UV-Activated, Transparent Oxygen Scavenger Coating Based on Inorganic–Organic Hybrid Polymer (ORMOCER®) with High Oxygen Absorption Capacity
Abstract
:1. Introduction
1.1. Motivation for Using Oxygen Scavengers in Packaging
1.2. Oxygen Scavenger Coating Based on Inorganic–Organic Polymers (ORMOCER®)
1.3. Intention of This Study
2. Materials and Methods
2.1. Preparation of Coating Sol OS 12
2.2. Coating of OS-Sol on Substrate
2.3. Multilayer Production
2.3.1. Adhesive Preparation
2.3.2. Laminating the Sealing Layer
2.4. UV Activation of Oxygen Scavenger
2.5. Determination of Oxygen Scavenger Reactivity
2.6. Experimental Packaging
3. Results and Discussions
3.1. Oxygen Absorption
3.1.1. Oxygen Absorption Capacity
3.1.2. Oxygen Absorption Capacity Compared with Other Oxygen Scavengers
3.2. Oxygen Partial Pressure in Experimental Packaging
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giovanelli, G.; Brenna, O.V. Oxidative stability of red wine stored in packages with different oxygen permeability. Eur. Food Res. Technol. 2007, 226, 169–179. [Google Scholar] [CrossRef]
- Ghidossi, R.; Poupot, C.; Thibon, C.; Pons, A.; Darriet, P.; Riquier, L.; De Revel, G.; Mietton Peuchot, M. The influence of packaging on wine conservation. Food Control 2012, 23, 302–311. [Google Scholar] [CrossRef]
- Solis, J.A.; Rodgers, B.D. Factors affecting the performance of new oxygen scavenging polymer for packaging applications. J. Plast. Film. Sheeting 2001, 17, 339–349. [Google Scholar] [CrossRef]
- Böhner, N.; Hösl, F.; Rieblinger, K.; Danzl, W. Effect of retail display illumination and headspace oxygen concentration on cured boiled sausages. Food Packag. Shelf Life 2014, 1, 131–139. [Google Scholar] [CrossRef]
- Böhner, N.; Rieblinger, K. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage. Meat Sci. 2016, 121, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Böhner, N.; Adolf, L.; Tybussek, T.; Rieblinger, K.; Verin, M.; Langowski, H.C. Influence of novel retail lighting on the quality of coffee cream in different types of packaging. Int. Dairy J. 2017, 64, 37–47. [Google Scholar] [CrossRef]
- Langowski, H.C. Shelf life of packed food and packaging functionality. In Food Packaging Materials: Testing & Quality Assurance; CRC Press: Boca Raton, FL, USA, 2017; pp. 11–65. [Google Scholar]
- Kuchel, L.; Brody, A.L.; Wicker, L. Oxygen and its reactions in beer. Packag. Technol. Sci. 2006, 19, 25–32. [Google Scholar] [CrossRef]
- Roman, O.; Heyd, B.; Broyart, B.; Castillo, R.; Maillard, M.-N. Oxidative reactivity of unsaturated fatty acids from sunflower, high oleic sunflower and rapeseed oils subjected to heat treatment, under controlled conditions. LWT—Food Sci. Technol. 2013, 52, 49–59. [Google Scholar] [CrossRef]
- Baele, M.; Vermeulen, A.; Leloup, F.B.; Adons, D.; Peeters, R.; Devlieghere, F.; De Meulenaer, B.; Ragaert, P. Applicability of oxygen scavengers for shelf life extension during illuminated storage of cured cooked meat products packaged under modified atmosphere in materials with high and low oxygen permeability. Packag. Technol. Sci. 2021, 34, 161–173. [Google Scholar] [CrossRef]
- Durec, J.; Tobolková, B.; Belajová, E.; Polovka, M.; Daško, Ľ. Effect of oxygen scavenger screw-caps on quality of pineapple juices. Chem. Pap. 2020, 74, 4181–4191. [Google Scholar] [CrossRef]
