Do Different Types of Adhesive Agents Effect Enamel Demineralization for Orthodontic Bonding? An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples and Bonding
2.2. Measurements of T0 with DIAGNOdent Pen
2.3. Preparation of Artificial Saliva and Cariogenic Suspension
2.4. Cariogenic Suspension Environment
2.5. T1 Measurements with DIAGNOdent Pen
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Significant increases in demineralization occurred on all enamel surfaces adjacent to the bracket 28 days after placement in an artificial cariogenic suspension in all groups.
- There was no statistically significant difference between Group 1 and Group 2 in the demineralization values of enamel surfaces adjacent to the bracket after 28 days.
- The null hypothesis was rejected. Demineralization values on the occlusal surfaces of the brackets bonded using a Transbond™ Plus Self Etching Primer adhesive agent were found to be significantly lower than those with other adhesive agents. Since the use of a self-etch primer does not require etching on the enamel surface, it can be assumed that the result was less enamel surface changes. It is possible that self-etching teeth had enamel surfaces that were more resistant to plaque formation. The use of a self-etch primer may have made remineralization more effective. The use of a self-etch primer in bracketing may cause less demineralization on the occlusal surfaces of the teeth in cariogenic attacks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Proffit, W.R.; Fields, H.W.; Larson, B.; Sarver, D.M. Contemporary Orthodontics, 6th ed.; Elsevier Health Sciences: Philadelphia, PA, USA, 2018; pp. 321–332. [Google Scholar]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, 1–18. [Google Scholar]
- Reichardt, E.; Geraci, J.; Sachse, S.; Rödel, J.; Pfister, W.; Löffler, B.; Wagner, Y.; Eigenthaler, M.; Wolf, M. Qualitative and quantitative changes in the oral bacterial flora occur shortly after implementation of fixed orthodontic appliances. Am. J. Orthod. Dentofacial. Orthop. 2019, 156, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Bishara, S.E.; Ostby, A.W. White spot lesions: Formation, prevention, and treatment. Semin. Orthod. 2008, 14, 174–182. [Google Scholar] [CrossRef]
- Bahramian, H.; Argani, P.; Baghalian, A. Comparison of different diagnostic techniques in detecting smooth surface caries in primary molars using the histological gold standard: An in vitro study. Photodiagnosis Photodyn. Ther. 2020, 31, 101867. [Google Scholar] [CrossRef]
- Zentner, A. Structural changes of acid etched enamel examined under confocal laser scanning microscope. J. Orofac. Orthop. 1996, 57, 202–209. [Google Scholar] [CrossRef]
- Øgaard, B.; Larsson, E.; Henriksson, T.; Birkhed, D.; Bishara, S.E. Effects of combined application of antimicrobial and fluoride varnishes in orthodontic patients. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 28–35. [Google Scholar] [CrossRef]
- Boersma, J.G.; van der Veen, M.H.; Lagerweij, M.D.; Bokhout, B.; Prahl-Andersen, B. Caries prevalence measured with QLF after treatment with fixed orthodontic appliances: Influencing factors. Caries Res. 2005, 39, 41–47. [Google Scholar] [CrossRef]
