Distinctive Effects of Surface Roughness and Ions Release on the Bacterial Adhesion and Inactivation of Textured Copper Oxide Surfaces
Abstract
:1. Introduction
2. Experimental
2.1. Deposition of Copper Oxide Coatings
2.2. Characterization of the Samples by SEM, EDX, XRD and Profilometry
2.3. Bacterial Adhesion and Inactivation under Indoor Light
2.4. Genetically Modified Bacteria at the Interface of the Prepared Coating: Adhesion and Inactivation Kinetics
2.5. Live/Dead Cells at the Interface of the Prepared Coatings
2.6. Ions Release from SMAT Prepared Surfaces
3. Results and Discussion
3.1. Analysis of the Surface Roughness after Pretreatment
3.2. Microstructure, Crystallinity, Antibacterial Activity and Chemical Composition of the Prepared Thin Films
3.3. Bacterial Adhesion and Inactivation at the Interface of the Prepared Surfaces
3.4. Live/Dead Bacterial Cells at the Interface of the Prepared Surfaces and Ions Release
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Pasquale, I.; Porto, C.L.; Dell’Edera, M.; Curri, M.; Comparelli, R. TiO2-based nanomaterials assisted photocatalytic treatment for virus inactivation: Perspectives and applications. Curr. Opin. Chem. Eng. 2021, 34, 100716. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Bentria, E.; Rtimi, S.; Arredouani, A.; Bensmail, H.; El-Mellouhi, F. Accelerating the Design of Photocatalytic Surfaces for Antimicrobial Application: Machine Learning Based on a Sparse Dataset. Catalysts 2021, 11, 1001. [Google Scholar] [CrossRef]
- Radetić, M.; Marković, D. A review on the role of plasma technology in the nano-finishing of textile materials with metal and metal oxide nanoparticles. Plasma Process. Polym. 2022, 19, 2100197. [Google Scholar] [CrossRef]
- Hegemann, D.; Hanselmann, B.; Zuber, F.; Pan, F.; Gaiser, S.; Rupper, P.; Maniura-Weber, K.; Ruffieux, K.; Ren, Q. Plasma-deposited AgOx-doped TiOx coatings enable rapid antibacterial activity based on ROS generation. Plasma Process. Polym. 2022, 19, 2100246. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; Yang, L.; Yu, Y.; Wang, S.; Li, L.; Wang, N.; Chen, S.; Ma, J.; Li, J. Nanofibrous scaffold by cleaner magnetron-sputtering additive manufacturing: A novel biocompatible platform for antibacterial application. J. Clean. Prod. 2021, 315, 128201. [Google Scholar] [CrossRef]
- Rtimi, S.; Sanjines, R.; Pulgarin, C.; Kiwi, J. Microstructure of Cu-Ag Uniform Nanoparticulate Films on Polyurethane 3D Catheters: Surface Properties. ACS Appl. Mater. Interfaces 2016, 8, 56–63. [Google Scholar] [CrossRef]
- Birkett, M.; Dover, L.; Lukose, C.C.; Zia, A.; Tambuwala, M.; Serrano-Aroca, Á. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int. J. Mol. Sci. 2022, 23, 1162. [Google Scholar] [CrossRef]
- Govind, V.; Bharadwaj, S.; Ganesh, M.R.S.; Vishnu, J.; Shankar, K.; Shankar, B.; Rajesh, R. Antiviral properties of copper and its alloys to inactivate COVID-19 virus: A review. BioMetals 2021, 34, 1217–1235. [Google Scholar] [CrossRef]
- Behzadinasab, S.; Chin, A.; Hosseini, M.; Poon, L.; Ducker, W. A Surface Coating that Rapidly Inactivates SARS-CoV-2. ACS Appl. Mater. Interfaces 2020, 12, 34723–34727. [Google Scholar] [CrossRef]
- Alavi, M.; Moradi, M. Different antibacterial and photocatalyst functions for herbal and bacterial synthesized silver and copper/copper oxide nanoparticles/nanocomposites: A review. Inorg. Chem. Commun. 2022, 142, 109590. [Google Scholar] [CrossRef]
- Bondarenko, O.; Juganson, K.; Ivsak, A.; Kasemets, M.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test orgaisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013, 87, 1181–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Román, L.; Gomez, E.D.; Solís, J.L.; Gómez, M.M. Antibacterial Cotton Fabric Functionalized with Copper Oxide Nanoparticles. Molecules 2020, 25, 5802. [Google Scholar] [CrossRef] [PubMed]
