Graphitic Layered Structures Enhancing TiNT Catalyst Photo-Electrochemical Behaviour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hetero-Structures Preparation
2.2. Synthesis of TiO2 Nanotube Arrays
2.3. Decoration of the Nanotube Arrays with g-C3N4
2.4. Chemical–Physical, Morphological, and Structural Characterisation of the g-C3N4/TiO2 Composites
2.5. Functional Properties of the g-C3N4/TiNT Composites
2.6. Use of g-C3N4/TiNT in Electrocatalytic Reduction of Oxalic Acid
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perathoner, S.; Passalacqua, R.; Centi, G.; Su, D.S.; Weinberg, G. Photoactive titania nanostructured thin films: Synthesis and characteristics of ordered helical nanocoil array. Catal. Today 2007, 122, 3–13. [Google Scholar] [CrossRef]
- Passalacqua, R.; Perathoner, S.; Centi, G. Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. J. Energy Chem. 2017, 26, 219–240. [Google Scholar] [CrossRef]
- Passalacqua, R.; Perathoner, S.; Centi, G. Use of modified anodisation procedures to prepare advanced TiO2 nanostructured catalytic electrodes and thin film materials. Catal. Today 2015, 251, 121–131. [Google Scholar] [CrossRef]
- Pang, Y.L.; Lim, S.; Ong, H.C.; Chong, W.T. A critical review on the recent progress of synthesising techniques and fabrication of TiO2-based nanotubes photocatalysts. Appl. Catal. A Gen 2014, 481, 127–142. [Google Scholar] [CrossRef]
- Fan, B.-Y.; Liu, H.-B.; Wang, Z.-H.; Zhao, Y.-W.; Yang, S.; Lyu, S.-Y.; Xing, A.; Zhang, J.; Li, H.; Liu, X.-Y. Ferroelectric polarisation-enhanced photocatalytic performance of heterostructured BaTiO3@TiO2 via interface engineering. J. Cent. South Univ. 2021, 28, 3778–3789. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 6225. [Google Scholar] [CrossRef]
- Perathoner, S.; Ampelli, C.; Chen, S.; Passalacqua, R.; Su, D.; Centi, G. Photoactive materials based on semiconducting nanocarbons–A challenge opening new possibilities for photocatalysis. J. Energy Chem. 2017, 26, 207–218. [Google Scholar] [CrossRef]
- Zhang, G.; Li, G.; Lan, Z.-A.; Lin, L.; Savateev, A.; Heil, T.; Zafeiratos, S.; Wang, X.; Antonietti, M. Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. Angew. Chem. Int. Ed. 2017, 56, 13445–13449. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon 2019, 49, 693–721. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Ho, W.J. Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel. Phys. Chem. Lett. 2015, 6, 4244–4251. [Google Scholar] [CrossRef]
- Marszewski, M.; Cao, S.; Yu, J.; Jaroniec, M. Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2015, 2, 261–278. [Google Scholar] [CrossRef]
- Yu, J.; Wang, K.; Xiao, W.; Cheng, B. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 11492–11501. [Google Scholar] [CrossRef]
- Niu, P.; Yang, Y.; Yu, J.C.; Liu, G.; Cheng, H.-M. Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chem. Commun. 2014, 50, 10837–10840. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, S.; Tomanec, O.; Petr, M.; Chen, J.Z.; Miller, J.T.; Varma, R.S.; Gawande, M.B.; Zbořil, R. Carbon Nitride-Based Ruthenium Single Atom Photocatalyst for CO2 Reduction to Methanol. Small 2021, 17, 2006478. [Google Scholar] [CrossRef] [PubMed]
- Safaei, J.; Mohamed, N.A.; Noh, M.F.M.; Soh, M.F.; Ludin, N.A.; Ibrahim, M.A.; Isahak, W.N.R.W.; Teridi, M.A.M. Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: A review on photoelectrochemical water splitting, solar cells and supercapacitors. J. Mater. Chem. A 2018, 6, 22346–22380. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Ye, I.; Cui, Y.; Qiu, X.; Wang, X. Selective oxidation of benzene to phenol by Fe-CN/TS-1 catalysts under visible light irradiation. Appl. Catal. B Environ. 2014, 152, 383–389. [Google Scholar] [CrossRef]
