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Abstract: High-frequency overvoltage generated in railways results in explosions of Electric Multiple
Units’ (EMUs) arrestors. To solve this problem, the leakage current characteristics and heat transfer
process of high-gradient MOA plates under high-frequency overvoltage has been studied. The
leakage current characteristics of arrestor plates under high-frequency voltage was obtained and the
element distribution has been analyzed. Heat transfer distribution and the thermal properties of the
Metal Oxide Arrestor (MOA) have been modelled. According to the results, for a given voltage, the
higher the harmonic frequency, the greater the leakage current of the arrestor valve plate, and the
greater the resistive component of the leakage current. The Zn and O elements in high-gradient MOA
plates are more uniform. Under the same leakage current as conventional ones, the undertake voltage
of a high-gradient MOA plate will increase by 10%. Longtime high-order harmonic action will still
significantly improve the core rod temperature when MOA plates are coated. The temperature rise
in the power supply section of EMUs during operation is roughly 35 ◦C. This result will provide a
foundation and supporting data for the applicability of high-gradient valve plates in railroads and
coating improvements for traditional arrestor plates.

Keywords: high-speed railway; traction power supply; arrestor; leakage current; overvoltage; ther-
mal characteristics

1. Introduction

In recent years, China’s high-speed railways have developed rapidly. As of the end
of 2022, there are more than 150,000 km of railway, of which 113,000 km are electrified.
The operating mileage of high-speed rail exceeds 40,000 km, with an electrification rate
of 75.3% [1–3]. The operation of high-speed rail Electric Multiple Units (EMUs) produces
current with high frequency when the thyristor is working. A high-harmonic overvolt-
age is produced with high amplitude (exceeding 2.0 times overvoltage), high frequency
(17 times to 75 times), and long duration (5 min to 15 min) characteristics when the
frequency is similar to the oscillation frequency of the electrical parameters of the train-
catenary-substation system [4]. This could lead to frequent explosions of the roof arrestor.
There are various causes of EMU arrestor failure, including internal damp [1], resistances
aging [5,6], poor manufacturing processes [7–11], and frequent overvoltage [12–17].

(1) Aging: the arrestor resistance endures various voltage stresses for a long time.
Resistance performance declines, homogeneity deteriorates, and the distribution of po-
tential becomes uneven. The parts are gradually aging, as the arrestor can withstand a
drop in voltage value. Its value grows along with the resistance current, power loss, and
leakage current across which it flows [12]. Zinc oxide resistive plate is a resistance material,
and as the voltage rises, so does the component of resistivity. As a result, a vicious cycle
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develops, hastening the aging of the arrestor’s flap. A drastic lightning arrestor acident
finally happened as a result of this [13].

(2) The arrestor’s aging failure can be accelerated by a lack in the manufacturing
process, mechanical stress and electric power during production and operation [14], a gas
gap or rift inside the solid cutoff [15], and partial discharge under the influence of radiation,
wind, and rain, among other factors [16–18].

(3) Frequent overvoltage will be produced during train operation; when the train
runs in the power supply section, the system circuit oscillation frequency is close to the
train switch frequency, and resonant overvoltage will be generated. Offline overvoltage
is produced when the pantograph detaches from the catenary. The vehicle circuit breaker
breaks when the train is running close to the zone of partition, and operational overvoltage
will affect the arrestor [5]. Heat production and heat dissipation will have long been out
of balance due to the system’s anomalous overvoltage. It will break down after receiving
more energy than it can handle and is no longer able to resist the shock of voltage [7].
Due to the prolonged nature of these kinds of overvoltage, the vehicle network resonant
overvoltage pair arrestor is used. The impact on the arrestor’s operational life is especially
important [8]. Reference [19] depicted the typical resonant overvoltage of a traction power
supply system. Under the influence of resonant overvoltage, the power loss of the arrestor
is too large, and the thermal collapse or even the explosion of the arrestor occurs over a
long period of time [9–11]. The typical thermal collapse of an arrestor is shown in Figure 1.
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In order to improve the operational reliability of arrestors, studies on high-capacity
and high-gradient arrestors and their applicability have been carried out since the 1960s and
1970s. Since Japan developed the world’s first zinc oxide arrestor in 1975, many countries
around the world have embarked on the development of zinc oxide arrestors. In 1982, the
world’s first clearance-free zinc oxide arrestor was introduced in the United States [20];
China’s Xi’an High Voltage Electric Porcelain Factory started its own lightning arrestor
technology development based on the introduction of advanced manufacturing technology
from Japan at that time. The research on the performance enhancement of zinc oxide valves
was mainly concentrated in the 1990s. The United States has developed a resistance sheet
with an energy tolerance of up to 1000 J/cm3 per unit area. Japan, Europe, and other
regions have also published several articles on their research progress in zinc oxide valve
sheet performance enhancement [21]; China’s technology for producing zinc oxide valves
is also continually evolving. He Jinliang’s team from Tsinghua University in China [22,23]
and Li Shengtao’s team from Xi’an Jiaotong University [24,25] also conducted in-depth
research on the theory of reducing pressure-sensitive resistance residual pressure, DC aging
and structural defects.

