Step-by-Step Modeling and Experimental Study on the Sol–Gel Porous Structure of Percolation Nanoclusters
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Growth of Fractal Aggregates (Clusters) from Sol Particles SnO2 and SiO2 Based on the Modified Models of Diffusion-Limited and Cluster–Cluster Aggregation
3.2. The Percolation Model Using Simulated Fractal Clusters of SnO2 and SiO2 Particles
3.3. Experimental Study on the Sol–Gel Percolation Structure of Porous Nanocomposites
3.4. Generalized Hierarchical Three-Dimensional Percolation Cluster Model
3.5. Formation of Clusters along the Octahedral Line
4. Discussion
- Micropores formed by the gaps between three or four globules (particles of SnO2 and SiO2) with the circle radius β;
- Mesopores formed by the gaps between 13-atom octahedral clusters;
- Macropores formed by the gaps between the six regular hexagons and macropores formed by the gaps between the twelve regular hexagons.
- Estimate the size of macropores (of the third type) in a proposed multimodal model based on an enhanced Kepler net of the 4612 type with hexagonal cells using atomic force microscopy;
- Estimate the experimental size of the necks between the macropores based on the AFM data;
- Calculate the radius size of the globule representing the glass-forming net of silicon dioxide by relating the experimental neck size to 7;
- Calculate the size of the second (mesopores) type of pores using the ratios 1.4 β and 1.1 β;
- Calculate the size of the first (micropores) type of pores using the ratios 0.16 β and 0.38 β.
- Construct surface profiles taking into account pore sizes using a multimodal model and calculate surface areas based on the triangulation method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cölfen, H.; Antonietti, M. Mesocrystals and Nonclassical Crystallization; Wiley: Chichester, UK; Hoboken, NJ, USA, 2008; 276p. [Google Scholar]
- Jehannin, M.; Rao, A.; Colfen, H. New horizons of nonclassical crystallization. J. Am. Chem. Soc. 2019, 141, 10120–10136. [Google Scholar] [CrossRef]
- Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287. [Google Scholar] [CrossRef] [PubMed]
- Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 2005, 44, 5576–5591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturm, E.V.; Cölfen, H. Mesocrystals: Past, Presence, Future. Crystals 2017, 7, 207. [Google Scholar]
- Shevelkov, A.V. Chemical aspects of thermoelectric materials creation. Russ. Chem. Rev. 2008, 77, 3–21. [Google Scholar] [CrossRef]
- Kononova, I.E.; Maraeva, E.V.; Skornikova, S.A.; Moshnikov, V.A. Influence of Binder on Porous Structure of Zeolite Compositions and Their Catalytic Activity. Glass Phys. Chem. 2020, 46, 162–169. [Google Scholar] [CrossRef]
- Madison, A.E. Substitution rules for icosahedral quasicrystals. RSC Adv. 2015, 5, 5745–5753. [Google Scholar] [CrossRef] [Green Version]
- Madison, A.E.; Madison, P.A. Structure of icosahedral quasicrystals within the multiple cell approach. Struct. Chem. 2020, 31, 485–505. [Google Scholar] [CrossRef]
- Madison, A.E.; Madison, P.A. Looking for alternatives to the superspace description of icosahedral quasicrystals. R. Soc. A Math. Phys. Eng. Sci. 2019, 475, 20180667. [Google Scholar] [CrossRef]
- Bobkov, A.A.; Kononova, I.E.; Moshnikov, V.A. Material science of micro- and nanosystems. In Hierarchical Structures; Moshnikov, V.A., Ed.; SPbETU ‘LETI’ Publ.: St. Petersburg, Russia, 2020; Volume 2017, 204p. [Google Scholar]
- Kononova, I.E.; Kononov, P.V.; Moshnikov, V.A. Development of a model for the formation of materials with a hierarchical pore structure produced under sol–gel processing conditions. Inorg. Mater. 2018, 54, 478–489. [Google Scholar] [CrossRef]
- Dubov, P.L.; Korol’kov, D.V.; Petranovskij, V.P. Klastery i Matrichno-Izolirovannye Klasternye Sverhstruktury; SPb.: Izd-vo SPbGU: Sankt-Peterburg, Russia, 1995; 256p. [Google Scholar]