- Ghosh, I.; Khamrai, J.; Savateev, A.; Shlapakov, N.; Antonietti, M.; König, B. Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes. Science 2019, 365, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Liu, Q.; Zhang, Z.; Liu, X.; Zhao, J.; Cheng, S.; Zong, B.; Dai, W.-L. Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes. Appl. Catal. B: Environ. 2015, 165, 511–518. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Tian, X.; Zhang, X.; Egap, E.; Ajayan, P.M.; et al. In Situ Synthesis of Lead-Free Halide Perovskite−COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. ACS Mater. Lett. 2022, 4, 464–471. [Google Scholar] [CrossRef]
- Dai, X.; Xie, M.; Meng, S.; Fu, X.; Chen, S. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal. B Environ. 2014, 158, 382–390. [Google Scholar] [CrossRef]
- Su, F.; Mathew, S.C.; Moehlmann, L.; Antonietti, M.; Wang, X.; Blechert, S. Aerobic Oxidative Coupling of Amines by Carbon Nitride Photocatalysis with Visible Light. Angew. Chem. Int. Ed. 2011, 50, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Gong, Y.; Li, H.; Chen, Z.; Wang, Y. Selective oxidation of benzene to phenol by FeCl3/mpg-C3N4 hybrids. RSC Adv. 2013, 3, 5121–5126. [Google Scholar] [CrossRef]
- Li, X.-H.; Baar, M.; Blechert, S.; Antonietti, M. Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C-C-coupling. Sci. Rep. 2013, 3, 1743. [Google Scholar] [CrossRef]
- Li, X.-H.; Chen, J.-S.; Wang, X.; Sun, J.; Antonietti, M. Metal-Free Activation of Dioxygen by Graphene/g-C3N4 Nanocomposites: Functional Dyads for Selective Oxidation of Saturated Hydrocarbons. J. Am. Chem. Soc. 2011, 33, 8074–8077. [Google Scholar] [CrossRef]
- Rosso, C.; Filippini, G.; Criado, A.; Melchionna, M.; Fornasiero, P.; Prato, M. Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis. ACS Nano 2021, 15, 3621–3630. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, H.; Wang, H.; Show, P.L.; Ivanets, A.; Luo, D.; Wang, C. MXenes as Heterogeneous Fenton-like Catalysts for Removal of Organic Pollutants: A Review. J. Environ. Chem. Eng. 2022, 10, 108954. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Kuvarega, A.T.; Onwudiwe, D.C. Graphitic carbon nitride-based catalysts and their applications: A review. Nano-Struct. Nano-Objects 2020, 24, 100577. [Google Scholar] [CrossRef]
- Zou, J.; Liao, G.; Wang, H.; Ding, Y.; Wu, P.; Hsu, J.-P.; Jiang, J. Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts. J. Alloys Compd. 2022, 911, 165020. [Google Scholar] [CrossRef]
- Ismael, M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 2020, 846, 156446. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, M.; Zhan, R.; Wang, X.; Peng, G.; Niu, J. Ti3C2 MXene-induced interface electron separation in g-C3N4/Ti3C2 MXene/MoSe2 Z-scheme heterojunction for enhancing visible light-irradiated enoxacin degradation. Sep. Purif. Technol. 2021, 275, 119194. [Google Scholar] [CrossRef]
- Geng, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Appl. Catal. B Environ. 2021, 280, 119409. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Yang, J.; Wang, C. Metal-organic frameworks-derived catalysts for contaminant degradation in persulfate-based advanced oxidation processes. J. Clean. Prod. 2022, 375, 134118. [Google Scholar] [CrossRef]
- Zhao, F.; Yan, F.; Qian, Y.; Xu, Y.; Ma, C. Roughened TiO2 Film Electrodes for Electrocatalytic Reduction of Oxalic Acid to Glyoxylic Acid. J. Electroanal. Chem. 2013, 698, 31–38. [Google Scholar] [CrossRef]
- Murcia Valderrama, M.A.; van Putten, R.J.; Gruter, G.J.M. The Potential of Oxalic–and Glycolic Acid Based Polyesters (Review). Towards CO2 as a Feedstock (Carbon Capture and Utilization–CCU). Eur. Polym. J. 2019, 119, 445–468. [Google Scholar] [CrossRef]
- Abramo, F.P.; De Luca, F.; Passalacqua, R.; Centi, G.; Giorgianni, G.; Perathoner, S.; Abate, S. Electrocatalytic production of glycolic acid via oxalic acid reduction on titania debris supported on a TiO2 nanotube array. J. Energy Chem. 2022, 68, 669–678. [Google Scholar] [CrossRef]
- Perathoner, S.; Centi, G. Catalysis for solar-driven chemistry: The role of electrocatalysis. Catal. Today 2019, 330, 157–170. [Google Scholar] [CrossRef]
- Passalacqua, R.; Abate, S.; Perathoner, S.; Centi, G. Improved Nanocomposite Photoanodes by Controlled deposition of g-C3N4 on Titania Nanotube Ordered Films. Chem. Eng. Trans. 2021, 84, 25–30. [Google Scholar] [CrossRef]