The Toshiba Corporation of Japan has made significant strides in lowering residual
pressure ratios and enhancing thermal stability in the production and fabrication of zinc
oxide valve tablets. High levels of automation in manufacturing have been attained in the
US and Europe [26]; China’s technology for producing zinc oxide valves is also continually
evolving. The difference between Chinese advanced levels and those of the rest of the world
is closing [27]. The high-performance valves created by Tiangong of Xi’an can essentially
satisfy Chinese UHV line specifications. The enhancement of the zinc oxide valve has a
significant impact on the arrestor’s overall electrical performance, in addition to benefits
provided by its small size and light weight.
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According to the research on the applicability of the arrestor, the current relatively
mature method is to study the thermal process of the arrestor at the operating frequency
voltage and operating supervoltage [28]. Researchers analyzed the potential distribution of
the zinc oxide arrestor under the action of the system voltage and calculated the voltage
bearing rate of each valve piece [29] to simulate different potential gradient values of
zinc oxide valve tablets. The effect of the potential gradient of the zinc oxide valve on the
potential distribution of the arrestor was studied. According to the temperature distribution
of the zinc oxide arrestor under different frequency voltages, the influence of voltage
frequency and amplitude on temperature distribution inside and outside the arrestor was
investigated. The aforementioned research provides ideas for the testing method, design
basis, and simulation technology for the applicability of the arrestor valve plate. However,
the high-harmonic overvoltage amplitude of an electrified railway is high, the frequency
range is large, and the duration is long.

With regard to the material and new kinds of arrestors, the purpose of this research is
to examine the applicability of a high-speed EMU-catenary-substation system with a high-
harmonic resonant overvoltage to the electrified railway. The leakage current characteristics
of the arrestor valve plate under typical high-frequency overvoltage conditions were
studied. The thermal distribution and characteristics of the local flap of the arrestor were
analyzed. This research provides a theoretical basis and data support for the applicability of
high-gradient valve sheets in electrified railways and coating improvements for traditional
arrestor plates.

2. Analysis of the Leakage Current and Thermal Process of Surge Arrestors at
High Frequency

During the operation of an arrestor, when the applied voltage is lower than the action
voltage of the arrestor, the leakage current of the arrestor is smaller. The arrestor’s leakage
current grows as the applied voltage approaches the arrestor’s action voltage. The internal
zinc oxide valve has variable sizes, material properties, and other characteristics at this
point due to the different structures and sizes of zinc oxide arrestors. Additionally, the
performance test of a zinc oxide valve sheet is mainly concentrated at the power frequency
voltage. In a traction power supply system, the arrestor also bears a certain amount of
high-harmonic voltage. This makes the electrical energy’s impact on the arrestor worse.

2.1. The Leakage Current of an Arrestor Valve

As the applied voltage increases, the leakage current of the arrestor will increase. The
current resistance component of arrestor leakage is the main factor affecting the heat of the
core rod of the arrestor. The arrestor model can be expressed as in Figure 2.
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Depending on the features of the arrestor itself, C1 represents the external equivalent
inductance, and R1 represents the external equivalent resistance. The crystal layer capac-
itance (C2), or internal intrinsic capacitance, can be thought of as having a fixed value.
The crystal layer resistance (R2), a nonlinear resistance with a changeable value, can be
determined using the arrestor’s high-harmonic voltage experiment.