- Kononova, I.; Kononov, P.; Moshnikov, V.; Ignat’ev, S. Fractal-Percolation structure architectonics in sol-gel synthesis. Int. J. Mol. Sci. 2021, 22, 10521. [Google Scholar] [CrossRef] [PubMed]
- Spivak, Y.M.; Kononova, I.E.; Kononov, P.V.; Moshnikov, V.A.; Ignat’ev, S.A. The architectonics features of heterostructures for ir range detectors based on polycrystalline layers of lead chalcogenides. Crystals 2021, 11, 1143. [Google Scholar] [CrossRef]
- Smerdov, R.; Mustafaev, A.; Spivak, Y.; Moshnikov, V. Functionalized nanostructured materials for novel plasma energy systems. In Topical Issues of Rational Use of Natural Resources 2019; CRC Press: Boca Raton, FL, USA, 2019; pp. 434–441. [Google Scholar]
- Smerdov, R.; Spivak, Y.; Bizyaev, I.; Somov, P.; Gerasimov, V.; Mustafaev, A.; Moshnikov, V. Advances in Novel Low-Macroscopic Field Emission Electrode Design Based on Fullerene-Doped Porous Silicon. Electronics 2020, 10, 42. [Google Scholar] [CrossRef]
- Tomaev, V.; Levine, K.; Stoyanova, T.; Syrkov, A.G. Synthesis and Study of a Polypyrrole–Aluminum Oxide Nanocomposite Film on an Aluminum Surface. Glas. Phys. Chem. 2019, 45, 291–297. [Google Scholar] [CrossRef]
- Krasnyy, V.A. The use of nanomaterials to improve the wear resistance of machine parts under fretting corrosion conditions. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 560, p. 012186. [Google Scholar] [CrossRef] [Green Version]
- Salikhov, K.M.; Stoyanov, N.D.; Stoyanova, T.V. Using Optical Activation to Create Hydrogen and Hydrogen-Containing Gas Sensors. Key Eng. Mater. 2020, 854, 87–93. [Google Scholar] [CrossRef]
- Tomaev, V.V.; Levine, K.L.; Stoyanova, T.V.; Sirkov, A.G. Formation of nanocomposite film (polypirrol)/(aluminum) oxide on aluminum surface. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2064, p. 030016. [Google Scholar]
- Gasanly, S.A.; Tomaev, V.V.; Stoyanova, T.V. The concept of the phases ratio control during the formation of composite filamentary nanocrystals xInSe-(1–x)In2O3 on glass substrates. J. Phys. Conf. Ser. 2017, 917, 32021. [Google Scholar] [CrossRef]
- Syrkov, A.G. On the priority of Saint-Petersburg Mining University in the field of nanotechnology science and nanomaterials. J. Min. Inst. 2016, 221, 730–736. [Google Scholar]
- Pleskunov, I.V.; Syrkov, A.G. Razvitie issledovanij nizkorazmernyh metallosoderzhashchih si-stem ot P.P.Vejmarna do nashih dnej. J. Min. Inst. 2018, 231, 287. [Google Scholar]
- Wang, J.; Mbah, C.F.; Przybilla, T.; Apeleo Zubiri, B.; Spiecker, E.; Engel, M.; Vogel, N. Magic number colloidal clusters as minimum free energy structures. Nat. Commun. 2018, 9, 5259. [Google Scholar] [CrossRef] [Green Version]
- Kaatz, F.H.; Bultheel, A. Magic Mathematical Relationships for Nanoclusters. Nanoscale Res. Lett. 2019, 14, 150. [Google Scholar] [CrossRef]
- Reimann, S.M.; Koskinen, M.; Häkkinen, H.; Lindelof, P.E.; Manninen, M. Magic triangular and tetrahedral clusters. Phys. Rev. B 1997, 56, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Harbola, M.K. Magic numbers for metallic clusters and the principle of maximum hardness. Proc. Natl. Acad. Sci. USA 1992, 89, 1036–1039. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Yu, X.; Zhang, H.; Cheng, L.; Luo, Z. Tetrahedral Pt 10−Cluster with Unique Beta Aromaticity and Superatomic Feature in Mimicking Methane. J. Phys. Chem. Lett. 2021, 12, 5115–5122. [Google Scholar] [CrossRef] [PubMed]
- Ignatiev, S.A.; Folomkin, A.I.; Tretiakova, Z.O.; Glazunov, K.O. Moodle e-Learning Platform as an effective tool for teaching descriptive geometry in conditions of the COVID-19 pandemic. Geom. Graph. 2020, 3, 52–67. [Google Scholar]
- Lu, X.; Hasegawa, G.; Kanamori, K.; Nakanishi, K. Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition. J. Sol-Gel Sci. Technol. 2020, 95, 530–550. [Google Scholar] [CrossRef]
- Lu, X.; Kanamori, K.; Nakanishi, K. Synthesis of hierarchically porous MgO monoliths with continuous structure via sol–gel process accompanied by phase separation. J. Sol-Gel Sci. Technol. 2019, 89, 29–36. [Google Scholar] [CrossRef]