- Rigo, A.; Corazza, A.; di Paolo, M.; Rossetto, M.; Ugolini, R.; Scarpa, M. Interaction of copper with cysteine: Stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J. Inorg. Biochem. 2004, 98, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Baghriche, O.; Pulgarin, C.; Kiwi, J. Polystyrene CuO/Cu2O uniform films inducing MB-degradation under sunlight. Catal. Today 2017, 284, 77–83. [Google Scholar] [CrossRef]
- Parra-Ortiz, E.; Malmsten, M. Photocatalytic nanoparticles—From membrane interactions to antimicrobial and antiviral effects. Adv. Colloid Interface Sci. 2022, 299, 102526. [Google Scholar] [CrossRef]
- Ballo, M.; Rtimi, S.; Kiwi, J.; Pulgarin, C.; Entenza, J.; Bizzini, A. Fungicidal activity of copper-sputtered flexible surfaces under dark and actinic light against azole-resistant Candida albicans and Candida glabrata. J. Photochem. Photobiol. B Biol. 2017, 174, 229–234. [Google Scholar] [CrossRef]
- Hajjaji, A.; Elabidi, M.; Trabelsi, K.; Assadi, A.; Bessais, B.; Rtimi, S. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf. B Biointerfaces 2018, 170, 92–98. [Google Scholar] [CrossRef]
- Perera-Costa, D.; Bruque, J.M.; Gonzalez-Martín, M.; Gomez-García, A.C.; Vadillo-Rodríguez, V. Studying the Influence of Surface Topography on Bacterial Adhesion using Spatially Organized Microtopographic Surface Patterns. Langmuir 2014, 30, 4633–4641. [Google Scholar] [CrossRef]
- Senthilraj, H.; Kamarajan, B.P.; Ananthasubramanian, M. Study of bacterial attachment on the rough surfaces. Int. J. Mech. Eng. 2021, 6, 629–633. [Google Scholar]
- Available online: https://www.bruker.com/en/products-and-solutions/elemental-analyzers/eds-wds-ebsd-SEM-Micro-XRF/software-esprit-family/esprit-spectrum.html (accessed on 18 October 2019).
- Seddiki, O.; Harnagea, C.; Levesque, I.; Mantovani, D.; Rosei, F. Evidence of antibacterial activity on titanium surfaces through nanotextures. Appl. Surf. Sci. 2014, 308, 275–284. [Google Scholar] [CrossRef]
- Kadlec, R.; Jakubec, M.; Jaglic, Z. A novel flotation technique for the separation of non-adherent microorganisms from a substrate. Lett. Appl. Microbiol. 2014, 58, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Radzig, M.; Nadtochenko, V.; Koksharova, O.; Kiwi, J.; Lipasova, V.; Khmel, I. Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surf. B Biointerfaces 2013, 102, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Rtimi, S.; Konstantinidis, S.; Britun, N.; Bensimon, M.; Khmel, I.; Nadtochenko, V. Extracellular bacterial inactivation proceeding without Cu-ion release: Drastic effects of the applied plasma energy on the performance of the Cu-polyester (PES) samples. Appl. Catal. B Environ. 2018, 239, 245–253. [Google Scholar] [CrossRef]
- Forst, S.; Comeau, D.; Norioka, S.; Inouye, M. Localization and Membrane Topology of EnvZ, a Protein Involved in Osmoregulation of OmpF and OmpC in Escherichia coli. J. Biol. Chem. 1987, 262, 16433–16438. [Google Scholar] [CrossRef]
- Bouabibsa, I.; Alhussein, A.; Lamri, S.; Sanchette, F.; Rtimi, S. Biological responses at the interface of Ti-doped diamond-like carbon surfaces for indoor environment application. Environ. Sci. Pollut. Res. 2020, 27, 31120–31129. [Google Scholar] [CrossRef]
- Shin, J.W.; Lee, J.Y.; Kim, T.W.; Cho, W.J.; Choi, W.K. Growth mechanisms of thin-film columnar structures in zinc oxide on p-type silicon substrates. Appl. Phys. Lett. 2006, 88, 091911. [Google Scholar]
- Chandra, R.; Taneja, P.; Ayyub, P. Optical properties of transparent nanocrystalline Cu2O thin films synthesized by high pressure gas sputtering. Nanostruct. Mater. 1999, 11, 505–512. [Google Scholar] [CrossRef]
- Rtimi, S.; Kiwi, J. Recent advances on sputtered films with Cu in ppm concentrations leading to an acceleration of the bacterial inactivation. Catal. Today 2020, 340, 347–362. [Google Scholar] [CrossRef]
- Su, J.; Liu, Y.; Jiang, M.; Zhu, X. Oxidation of copper during physical sputtering deposition: Mechanism, avoidance and utilization. arXiv 2014, arXiv:1412.2031. [Google Scholar]
