Special Issue “Advanced Coating Technology by Physical Vapor Deposition and Applications”
Conflicts of Interest
References
- Marszałek, K.; Winkowski, P.; Marszałek, M. Antireflective bilayer coatings based on Al2O3 film for UV region. Mater. Sci. -Pol. 2015, 33, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Hitchman, M.L.; Jensen, K.F. Chemical Vapour Deposition: Principles and Applications; Academic: New York, NY, USA, 1993. [Google Scholar]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Panjan, P.; Drnovšek, A.; Mahne, N.; Cekada, M.; Panjan, M. Surface topography of pvd hard coatings. Coatings 2021, 11, 1387. [Google Scholar] [CrossRef]
- Chen, T.; Luo, C.; Wang, D.; Xiong, Y. Effect of Ion Beam Bombarding on Stress in TiO2 Thin Films. Phys. Procedia 2011, 18, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Bass, R.B.; Lichtenberger, L.T.; Lichtenberger, A.W. Effects of Substrate Preparation on the Stress of Nb Thin Films. IEEE Trans. Appl. Supercond. 2003, 13, 3298–3300. [Google Scholar] [CrossRef]
- Karabacak, T.; Senkevich, J.J.; Wang, G.C.; Lu, T.M. Stress reduction in sputter deposited films using nanostructured compliant layers by high working-gas pressures. J. Vac. Sci. Technol. A 2005, 23, 986–990. [Google Scholar] [CrossRef] [Green Version]
- Mattox, D.M. Handbook of Physical Vapor Deposition (PVD) Processing; William Andrew: Amsterdam, The Netherlands, 2010; p. 792. [Google Scholar]
- Anders, A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS). J. Appl. Phys. 2017, 121, 171101. [Google Scholar] [CrossRef] [Green Version]
- Bandorf, R.; Sittinger, V.; Bräuer, G. High Power Impulse Magnetron Sputtering–HiPIMS. In Comprehensive Materials Processing, 1st ed.; Hashmi, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 75–99. [Google Scholar]
- Li, C.; Tian, X.; Gong, C.; Xu, J. The improvement of high power impulse magnetron sputtering performance by an external unbalanced magnetic field. Vacuum 2016, 133, 98–104. [Google Scholar] [CrossRef]
- Schubert, M.F.; Xi, J.Q.; Kim, J.K.; Schubert, E.F. Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material. Appl. Phys. Lett. 2007, 90, 141115. [Google Scholar] [CrossRef] [Green Version]
- Southwell, W.H. Spectral response calculation of rugate filters using coupled-wave theory. J. Opt. Soc. Am. A 1988, 5, 1558–1564. [Google Scholar] [CrossRef]
- Lee, C.C.; Tang, C.J.; Wu, J.Y. Rugate filter made with composite thin films by ion-beam sputtering. Appl. Opt. 2006, 45, 1333–1337. [Google Scholar] [CrossRef]
- Southwell, W.H. Using apodization functions to reduce sidelobes in rugate filters. Appl. Opt. 1989, 28, 5091–5094. [Google Scholar] [CrossRef]
- Lyngnes, O.; Kraus, J. Design of optical notch filters using apodized thickness modulation. Appl. Opt. 2014, 53, A21–A26. [Google Scholar] [CrossRef]
- Tien, C.L.; Lin, H.Y.; Cheng, K.S.; Cheng, C.Y. Design and fabrication of a cost-effective optical notch filter for improving visual quality. Coatings 2022, 12, 19. [Google Scholar] [CrossRef]
- Selhofer, H.; Muller, R. Comparison of pure and mixed coating materials for AR coatings for use by reactive evaporation on glass and plastic lenses. Thin Solid Film 1999, 351, 180–183. [Google Scholar] [CrossRef]
- Pfeiffer, K.; Schulz, U.; Tünnermann, A.; Szeghalmi, A. Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition. Coatings 2017, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Tikhonravov, A.V.; Zhupanov, V.G.; Fedoseev, V.N.; Trubetskov, M.K. Design and production of antireflection coating for the 8–10 μm spectral region. Opt. Express 2014, 22, 32174–32179. [Google Scholar] [CrossRef]