- Brinker, C.J. Hydrolysis and condensation of silicates: Effects on structure. J. Non-Cryst. Solids 1988, 100, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Brinker, C.J.; Scherer, G.W. Sol-Gel Science. In The Physics and Chemistry of Sol-Gel Processing; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Boilot, J.P.; Colomban, P.; Blanchard, N. Formation of superionic gels and glasses by low temperature chemical polymerization. Solid State Ion. 1983, 9–10, 639–643. [Google Scholar] [CrossRef]
- Jullien, R.; Botet, R. Aggregation and Fractal Aggregates; World Scientific Publishing Company: Singapore, 1987; 130p. [Google Scholar]
- Beelen, T.P. Inorganic particle gels. Curr. Opin. Colloid Interface Sci. 1996, 1, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Gheonea, R.; Crasmareanu, E.C.; Plesu, N.; Sauca, S.; Simulescu, V.; Ilia, G. New Hybrid Materials Synthesized with Different Dyes by Sol-Gel Method. Adv. Mater. Sci. Eng. 2017, 2017, 4537039. [Google Scholar] [CrossRef] [Green Version]
- Abrashova, E.V.; Gracheva, I.E.; Moshnikov, V.A. Functional nanomaterials based on metal oxides with hierarchical structure. J. Phys. Conf. Ser. 2013, 461, 012019. [Google Scholar] [CrossRef]
- Kononova, I.E.; Moshnikov, V.A.; Krishtab, M.; Pronin, I.A. Fractally aggregated micro- and nanosystems synthesized from sols. Glass Phys. Chem. 2014, 40, 190–202. [Google Scholar] [CrossRef]
- Gracheva, I.E.; Moshnikov, V.; Maraeva, E.; Karpova, S.S.; Alexsandrova, O.A.; Alekseyev, N.I.; Kuznetsov, V.V.; Olchowik, G.; Semenov, K.; Startseva, A.V.; et al. Nanostructured materials obtained under conditions of hierarchical self-assembly and modified by derivative forms of fullerenes. J. Non-Cryst. Solids 2012, 358, 433–439. [Google Scholar] [CrossRef]
- Moshnikov, V.; Gracheva, I.E.; Kuznezov, V.V.; Maximov, A.; Karpova, S.S.; Ponomareva, A.A. Hierarchical nanostructured semiconductor porous materials for gas sensors. J. Non-Cryst. Solids 2010, 356, 2020–2025. [Google Scholar] [CrossRef]
- Moshnikov, V.A.; Gracheva, I.; Lenshin, A.S.; Spivak, Y.M.; Anchkov, M.G.; Kuznetsov, V.V.; Olchowik, J.M. Porous silicon with embedded metal oxides for gas sensing applications. J. Non-Cryst. Solids 2012, 358, 590–595. [Google Scholar] [CrossRef]
- Zha, W.; Yan, S.; Li, D.; Lu, D. A study of correlation between permeability and pore space based on dilation operation. Adv. Geo-Energy Res. 2017, 1, 93–99. [Google Scholar] [CrossRef]
at p Values | |||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
1 | 1 | ||||||
2 | 6 | 0 | |||||
3 | 19 | 13 | |||||
4 | 44 | 38 | 14 | ||||
5 | 85 | 79 | 55 | ||||
6 | 146 | 140 | 116 | 62 | |||
7 | 231 | 201 | 147 | ||||
8 | 344 | 314 | 260 | 164 | |||
9 | 489 | 405 | 309 | ||||
10 | 670 | 586 | 490 | 340 | |||
11 | 891 | 807 | 711 | 561 | |||
12 | 1156 | 976 | 826 | 610 | |||
13 | 1469 | 1289 | 1139 | 923 |
1 | 1 | |
2 | 6 | |
3 | 19 | 1 |
4 | 44 | 6 |
5 | 85 | 19 |
6 | 146 | 44 |
7 | 231 | 85 |
8 | 344 | 146 |
9 | 489 | 231 |
10 | 670 | 344 |
11 | 891 | 489 |
12 | 1156 | 670 |
13 | 1469 | 891 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kononova, I.; Kononov, P.; Moshnikov, V. Step-by-Step Modeling and Experimental Study on the Sol–Gel Porous Structure of Percolation Nanoclusters. Coatings 2023, 13, 449. https://doi.org/10.3390/coatings13020449
Kononova I, Kononov P, Moshnikov V. Step-by-Step Modeling and Experimental Study on the Sol–Gel Porous Structure of Percolation Nanoclusters. Coatings. 2023; 13(2):449. https://doi.org/10.3390/coatings13020449
Chicago/Turabian StyleKononova, Irina, Pavel Kononov, and Vyacheslav Moshnikov. 2023. "Step-by-Step Modeling and Experimental Study on the Sol–Gel Porous Structure of Percolation Nanoclusters" Coatings 13, no. 2: 449. https://doi.org/10.3390/coatings13020449
APA StyleKononova, I., Kononov, P., & Moshnikov, V. (2023). Step-by-Step Modeling and Experimental Study on the Sol–Gel Porous Structure of Percolation Nanoclusters. Coatings, 13(2), 449. https://doi.org/10.3390/coatings13020449