- Apicella, A.; Incarnato, L. Oxygen Scavengers in Food Packaging. In Innovative Food Processing Technologies: A Comprehensive Review; Elsevier: Amsterdam, The Netherlands, 2020; pp. 487–506. [Google Scholar]
- Heiss, R.; Eichner, K. Haltbarmachen von Lebensmitteln: Chemische, Physikalische und Mikrobiologische Grundlagen der Verfahren; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1990. [Google Scholar]
- Buchner, N. Verpackung von Lebensmitteln: Lebensmitteltechnologische, Verpackungstechnische und Mikrobiologische Grundlagen; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Hintze, F.; Becker, K.; Heiss, R. Löslichkeit und Diffusion von Sauerstoff in Lebensmitteln. Fette-Seifen-Anstrichmittel 1965, 67, 12. [Google Scholar] [CrossRef]
- Amberg-Schwab, S. Inorganic-Organic Polymers with Barrier Properties Against Water Vapor, Oxygen and Migrating Monomers. In Handbook of Sol-Gel Science and Technology; Sakka, S., Ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2004; Volume 3, p. 455. [Google Scholar]
- Alves, J.; Gaspar, P.D.; Lima, T.M.; Silva, P.D. What is the role of active packaging in the future of food sustainability? A systematic review. J. Sci. Food Agric. 2023, 103, 1004–1020. [Google Scholar] [CrossRef] [PubMed]
- Viana Batista, R.; Gonçalves Wanzeller, W.; Lim, L.-T.; Quast, E.; Zanella Pinto, V.; Machado de Menezes, V. Food packaging and its oxygen transfer models in active multilayer structures: A theoretical review. J. Plast. Film. Sheeting 2022, 38, 458–488. [Google Scholar] [CrossRef]
- Dey, A.; Neogi, S. Oxygen scavengers for food packaging applications: A review. Trends Food Sci. Technol. 2019, 90, 26–34. [Google Scholar] [CrossRef]
- Ching, T.Y.; Goodrich, J.; CAI, K.; Yang, H. Tasteless Oxygen Scavenging Polymers A New Platform Technology for Food Packaging Based on Controlled Oxidation. In Proceedings of the Oxygen Absorbers 2001 and Beyond, Chicago, IL, USA, 9–26 June 2000. [Google Scholar]
- Sven Sängerlaub, K.M. Long-time Performance of Bottles Made of PET Blended with Various Concentrations of Oxygen Scavenger Additive Stored at Different Temperatures. Packag. Technol. Sci. 2017, 30, 45–58. [Google Scholar] [CrossRef]
- Müller, K.; Sängerlaub, S.; Kramer, A.; Huber, C.; Fritsch, K. Temperature-dependent oxygen permeation through PET/MXD6-barrier blend bottles with and without oxygen absorber. BrewingScience 2011, 64, 161–167. [Google Scholar]
- Müller, K. Oxygen permeability of plastic bottles for oxygen sensitive beverages. BrewingScience 2007, 60, 74–83. [Google Scholar]
- Orzinski, M.E.F.; Schneider, J.; Weber, I.; Fritsch, K. Monolayer-Barriere-Blend-PET-Flaschen. Brauindustrie 2006, 11, 50–57. [Google Scholar]
- Michiels, Y.; Van Puyvelde, P.; Sels, B. Barriers and chemistry in a bottle: Mechanisms in today’s oxygen barriers for tomorrow’s materials. Appl. Sci. 2017, 7, 665. [Google Scholar] [CrossRef]
- Gibis, D.; Rieblinger, K. Oxygen scavenging films for food application. Procedia Food Sci. 2011, 1, 229–234. [Google Scholar] [CrossRef]
- Wanner, G.T. O2-Zehrende und -Anzeigende Packstoffe für Lebensmittelverpackungen. Ph.D. Thesis, Technische Universität München, München, Germany, 2010. Available online: https://mediatum.ub.tum.de/doc/972162/document.pdf (accessed on 14 February 2023).
