vereshchaka, A.S.; Mgaloblishvili, O.; Morgan, M.N.; Batako, A.D. Nano-scale multilayered-composite coatings for the cutting tools. Int. J. Adv. Manuf. Technol. 2014, 72, 303–317. [Google Scholar] [CrossRef]
- Beake, B.D. Nano-and Micro-Scale Impact Testing of Hard Coatings: A Review. Coatings 2022, 12, 793. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Beresnev, V.M.; Bondar, O.V.; Abadias, G.; Chartier, P.; Postol’nyi, B.A.; Andreev, A.A.; Sobol’, O.V. The effect of nanolayer thickness on the structure and properties of multilayer TiN/MoN coatings. Tech. Phys. Lett. 2014, 40, 215–218. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Milovich, F.; Andreev, N.; Bublikov, J. Investigation of wear mechanisms for the rake face of a cutting tool with a multilayer composite nanostructured Cr–CrN-(Ti,Cr,Al,Si)N coating in high-speed steel turning. Wear 2019, 438–439, 203069. [Google Scholar]
- Yamamoto, K.; Kujime, S.; Takahara, K. Structural and mechanical property of Si incorporated (Ti,Cr,Al)N coatings deposited by arc ion plating process. Surf. Coat. Technol. 2005, 200, 1383–1390. [Google Scholar]
- Ichijo, K.; Hasegawa, H.; Suzuki, T. Microstructures of (Ti,Cr,Al,Si)N films synthesized by cathodic arc method. Surf. Coat. Technol. 2007, 201, 5477–5480. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, H.; Cui, G.; Jing, Z.; Wang, C. Effects of bias voltage on the microstructure and mechanical properties of (Ti,Al,Cr)N hard films with N-gradient distributions. Thin Solid Film. 2011, 519, 4818–4823. [Google Scholar] [CrossRef]
- Bobzin, K.; Brögelmann, T.; Kruppe, N.C.; Carlet, M. Wear behavior and thermal stability of HPPMS (Al,Ti,Cr,Si)ON, (Al,Ti,Cr,Si)N and (Ti,Al,Cr,Si)N coatings for cutting tools. Surf. Coat. Technol. 2020, 385, 125370. [Google Scholar] [CrossRef]
- Fukumoto, N.; Ezura, H.; Yamamoto, K.; Hotta, A.; Suzuki, T. Effects of bilayer thickness and post-deposition annealing on the mechanical and structural properties of (Ti,Cr,Al)N/(Al,Si)N multilayer coatings. Surf. Coat. Technol. 2009, 203, 1343–1348. [Google Scholar]
- Grigoriev, S.N.; Volosova, M.A.; Vereschaka, A.A.; Sitnikov, N.N.; Milovich, F.; Bublikov, J.I.; Fyodorov, S.V.; Seleznev, A.E. Properties of (Cr,Al,Si)N-(DLC-Si) composite coatings deposited on a cutting ceramic substrate. Ceram. Int. 2020, 46, 18241–18255. [Google Scholar]
- Vereschaka, A.A.; Volosova, M.A.; Grigoriev, S.N.; Vereschaka, A.S. Development of wear-resistant complex for high-speed steel tool when using process of combined cathodic vacuum arc deposition. Procedia CIRP 2013, 9, 8–12. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Mustafaev, E. Specific features of the structure and properties of arc-PVD coatings depending on the spatial arrangement of the sample in the chamber. Vacuum 2022, 200, 111047. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Sotova, C. Investigation of the influence of the features of the deposition process on the structural features of microparticles in PVD coatings. Vacuum 2022, 202, 111144. [Google Scholar] [CrossRef]
- ASTM C1624-05; Standard Test Method for Adhesion Strength and Mechanical Failure Modes. ASTM: West Conshohocken, PA, USA, 2010.