- Hadler-Olsen, S.; Sandvik, K.; El-Agroudi, M.A.; Øgaard, B. The incidence of caries and white spot lesions in orthodontically treated adolescents with a comprehensive caries prophylactic regimen—A prospective study. Eur. J. Orthod. 2012, 34, 633–639. [Google Scholar] [CrossRef]
- Cossellu, G.; Lanteri, V.; Butera, A.; Sarcina, M.; Farronato, G. Effects of six different preventive treatments on the shear bond strength of orthodontic brackets: In vitro study. Acta Biomater. Odontol. Scand. 2015, 1, 13–17. [Google Scholar] [CrossRef]
- Kim, M.-J.; Lim, B.-S.; Chang, W.-G.; Lee, Y.-K.; Rhee, S.-H.; Yang, H.-C. Phosphoric Acid Incorporated with Acidulated Phosphate Fluoride Gel Etchant Effects on Bracket Bonding. Angle Orthod. 2005, 75, 678–684. [Google Scholar]
- Vilchis, R.J.S.; Yamamoto, S.; Kitai, N.; Hotta, M.; Yamamoto, K. Shear bond strength of a new fluoride-releasing orthodontic adhesive. Dent. Mater. J. 2007, 26, 45–51. [Google Scholar] [CrossRef]
- Hosein, I.; Sherriff, M.; Ireland, A.J. Enamel loss during bonding, debonding, and cleanup with use of a self-etching primer. Am. J. Orthod. Dentofacial. Orthop. 2004, 126, 717–724. [Google Scholar] [CrossRef]
- Zope, A.; Zope-Khalekar, Y.; Chitko, S.S.; Kerudi, V.V.; Patil, H.A.; Bonde, P.V.; Jaltare, P.; Dolas, S.G. Comparison of Self-Etch Primers with Conventional Acid Etching System on Orthodontic Brackets. J. Clin. Diagn. Res. 2016, 10, 19–22. [Google Scholar] [CrossRef]
- Alabdullah, M.M.; Nabawia, A.; Ajaj, M.A.; Saltaji, H. Effect of fluoride-releasing resin composite in white spot lesions prevention: A single-centre, split-mouth, randomized controlled trial. Eur. J. Orthod. 2017, 39, 634–640. [Google Scholar] [CrossRef]
- Tan, A.; Çokakoğlu, S. Effects of adhesive flash-free brackets on enamel demineralization and periodontal status. Angle Orthod. 2020, 90, 339–346. [Google Scholar] [CrossRef]
- Bazargani, F.; Magnuson, A.; Löthgren, H.; Kowalczyk, A. Orthodontic bonding with and without primer: A randomized controlled trial. Eur. J. Orthod. 2016, 38, 503–507. [Google Scholar] [CrossRef]
- Ak, İ.C. Evaluation of in vitro the shear bond strength of brackets with different base designs. Ph.D. Thesis, Cukurova University, Department of Orthodontics, Adana, Türkiye, 2018. [Google Scholar]
- Ertop, M.T.; Cicek, O.; Erener, H.; Ozkalayci, N.; Cicek, B.D.; Comert, F. Evaluation of the Demineralization Development around Different Types of Orthodontic Brackets. Materials 2023, 16, 984. [Google Scholar] [CrossRef]
- Baroudi, K.; Rodrigues, J.C. Flowable resin composites: A systematic review and clinical considerations. J. Clin. Diagn. Res. 2015, 9, 18–22. [Google Scholar] [CrossRef]
- Diniz, M.; Campos, P.; Sanabe, M.; Duarte, D.; Santos, M.; Guaré, R.; Duque, C.; Lussi, A.; Rodrigues, J. Effectiveness of fluorescence-based methods in monitoring progression of noncavitated caries-like lesions on smooth surfaces. Oper. Dent. 2015, 40, 230–241. [Google Scholar] [CrossRef]
- Fatima, S.; Panda, N.; Reddy, A.V.; Fatima, S. Buccal Mucoadhesive Tablets of Sumatriptan Succinate for Treatment of Sustainable Migraine: Design, Formulation and In Vitro Evaluation. Int. J. Pharm Res. 2015, 4, 114–126. [Google Scholar]
- Aykent, F.; Yondem, I.; Ozyesil, A.G.; Gunal, S.K.; Avunduk, M.C.; Ozkan, S. Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J. Prosthet. Dent. 2010, 103, 221–227. [Google Scholar] [CrossRef]