- Sharma, R.; Amit Gupta, A.; Ajit Virdi, A. Effect of Single and Double Layer Antireflection Coating to Enhance Photovoltaic Efficiency of Silicon Solar. J. Nano-Electron. Phys. 2017, 9, 02001. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, W.; Wang, J.; Zhao, Y.; Yi, K.; Shao, J. High performance of broadband anti-reflection film by glancing angle deposition. Opt. Mater. Express 2022, 12, 2226–2239. [Google Scholar] [CrossRef]
- Chung, D.; Shin, C.; Song, B.; Jung, M.; Yun, Y.; Nam, S.H.; Noh, C.; Kim, J.; Lee, S. Color filters for reflective display with wide viewing angle and high reflectivity based on metal dielectric multilayer. Appl. Phys. Lett. 2012, 101, 221120. [Google Scholar] [CrossRef]
- Macleod, H. Thin Film Optical Filters, 5th ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2018. [Google Scholar]
- Yang, X.; Li, H.; You, L.; Zhang, W.; Zhang, L.; Xie, X. Temperature dependence of an optical narrow-bandpass filter at 1.5 μm. Appl. Opt. 2015, 54, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, K.M.; Han, H.; Lee, J.; Ko, D.; Park, K.R.; Jang, K.B.; Kim, D.; Forrester, J.S.; Lee, S.H.; et al. Ti/TiO2/SiO2 multilayer thin films with enhanced spectral selectivity for optical narrow bandpass filters. Sci. Rep. 2022, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Jen, Y.J.; Lin, M.J. Design and fabrication of a narrow bandpass filter with low dependence on angle of incidence. Coatings 2018, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Grego, S.; Lewis, J.; Vick, E.; Temple, D. A method to evaluate mechanical performance of thin transparent films for flexible displays. Thin Solid Films 2007, 515, 4745–4752. [Google Scholar] [CrossRef]
- Lewis, J.S.; Weaver, M. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 45–57. [Google Scholar] [CrossRef]
- Tien, C.L.; Lin, H.Y. Accurate prediction of multilayered residual stress in fabricating mid-infrared long-wave pass filter with interfacial stress measurements. Opt. Express 2020, 28, 36994–37003. [Google Scholar] [CrossRef]
- Tien, C.L.; Chen, K.P.; Lin, H.Y. Internal Stress Prediction and Measurement of Mid-Infrared Multilayer Thin Films. Materials 2021, 14, 1101. [Google Scholar] [CrossRef]
- Adiba Ali, A.; Roy, M.; Alzahrani, H.S.; Khuu, S.K. The effect of blue light filtering lenses on speed perception. Sci. Rep. 2021, 11, 17583. [Google Scholar]
- Roy, M.; Alzahrani, H.S.; Khuu, S. Does the preferential wavelength selection of blue blocking lens affects visual and non-visual functions? Investig. Ophthalmol. Vis. Sci. 2018, 59, 4039. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tien, C.-L. Special Issue “Advanced Coating Technology by Physical Vapor Deposition and Applications”. Coatings 2023, 13, 467. https://doi.org/10.3390/coatings13020467
Tien C-L. Special Issue “Advanced Coating Technology by Physical Vapor Deposition and Applications”. Coatings. 2023; 13(2):467. https://doi.org/10.3390/coatings13020467
Chicago/Turabian StyleTien, Chuen-Lin. 2023. "Special Issue “Advanced Coating Technology by Physical Vapor Deposition and Applications”" Coatings 13, no. 2: 467. https://doi.org/10.3390/coatings13020467
APA StyleTien, C. -L. (2023). Special Issue “Advanced Coating Technology by Physical Vapor Deposition and Applications”. Coatings, 13(2), 467. https://doi.org/10.3390/coatings13020467