2.2. Thermal Process Analysis of an Arrestor Valve

In calculating the transient temperature rise of the valve column inside the zinc oxide
arrestor, the following assumptions are first made: (1) The density and specific heat value
of the zinc oxide valve and the internal metal pad do not change with temperature; (2) The
properties of the zinc oxide valves in the entire zinc oxide valve column are consistent. The
heat process of the arrestor can be obtained by calculating the power of the arrestor. Given
that the transient energy absorbed by the valve column inside the zinc oxide arrestor is Q,
the value of Q can be calculated by Formula (1) for the thermal power of the arrestor:

Q =
∫ t0

0
u(t)i(t)dt (1)

In the formula, u(t) is the instantaneous value of the voltage on the zinc oxide valve
column; i(t) is the instantaneous value of the current flowing over the zinc oxide valve
column; and t0 is the time of overvoltage on a zinc oxide arrestor.

The process of heat dissipation of the zinc oxide arrestor under high-frequency condi-
tions includes axial and radial heat conduction, axial heat dissipation through the upper
and lower flange, and radial heat dissipation to coat the insulating umbrella skirt through
the insulator tube and filling gas. The heat dissipation characteristics of the arrestor satisfy
this system of equations: 

∇·(k∇T) = −q + cρ ∂T
∂t

T|t=0 = ϕ(x, y, z)
(k∇T)n|S3

= −α f

(
T − Tf

) (2)

where T is the internal temperature of the valve and solid material, in K; k is the thermal
conductivity of the material, in W/(m/K); q is the heat source density of the object, in
W/m3; c is the specific heat of the object, in J/(kg/K); ρ is the material density, in kg/m3;
ϕ(x, y, z) is the distribution function of the initial temperature of the object; αf is the surface
heat transfer coefficient of solid to cooling fluid on the boundary surface of Category 3; and
W/(m2/K) and Tf are the medium temperature around the boundary surface of Category 3.
n is the outer normal direction of the boundary plane [22].

3. Leakage Current Characteristics of an Arrestor Valve under High Frequency
3.1. Test Equipment and Test Method

In order to simulate the working condition of railway high-frequency overvoltage,
a simulation test system was established. The test equipment in the system included a
high-frequency and high-voltage power supply, a data acquisition and analysis device, and
a test fixture and ground protection equipment similar to that in reference [19]. However,
the samples were changed to different kinds of arrestor valves.

The system was mainly composed of two parts: an AC voltage source with adjustable
frequency and a booster transformer. The output voltage amplitude and frequency of an
AC voltage source with an adjustable frequency can be adjusted. The maximum output
voltage amplitude was 150 V and the maximum frequency was 5000 Hz. The output end
of the power supply was connected with a step-up transformer to increase the amplitude
of the total output voltage. The adjustable output voltage was 0~30 kV, 50 Hz~5000 Hz.
During the test, the upper and lower ends of the zinc oxide valve plate were clamped with
aluminum cushion blocks, and the outer side of the aluminum cushion blocks was clamped
with insulating plates, and then fixed with insulating rods and insulating nuts. A metal
electrode was installed on the aluminum pad above the fixture to connect the test voltage,
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and a metal electrode was installed on the aluminum pad below the fixture to ground it.
The test fixture is shown in Figure 3.
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Figure 3. Test tooling and two kinds of arrestor valves.

The electrified railway arrestor valve plate (D71) and its high-gradient valve plate
were selected for the test. The size and parameters of the valve plate are shown in Table 1.

Table 1. Size and parameters of test sample of zinc oxide valve plate.

Sample Specification Diameter/mm Thickness/mm Potential Gradient V/mm DC Reference Voltage /kV

D71 (normal gradient) 71 22 214 4.75
D71 (high gradient) 71 22 327 7.30

3.2. Power Characteristics of an Arrestor under High-Frequency Voltage

When the applied voltage frequency was 1050 Hz, 2050 Hz, and 3050 Hz, respectively,
the voltage amplitude was increased at each frequency, and the change of the total leakage
current flowing in each zinc oxide valve sample with each voltage was obtained, as shown
in Figure 4a. The leakage current characteristics of the obtained high-gradient valve plate
under the same applied voltage frequency are shown in Figure 4b. The resistive leakage
current flowing in the D71 high-gradient valve specimen was in direct proportion to the
applied voltage. With the increase in voltage amplitude, the resistive leakage current also
increased gradually, but the increased amplitude was far less than that of the ordinary
valve specimen. The leakage current was the same. Under the 61st harmonic voltage, the
withstand voltage of the high-gradient valve was 85% higher than that of the ordinary valve.
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It can be seen from the figure that the resistive leakage current flowing in the D71
ordinary valve sample was in direct proportion to the applied voltage. With the increase in
voltage amplitude, the resistive leakage current also gradually increased. Under the action
of 1.0 kV, 1050 Hz harmonic voltage, the resistive current flowing in the valve sample was
1.0 mA. Under the action of 1.9 kV and 2050 Hz harmonic voltage, the resistive current
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flowing in each valve sample was 1.0 mA, respectively. Under the action of 2.5 kV and
3050 Hz harmonic voltage, the resistive current flowing in the valve plate sample was
1.0 mA. Regarding the same resistive current, the voltages applied to the high-gradient
valve plate were 2.0 kV, 3.5 kV, and 4.0 kV.