- Povstugar, I.; Choi, P.-P.; Tytko, D.; Ahn, J.-P.; Raabe, D. Interface-directed spinodal decomposition in TiAlN/CrN multilayer hard coatings studied by atom probe tomography. Acta Mater. 2013, 61, 7534–7542. [Google Scholar] [CrossRef]
- Rogström, L.; Ullbrand, J.; Almer, J.; Hultman, L.; Jansson, B.; Odén, M. Strain evolution during spinodal decomposition of TiAlN thin films. Thin Solid Film. 2012, 520, 5542–5549. [Google Scholar] [CrossRef]
- Endrino, J.L.; Rhammar, C.; Gutiérrez, A.; Gago, R.; Horwat, D.; Soriano, L.; Fox-Rabinovich, G.; Martín, Y.; Marero, D.; Guo, J.; et al. Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing. Acta Mater. 2011, 59, 6287–6296. [Google Scholar] [CrossRef]
- Knutsson, A.; Schramm, I.C.; Asp Grönhagen, K.; Mücklich, F.; Odén, M. Surface directed spinodal decomposition at TiAlN/TiN interfaces. J. Appl. Phys. 2013, 113, 114305. [Google Scholar] [CrossRef]
- Volosova, M.A.; Grigor’ev, S.N.; Kuzin, V.V. Effect of Titanium Nitride Coating on Stress Structural Inhomogeneity in Oxide-Carbide Ceramic. Part 4. Actionof Heat Flow. Refract. Ind. Ceram. 2015, 56, 91–96. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Vereschaka, A.S.; Grigoriev, S.N.; Kirillov, A.K.; Khaustova, O. Development and research of environmentally friendly dry technological machining system with compensation of physical function of cutting fluids. Procedia CIRP 2013, 7, 311–316. [Google Scholar] [CrossRef] [Green Version]
Nitrogen Pressure (Pa) | Voltage on Substrate U (V) | Cathode Arc Current (A) | |||
---|---|---|---|---|---|
Al | Ti | Cr | Y | ||
0.42 | −150 DC | 160 | 110 | 75 | 85 |
Coating | Element Content, at.% | |||
---|---|---|---|---|
Ti | Cr | Al | Y | |
(Ti,Cr,Al)N | 63.75 | 23.98 | 12.27 | - |
(Ti,Y,Al)N | 51.82 | - | 7.69 | 40.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoriev, S.; Vereschaka, A.; Milovich, F.; Sitnikov, N.; Bublikov, J.; Seleznev, A.; Sotova, C.; Rykunov, A. Investigation of the Properties of Multilayer Nanostructured Coating Based on the (Ti,Y,Al)N System with High Content of Yttrium. Coatings 2023, 13, 335. https://doi.org/10.3390/coatings13020335
Grigoriev S, Vereschaka A, Milovich F, Sitnikov N, Bublikov J, Seleznev A, Sotova C, Rykunov A. Investigation of the Properties of Multilayer Nanostructured Coating Based on the (Ti,Y,Al)N System with High Content of Yttrium. Coatings. 2023; 13(2):335. https://doi.org/10.3390/coatings13020335
Chicago/Turabian StyleGrigoriev, Sergey, Alexey Vereschaka, Filipp Milovich, Nikolay Sitnikov, Jury Bublikov, Anton Seleznev, Catherine Sotova, and Alexander Rykunov. 2023. "Investigation of the Properties of Multilayer Nanostructured Coating Based on the (Ti,Y,Al)N System with High Content of Yttrium" Coatings 13, no. 2: 335. https://doi.org/10.3390/coatings13020335
APA StyleGrigoriev, S., Vereschaka, A., Milovich, F., Sitnikov, N., Bublikov, J., Seleznev, A., Sotova, C., & Rykunov, A. (2023). Investigation of the Properties of Multilayer Nanostructured Coating Based on the (Ti,Y,Al)N System with High Content of Yttrium. Coatings, 13(2), 335. https://doi.org/10.3390/coatings13020335