- Pant, A.; Sängerlaub, S.; Müller, K. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films. Materials 2017, 10, 489. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Abas Wani, A.; Saengerlaub, S. Active packaging of food products: Recent trends. Nutr. Food Sci. 2011, 41, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Saengerlaub, S.; Abas Wani, A.; Langowski, H.C. Role of plastics additives for food packaging. Pigment. Resin Technol. 2012, 41, 368–379. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amberg-Schwab, S.; Weber, U.; Burger, A.; Nique, S.; Xalter, R. Development of Passive and Active Barrier Coatings on the Basis of Inorganic–Organic Polymers. Monatsh. Chem. 2006, 137, 657–666. [Google Scholar] [CrossRef]
- Amberg-Schwab, S.; Burger, A.; Weber, U.; Xalter, R.; Nique, S. Coating Materials with Oxygen Scavenger and/or Oxygen Indicator Function for Coating or Bonding and Products Produced Therewith. WO/2007/051860, 10 May 2007. [Google Scholar]
- Goldhan, G.; Wanner, T.; Saengerlaub, S.; Amberg-Schwab, S.; Weber, U.; Nique, S. Enhancement and indication of food quality by combinations of oxygen scavenger and indicator systems. Ital. J. Food Sci. 2007, 19, 157–164. [Google Scholar]
- Emmert, K.; Amberg-Schwab, S.; Braca, F.; Bazzichi, A.; Cecchi, A.; Somorowsky, F. bioORMOCER®—Compostable Functional Barrier Coatings for Food Packaging. Polymers 2021, 13, 1257. [Google Scholar] [CrossRef]
- Amberg-Schwab, S. Functional Barrier Coatings on the Basis of Hybrid Polymers. In Handbook of Sol-Gel Science and Technology; Klein, L., Aparicio, M., Jitianu, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–21. [Google Scholar]
- Ching, T.Y.; Cai, G.; Depree, C.; Galland, M.S.; Goodrich, J.L.; Leonard, J.P.; Matthews, A.; Russell, K.W.; Yang, H. Oxygen Scavengers with Reduced Oxidation Products for Use in Plastic Films and Beverage and Food Containers. WO/1999/048963, 24 March 1999. [Google Scholar]
- Sängerlaub, S.; Gibis, D.; Kirchhoff, E.; Tittjung, M.; Schmid, M.; Müller, K. Compensation of Pinhole Defects in Food Packages by Application of Iron-based Oxygen Scavenging Multilayer Films. Packag. Technol. Sci. 2013, 26, 17–30. [Google Scholar] [CrossRef]
- Langowski, H.-C. Flexible Materialien mit ultrahohen Barriereeigenschaften. Flexible ultra high barrier materials. Vak. Forsch. Und Prax. 2002, 14, 297–302. [Google Scholar] [CrossRef]
- Langowski, H.-C. Permeation of Gases and Condensable Substances Through Monolayer and Miltilayer Structures. In Plastic Packaging: Interactions with Food and Pharmaceuticals, 2nd ed.; Piringer, O.G., Baner, A.L., Eds.; Chichester: Weinheim, Germany, 2008; pp. 297–347. 614p. [Google Scholar]
- Charton, C.; Schiller, N.; Fahland, M.; Holländer, A.; Wedel, A.; Noller, K. Development of high barrier films on flexible polymer substrates. Thin Solid Film. 2006, 502, 99–103. [Google Scholar] [CrossRef]
- Orzinski, M.; Embs, F.W.; Schneider, J.; Weber, I.; Fritsch, K. Monolayer-barrier-blend-PET bottles. Study of suitability for beer bottling. Brauindustrie 2006, 91, 52–57. [Google Scholar]
- Clasen, T. Iron based oxygen scavengers for film and tube Application. In Proceedings of the Cornet AIP-Final Conference–Active and intelligent Packaging, Freising, Germany, 13 October 2011; Sängerlaub, S., Müller, K., Eds.; Fraunhofer IVV: Freising, Germany, 2011. [Google Scholar]
- Lehner, M.; Schlemmer, D.; Sängerlaub, S. Recycling of blends made of polypropylene and an iron-based oxygen scavenger-Influence of multiple extrusions on the polymer stability and the oxygen absorption capacity. Polym. Degrad. Stab. 2015, 122, 122–132. [Google Scholar] [CrossRef]