According to the resistive current value of the D71 common valve plate, the active
power generated under voltage at different frequencies could be further calculated, and
the calculated results are shown in Figure 5a. According to the resistive current value of
the D71 high-gradient valve slice, the active power generated under different frequency
voltages could be further calculated, and the calculation results are shown in Figure 5b.
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When the voltage frequency in the zinc oxide valve sample was fixed, the total leakage
current value flowing through the valve sample was approximately proportional to the
amplitude of the voltage applied at both ends of the sample; that is, when the voltage
frequency was fixed, the internal impedance and internal resistance of the zinc oxide valve
sample were basically unchanged with the increase in the amplitude of the applied voltage.
When the voltage amplitude was the same, an increase in applied voltage frequency
resulted in a decrease in the internal impedance of the zinc oxide valve, as well as the
resistive component.

4. Material Characteristics and Microscopic Characteristics of a High-Gradient
Valve Slice

Surface morphology observation and elemental analysis were carried out for ordinary-
gradient valve plates and high-gradient valve plates. The ordinary valve plate showed
coarse grains on the observation scale of 20 µm, and had a certain flaky layer, as shown
in Figure 6a. The surface of the high-gradient valve plate had uniform grains and few
lamellar layers. The typical structure is shown in Figure 6b. The sheet structure of the
ordinary-gradient valve was larger than that of the high-gradient valve plate.
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Subsequently, the elemental composition of the valve plates with the two gradients
was also analyzed. The surface condition of the common valve plates is shown in Figure 7a,
and the clustered metal distribution can be observed. The ZnO element distribution of the
high-gradient valve plates was more uniform (the dark parts), as shown in Figure 7b.
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Figure 7. Assembly of surface elements of D71 valve plate. (a) Surface elements for ordinary-gradient
valve plate; (b) Surface elements for high-gradient valve plate.

The elemental composition of common-gradient valve plates and high-gradient valve
plates was obtained by analyzing the elements inside the plates, as shown in Figure 8a,b.
The elemental composition distribution of ZnO in the common-gradient valve plate was
agglomerated, and that of the high-gradient valve plate was uniform. At the same time, Co
is both solid-soluble in ZnO grains and spinel, which has a relatively small influence on the
gradient. Si easily synthesizes silicates with other elements in the valve plates, affecting the
flow-through performance of the resistor. It can be seen from the elemental configuration
map that the content of Si in the high-gradient valve plate was less, and the Co content
and Si content were coordinated with each other, which became the key to improving the
function of ZnO.
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The results show that the potential gradient was proportional to the grain boundary
breakdown voltage and the number of grains in the zinc oxide valve plate per unit thickness.
Therefore, the potential gradient of the zinc oxide valve plate could be improved by
increasing the grain boundary breakdown voltage and the number of grains in the zinc
oxide valve plate per unit thickness. The smaller the grain size, the more zinc oxide grains
could be accommodated per unit thickness and the higher the potential gradient of the zinc
oxide valve plate.
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5. Thermal Distribution of an Arrestor Considering High-Frequency Overvoltage
Thermal Process of Arrestor under Power Frequency Operating Voltage

The power frequency voltage simulation was carried out for the arrestors of ordinary-
gradient and high-gradient valve plates. The withstand conditions of the two types of
arrestor valve plates are shown in Table 2.

Table 2. Effectiveness of several gradient valve samples.