- Khalaf, K. Factors affecting the formation, severity and location of white spot lesions during orthodontic treatment with fixed appliances. J. Oral. Maxillofac. Res. 2014, 5, e4. [Google Scholar] [CrossRef] [PubMed]
- Øgaard, B. White spot lesions during orthodontic treatment: Mechanisms and fluoride preventive aspects. Semin. Orthod. 2008, 14, 183–193. [Google Scholar] [CrossRef]
- Scribante, A.; Dermenaki Farahani, M.R.; Marino, G.; Matera, C.; Rodriguez y Baena, R.; Lanteri, V.; Butera, A. Biomimetic Effect of Nano-Hydroxyapatite in Demineralized Enamel before Orthodontic Bonding of Brackets and Attachments: Visual, Adhesion Strength, and Hardness in In Vitro Tests. BioMed. Res. Int. 2020, 2020, 6747498. [Google Scholar] [CrossRef] [PubMed]
- Visel, D.; Jäcker, T.; Jost-Brinkmann, P.G.; Präger, T.M. Demineralization adjacent to orthodontic brackets after application of conventional and self-etching primer systems. J. Orofac. Orthop. 2014, 75, 358–373. [Google Scholar] [CrossRef] [PubMed]
- Montasser, M.A.; El-Wassefy, N.A.; Taha, M. In vitro study of the potential protection of sound enamel against demineralization. Prog. Orthod. 2015, 16, 12. [Google Scholar] [CrossRef]
- Kohda, N.; Iijima, M.; Brantley, W.; Muguruma, T.; Yuasa, T.; Nakagaki, S.; Mizoguchi, I. Effects of bonding materials on the mechanical properties of enamel around orthodontic brackets. Angle Orthod. 2011, 82, 187–195. [Google Scholar] [CrossRef]
- Narendran, S.; Raghunath, N. Comparison of enamel demineralization around orthodontic brackets bonded with conventional etching, self-etch primer and antimicrobial monomer containing self-etch primer. Int. J. Adv. Res. Innov. Ideas Educ. 2019, 2, 18–22. [Google Scholar]
- Gandhi, G.; Kalra, J.P.S.; Goyal, A.; Sharma, A. Microphotographic Assessment of Enamel Surface using Self-Etching Primer and Conventional Phosphoric Acid: An In vitro Study. Contemp. Clin. Dent. 2018, 9, 15–19. [Google Scholar] [CrossRef]
- Hung, C.-Y.; Yu, J.-H.; Su, L.-W.; Uan, J.-Y.; Chen, Y.-C.; Lin, D.-J. Shear Bonding Strength and Thermal Cycling Effect of Fluoride Releasable/Rechargeable Orthodontic Adhesive Resins Containing LiAl-F Layered Double Hydroxide (LDH) Filler. Materials 2019, 12, 3204. [Google Scholar] [CrossRef]
- Zrinski, M.T.; Miljanic, S.; Peros, K.; Turco, G.; Contardo, L.; Spalj, S. Fluoride release and recharge potential of remineralizing orthodontic adhesive systems. Flouride 2019, 52, 397–403. [Google Scholar]
- Krasniqi, S.; Sejdini, M.; Stubljar, D.; Jukic, T.; Ihan, A.; Aliu, K.; Aliu, X. Antimicrobial Effect of Orthodontic Materials on Cariogenic Bacteria Streptococcus mutans and Lactobacillus acidophilus. Med. Sci. Monit. Basic Res. 2020, 26, e920510. [Google Scholar] [CrossRef]
- Turğut, A. Clinical Evaluation of One Step Orthodontic Adhesive Without Primer for Bonding of Metal Brackets in Terms of White Spot Lesion Formation and Bond Strength. Ph.D. Thesis, Pamukkale University, Department of Orthodontics, Denizli, Türkiye, 2020. [Google Scholar]
- Femiano, F.; Femiano, R.; Femiano, L.; Nucci, L.; Santaniello, M.; Grassia, V.; Scotti, N.; Aversa, R.; Perrotta, V.; Apicella, A.; et al. Enamel Erosion Reduction through Coupled Sodium Fluoride and Laser Treatments before Exposition in an Acid Environment: An In Vitro Randomized Control SEM Morphometric Analysis. Appl. Sci. 2022, 12, 1495. [Google Scholar] [CrossRef]