- Cowan, S.; Schirmer, T.; Rummel, G.; Steiert, M.; Ghosh, R.; Pauptit, R.; Jansonius, J.; Rosenbusch, J. Crystal structures explain functional properties of two Escherichia coli porins. Nature 1992, 358, 727–733. [Google Scholar] [CrossRef]
- Kefala, G.; Ahn, C.; Krupa, M.; Esquivies, L.; Maslennikov, I.; Kwiatkowski, W.; Choe, S. Structures of the OmpF porin crystallized in the presence of foscholine-12. Protein Sci. 2010, 19, 1117–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rtimi, S.; Nadtochenko, V.; Khmel, I.; Bensimon, M.; Kiwi, J. First unambiguous evidence for distinct ionic and surface-contact effects during photocatalytic bacterial inactivation on Cu–Ag films: Kinetics, mechanism and energetics. Mater. Today Chem. 2017, 6, 62–74. [Google Scholar] [CrossRef]
- Basnet, P.; Zhao, Y. Tuning the CuxO nanorod composition for efficient visible light induced photocatalysis. Catal. Sci. Technol. 2016, 6, 2228–2238. [Google Scholar] [CrossRef]
- Chang, T.; Babu, R.P.; Zhao, W.; Johnson, C.M.; Hedström, P.; Odnevall, I.; Leygraf, C. High-Resolution Microscopical Studies of Contact Killing Mechanisms on Copper-Based Surfaces. ACS Appl. Mater. Interfaces 2021, 13, 49402–49413. [Google Scholar] [CrossRef] [PubMed]
- Rtimi, S.; Pascu, M.; Sanjines, R.; Lavanchy, J.-C.; Kiwi, J. ZrNO-Ag co-sputtered surfaces leading to E. coli inactivation under actinic light: Evidence for the oligodynamic effect. Appl. Catal. B Environ. 2013, 138–139, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Aissani, L.; Alhussein, A.; Zia, A.W.; Mamba, G.; Rtimi, S. Magnetron Sputtering of Transition Metal Nitride Thin Films for Environmental Remediation. Coatings 2022, 12, 1746. [Google Scholar] [CrossRef]
Coating N° | Gas Flow Rate (sccm) | Deposition Time (min) | Cu Target | Composition (at.%) | Film Thickness (µm) | |||
---|---|---|---|---|---|---|---|---|
Ar | O2 | I (A) | P (W) | O | Cu | |||
1 | 100 | 5 | 25 | 2 | 609 | 16.5 | 83.5 | 0.86 |
2 | 5 | 40 | 1.38 | |||||
3 | 5 | 60 | 2.2 | |||||
4 | 10 | 35 | 646 | 25.8 | 74.2 | 1.34 | ||
5 | 2 | 40 | 587 | 7.8 | 92.2 | 1.28 |
Germ | Porins Specification |
---|---|
E. coli K-12 strain MC4100 | ompR+, ompF+, ompC+ |
E. coli MH1471 | ompR+ompF−ompC+ |
E. coli MH225 | ompR+ompF+ompC− |
E. coli TK821 | ompR+ompF−ompC− |
Sample | Polished | Low-Energy SMAT | High-Energy SMAT | Sandblasted |
---|---|---|---|---|
Rk (µm) | 0.21 | 0.55 | 0.34 | 4.75 |
Sample | Polished | Low-Energy SMAT | High-Energy SMAT | Sandblasted |
---|---|---|---|---|
Sa (µm) | 0.78 | 1.34 | 1.66 | 10.33 |
St (µm) | 19.10 | 22.79 | 17.81 | 98.69 |
Coating N° | Composition (at.%) | Film Thickness (µm) | Crystallite Size (nm) | |
---|---|---|---|---|
O | Cu | |||
1 | 16.5 | 83.5 | 0.86 | 26.1 |
2 | 1.38 | 24.3 | ||
3 | 2.2 | 17.7 | ||
4 | 25.8 | 74.2 | 1.34 | 26.4 |
5 | 7.8 | 92.2 | 1.28 | 24.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhussein, A.; Aouchiche, L.; Hmima, A.; Retraint, D.; Rtimi, S. Distinctive Effects of Surface Roughness and Ions Release on the Bacterial Adhesion and Inactivation of Textured Copper Oxide Surfaces. Coatings 2023, 13, 454. https://doi.org/10.3390/coatings13020454
Alhussein A, Aouchiche L, Hmima A, Retraint D, Rtimi S. Distinctive Effects of Surface Roughness and Ions Release on the Bacterial Adhesion and Inactivation of Textured Copper Oxide Surfaces. Coatings. 2023; 13(2):454. https://doi.org/10.3390/coatings13020454
Chicago/Turabian StyleAlhussein, Akram, Lylia Aouchiche, Abdelhamid Hmima, Delphine Retraint, and Sami Rtimi. 2023. "Distinctive Effects of Surface Roughness and Ions Release on the Bacterial Adhesion and Inactivation of Textured Copper Oxide Surfaces" Coatings 13, no. 2: 454. https://doi.org/10.3390/coatings13020454
APA StyleAlhussein, A., Aouchiche, L., Hmima, A., Retraint, D., & Rtimi, S. (2023). Distinctive Effects of Surface Roughness and Ions Release on the Bacterial Adhesion and Inactivation of Textured Copper Oxide Surfaces. Coatings, 13(2), 454. https://doi.org/10.3390/coatings13020454