- Li, H.; Ashcraft, D.K.; Freeman, B.D.; Stewart, M.E.; Jank, M.K.; Clark, T.R. Non-invasive headspace measurement for characterizing oxygen-scavenging in polymers. Polymer 2008, 49, 4541–4545. [Google Scholar] [CrossRef]
- Lagaron, J.-M.; Busolo, M.A. Active nanocomposites for food and beverage packaging. In Emerging Food Packaging Technologies: Principles and Practice; Yam, K.L.L.D.S., Ed.; Woodhead Publishing Series in Food Science; Technology and Nutrition: Philadelphia, PA, USA, 2012; pp. 55–65. [Google Scholar]
- Galdi, M.R.; Incarnato, L. Influence of composition on structure and barrier properties of active PET films for food packaging applications. Packag. Technol. Sci. 2011, 24, 89–102. [Google Scholar] [CrossRef]
- Di Maio, L.; Scarfato, P.; Galdi, M.R.; Incarnato, L. Development and oxygen scavenging performance of three-layer active PET films for food packaging. J. Appl. Polym. Sci. 2014, 132, 41465. [Google Scholar] [CrossRef]
- Sängerlaub, S.; Glas, C.E.; Schlemmer, D.; Müller, K. Influence of multiple extrusions of blends made of polyethylene terephthalate and an oxygen scavenger on processing and packaging-related properties. J. Plast. Film. Sheeting 2020, 36, 260–284. [Google Scholar] [CrossRef]
Oxygen Scavenger | Oxygen Absorption Capacity per Weight Scavenger in mg O2/g Scavenger | Refs. |
---|---|---|
In this study: a cyclo-olefin, bonded to a silicate backbone ‘ORMOCER®’; applied with wet coating with subsequent drying; activation: UV light | >100 to 240 | - |
Cyclo-olefin bonded to a silicate backbone ‘ORMOCER®’, previous study; wet coatings with subsequent drying; activation: UV light | 90 | [32] |
Ethylene methylacrylate cyclohexenylmethyl acrylate ‘OSP™’; separate layer, e.g., in multilayer; activation: UV light | 60 to 100 | [3,20] |
Iron-based systems (‘SHELFPLUSTM’); additive for polymer layers of multilayer structures; activation: humidity | 25.4 to 86 | [38,43,44] |
Metal-catalyzed poly(1,4-butadiene); activation: contact with catalyst during extrusion | 140 | [45] |
O2Block® (NanoBioMatters S.L., Paterna, Spain); additive for polymers; activation: humidity | >10–25 | [46] |
Copolyester-based polymer (Amosorb DFC 4020, ColorMatrix Group Inc., Texas, US); additive for PET; activation: contact with catalyst during extrusion | 20–60 | [47] |
Copolyester-based polymer (Amosorb DFC 4020, Colormatrix Europe, Liverpool, UK); additive for PET; activation: contact with catalyst during extrusion | 43–47 | [48] |
MXD6 with catalyst; additive for PET; activation: contact with catalyst during extrusion | >77 | [21] |
‘Oxyclear’, polymer with catalyst; additive for PET; activation: contact with catalyst during extrusion | >300 | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amberg-Schwab, S.; Müller, K.; Somorowsky, F.; Sängerlaub, S. UV-Activated, Transparent Oxygen Scavenger Coating Based on Inorganic–Organic Hybrid Polymer (ORMOCER®) with High Oxygen Absorption Capacity. Coatings 2023, 13, 473. https://doi.org/10.3390/coatings13020473
Amberg-Schwab S, Müller K, Somorowsky F, Sängerlaub S. UV-Activated, Transparent Oxygen Scavenger Coating Based on Inorganic–Organic Hybrid Polymer (ORMOCER®) with High Oxygen Absorption Capacity. Coatings. 2023; 13(2):473. https://doi.org/10.3390/coatings13020473
Chicago/Turabian StyleAmberg-Schwab, Sabine, Kajetan Müller, Ferdinand Somorowsky, and Sven Sängerlaub. 2023. "UV-Activated, Transparent Oxygen Scavenger Coating Based on Inorganic–Organic Hybrid Polymer (ORMOCER®) with High Oxygen Absorption Capacity" Coatings 13, no. 2: 473. https://doi.org/10.3390/coatings13020473
APA StyleAmberg-Schwab, S., Müller, K., Somorowsky, F., & Sängerlaub, S. (2023). UV-Activated, Transparent Oxygen Scavenger Coating Based on Inorganic–Organic Hybrid Polymer (ORMOCER®) with High Oxygen Absorption Capacity. Coatings, 13(2), 473. https://doi.org/10.3390/coatings13020473