- Szalewski, L.; Wójcik, D.; Bogucki, M.; Szkutnik, J.; Różyło-Kalinowska, I. The influence of popular beverages on mechanical properties of composite resins. Materials 2021, 14, 3097. [Google Scholar] [CrossRef]
Ingredients | wt% | Manufacturer | |
---|---|---|---|
3M™ Unitek™ Transbond™ XT Primer | Bisphenol A Diglycidyl Ether Dimethacrylate (BISGMA) | 45–55 | 3M Unitek, Monrovia, CA, USA |
Triethylene Glycol Dimethacrylate (TEGDMA) | 45–55 | ||
4-(Dimethylamino)-Benzeneethanol | <0.5 | ||
3M Unitek Transbond XT Light Cure Adhesive | Silane Treated Quartz | 70–80 | 3M Unitek, Monrovia, CA, USA |
Bisphenol A Diglycidyl Ether Dimethacrylate (BISGMA) | 10–20 | ||
Bisphenol A Bis (2-Hydroxyethyl Ether) Dimethacrylate | 5–10 | ||
Silane Treated Silica | <2 | ||
Diphenyliodonium Hexafluorophosphate | <0.2 | ||
3M™ Unitek™ Transbond™ Plus Self Etch Primer Part A | 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with phosphorus oxide (P2O5) | >95 | 3M Unitek, Monrovia, CA, USA |
dl-Camphorquinone | <2 | ||
N,N-Dimethylbenzocaine | <2 | ||
4-Methoxyphenol | <0.2 | ||
Hydroquinone | <0.1 | ||
3M™ Unitek™ Transbond™ Plus Self Etch Primer Part B | Water | >98 | 3M Unitek, Monrovia, CA, USA |
Dipotassium Hexafluorotitanate | <2 | ||
GC Ortho Connect Light Cure Adhesive | Esterification products of 4,4′-isopropylidenediphenol, ethoxylated and 2-methylprop-2-enoic acid | 25–50 | GC Crop, Tokyo, Japan |
Urethane Dimethacrylate (UDMA) | 25–50 | ||
methacryloyloxydecyl dihydrogen phosphate | 2.5–5 | ||
6-tert-butyl-2,4-xylenol | 0.25–0.5 | ||
diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide | 0.2–0.5 |
Group 1 | Group 2 | Group 3 | p | ||
---|---|---|---|---|---|
Occlusal | |||||
T0 | Median | 3.00 | 3.00 | 2.50 | NS |
T1 | Median | 6.00 3 | 7.00 3 | 5.00 1,2 | 0.003 K |
T0/T1 difference | Median | 4.00 3 | 4.00 3 | 3.00 1,2 | 0.003 K |
Intra-Group difference | p | 0.000 w | 0.000 w | 0.000 w | |
Proximal | |||||
T0 | Median | 3.00 | 2.50 | 2.75 | NS |
T1 | Median | 7.00 | 7.00 | 7.00 | NS |
T0/T1 difference | Median | 4.50 | 4.25 | 4.00 | NS |
Intra-Group difference | p | 0.000 w | 0.000 w | 0.000 w | |
Gingival | |||||
T0 | Median | 3.00 | 3.00 | 3.00 | NS |
T1 | Median | 10.00 | 10.00 | 10.00 | NS |
T0/T1 difference | Median | 7.50 | 7.00 | 7.00 | NS |
Intra-Group difference | p | 0.000 w | 0.000 w | 0.000 w |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demircioglu, R.M.; Cicek, O.; Comert, F.; Erener, H. Do Different Types of Adhesive Agents Effect Enamel Demineralization for Orthodontic Bonding? An In Vitro Study. Coatings 2023, 13, 401. https://doi.org/10.3390/coatings13020401
Demircioglu RM, Cicek O, Comert F, Erener H. Do Different Types of Adhesive Agents Effect Enamel Demineralization for Orthodontic Bonding? An In Vitro Study. Coatings. 2023; 13(2):401. https://doi.org/10.3390/coatings13020401
Chicago/Turabian StyleDemircioglu, Raif Murat, Orhan Cicek, Fusun Comert, and Hande Erener. 2023. "Do Different Types of Adhesive Agents Effect Enamel Demineralization for Orthodontic Bonding? An In Vitro Study" Coatings 13, no. 2: 401. https://doi.org/10.3390/coatings13020401
APA StyleDemircioglu, R. M., Cicek, O., Comert, F., & Erener, H. (2023). Do Different Types of Adhesive Agents Effect Enamel Demineralization for Orthodontic Bonding? An In Vitro Study. Coatings, 13(2), 401. https://doi.org/10.3390/coatings13020401