- Ampelli, C.; Centi, G.; Passalacqua, R.; Perathoner, S. Synthesis of solar fuels by a novel photoelectrocatalytic approach. Energy Environ. Sci. 2010, 3, 292–301. [Google Scholar] [CrossRef]
- Sun, M.; Fang, Y.; Kong, Y.; Sun, S.; Yu, Z.; Umar, A. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance. Dalton Trans. 2016, 45, 12702–12709. [Google Scholar] [CrossRef]
- De Luca, F.; Passalacqua, R.; Abate, S.; Abramo, F.P.; Perathoner, S.; Centi, G. Graphitic-C3N4/TiO2 Nanotube Array as Cathodic Materials for the Electrocatalytic Reduction of Oxalic Acid. Chem. Eng. Trans. 2021, 84, 37–42. [Google Scholar] [CrossRef]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef]
- Liao, G.; Chen, S.; Quan, X.; Yu, H.; Zhao, H. Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 2012, 22, 2721–2726. [Google Scholar] [CrossRef]
- Martha, S.; Nashima, A.; Parida, K.M. Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light. J. Mater. Chem. A 2013, 1, 7816–7824. [Google Scholar] [CrossRef]
- Yue, B.; Li, Q.; Iwai, H.; Kako, T.; Ye, J. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci. Technol. Adv. Mater. 2011, 12, 034401. [Google Scholar] [CrossRef] [PubMed]
- Large, A.I.; Wahl, S.; Abate, S.; da Silva, I.; Delgado Jaen, J.J.; Pinna, N.; Held, G.; Arrigo, R. Investigations of Carbon Nitride-Supported Mn3O4 Oxide Nanoparticles for ORR. Catalysts 2020, 10, 1289. [Google Scholar] [CrossRef]
- Martin, D.J.; Qiu, K.; Shevlin, S.A.; Handoko, A.D.; Chen, X.; Guo, Z.; Tang, J. Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride. Angew. Chem. Int. Ed. 2014, 53, 9240–9245. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.N.; Wang, X.H.; Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Liu, C.; Wang, F.; Zhang, J.; Wang, K.; Qiu, Y.; Liang, Q.; Chen, Z. Efficient Photoelectrochemical Water Splitting by g-C3N4/TiO2 Nanotube Array Heterostructures. Nano-Micro Lett. 2018, 10, 37. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Kubelka, P.; Munk, F. An article on optics of paint layers. Z. Tech. Phys. 1931, 12, 593–601. [Google Scholar]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Chemical Composition | Anodic Oxidation Parameters Potential (V) and AO Time (h) | g-C3N4 Precursor (mol) |
---|---|---|---|
TiNT | TiO2/Ti | 50; 1 | - |
TiNT-M6 | g-C3N4/TiO2/Ti | 50; 1 | Melamine 6 × 10−3 |
TiNT-M12 | g-C3N4/TiO2/Ti | 50; 1 | Melamine 12 × 10−3 |
TiNT-M18 | g-C3N4/TiO2/Ti | 50; 1 | Melamine 18 × 10−3 |
TiNT-M24 | g-C3N4/TiO2/Ti | 50; 1 | Melamine 24 × 10−3 |
TiNT-U6 | g-C3N4/TiO2/Ti | 50; 1 | Urea 6 × 10−3 |
TiNT-U12 | g-C3N4/TiO2/Ti | 50; 1 | Urea 12 × 10−3 |
TiNT-U18 | g-C3N4/TiO2/Ti | 50; 1 | Urea 18 × 10−3 |
TiNT-U24 | g-C3N4/TiO2/Ti | 50; 1 | Urea 24 × 10−3 |
TiNT-MU6 | g-C3N4/TiO2/Ti | 50; 1 | 1:1 Melamine–Urea 6 × 10−3 |
TiNT-MU12 | g-C3N4/TiO2/Ti | 50; 1 | 1:1 Melamine–Urea 12 × 10−3 |
TiNT-MU18 | g-C3N4/TiO2/Ti | 50; 1 | 1:1 Melamine–Urea 18 × 10−3 |
TiNT-MU24 | g-C3N4/TiO2/Ti | 50; 1 | 1:1 Melamine–Urea 24 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passalacqua, R.; Abate, S.; De Luca, F.; Perathoner, S.; Centi, G. Graphitic Layered Structures Enhancing TiNT Catalyst Photo-Electrochemical Behaviour. Coatings 2023, 13, 358. https://doi.org/10.3390/coatings13020358
Passalacqua R, Abate S, De Luca F, Perathoner S, Centi G. Graphitic Layered Structures Enhancing TiNT Catalyst Photo-Electrochemical Behaviour. Coatings. 2023; 13(2):358. https://doi.org/10.3390/coatings13020358
Chicago/Turabian StylePassalacqua, Rosalba, Salvatore Abate, Federica De Luca, Siglinda Perathoner, and Gabriele Centi. 2023. "Graphitic Layered Structures Enhancing TiNT Catalyst Photo-Electrochemical Behaviour" Coatings 13, no. 2: 358. https://doi.org/10.3390/coatings13020358
APA StylePassalacqua, R., Abate, S., De Luca, F., Perathoner, S., & Centi, G. (2023). Graphitic Layered Structures Enhancing TiNT Catalyst Photo-Electrochemical Behaviour. Coatings, 13(2), 358. https://doi.org/10.3390/coatings13020358