Name Ordinary-Gradient Valve High-Gradient Valve Plate

specification/mm D71 × 22 D71 × 22
average gradient/V·mm 214 327
dc reference voltage/kV 4.75 7.3

At present, the single arrestor of the EMUs under consideration can withstand a
voltage of 42 kV. For ordinary-gradient valve plates, the number of valve plates in a single
arrestor is 14, and its operating voltage is 66.5 kV. The number of high-gradient valve
plates in an arrestor of the same height, assuming that its action voltage is consistent with
that of an ordinary-gradient valve plate arrestor, should be nine, and the rest should be
set as aluminum pads, with all of them packaged in an epoxy resin pipeline and coated
with silicone rubber. Our model was established by an electro-thermal coupling field in
COMSOL to calculate the temperature-rise process and temperature distribution. When
the applied voltage was 42 kV, the heat source was the power loss generated by the arrestor
under the voltage, and the ambient temperature was 20 ◦C, the internal heat distribution of
the arrestor was obtained at 0–120 min. The temperature distributions of the two kinds of
arrestor are shown in Figures 9 and 10 as a rainbow grid.
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The maximum temperature increase process of an ordinary-gradient valve plate and
a high-gradient valve plate under a power frequency condition was obtained, as shown
in Figure 11.
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When the applied voltage was 42 kV and the frequency changed, the temperature-rise
process of the arrestor was as shown in Figures 12–14.
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Under the action of high-frequency voltage, the 0–120 min valve temperature increased
as compared to normal circumstances, and the higher the voltage frequency, the more the
temperature increased; the growth rate also increased. Figure 15 depicts the temperature
rise of the valve under various voltage and frequency conditions.
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frequency condition.

6. Discussion of the Applicability of High-Gradient Valves under High-Order
Harmonic Conditions

The common-gradient and high-gradient zinc oxide valve pieces can be compared
using the test results of various voltage frequencies; when the same industrial-frequency
voltage was applied, the total leakage current flowing through the common-gradient valve
piece was about 1.45 times that of the high-gradient valve piece. Power frequency affected
the leakage current, power loss, etc., of the arrestor valve piece. As indicated in Table 3,
when a high-frequency harmonic voltage was applied, the general-gradient valve piece
experienced a total leakage current that was approximately 1.34 times greater than that of
the high-gradient piece, and showed a roughly 1.33 times greater active power loss.
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Table 3. Contrasts in test outcomes for zinc oxide valves with various potential gradients.

General-Gradient Valve Piece High-Gradient Valves

Frequency/Hz 1050 2050 3050 1050 2050 3050
Total leakage
current/mA 24.69 38.43 47.09 18.38 28.85 36.09

Resistive leakage
current/mA 2.76 3.95 4.41 2.05 2.96 3.38

Active power
loss/W 8.78 12.57 14.04 6.49 9.38 10.69

The temperature distribution in arrestors under different high-frequency voltages is
based on simulations, according to the impedance component of leakage current. The
temperature-rise characteristic were obvious when the arrestor structure was the same.

Improving the potential gradient of the zinc oxide valve sheet could effectively reduce
the value of the leakage current flowing through the valve sheet under different frequency
voltages, and then reduce the active power loss generated on the valve sheet, extending the
service life of the whole arrestor.

7. Conclusions

This paper describes research conducted on arrestor leakage current characteristics and
arrestor thermal processes under high-frequency overvoltage. A wide frequency domain
voltage test platform for the arrestor valve piece has been established, and the leakage
current and the heat power of the arrestor have been measured. At the same time, the
applicability of high-gradient valve pieces in electrified railroad overvoltage conditions
has been promoted. The following are the findings:

(1) The leakage current characteristics of the arrestor valve sheet under high-frequency
voltage conditions were obtained. When influenced by the voltage frequency, the higher
the power supply frequency was under the same voltage, the larger the leakage current
was. Under the 61st harmonic voltage, the high-gradient valve piece could withstand an
85% higher voltage than the ordinary valve piece.

(2) The microscopic morphological characteristics and element distribution character-
istics of the arrestor valve sheet were examined. The ordinary valve sheet showed coarse
grains on the observation scale of 20 µm, whereas the high-gradient surface grains were
uniform and the lamellar layer was rare. The elemental composition distribution of ZnO
in the ordinary-gradient valve sheet exhibited agglomeration, whereas the high-gradient
valve sheet had a uniform distribution of ZnO elemental composition. The smaller the
grain size, the more zinc oxide grains were accommodated per unit thickness, which is an
important reason for the high potential gradient assumed by the zinc oxide valve sheet.

(3) The temperature-rise process of the arrestor under high-frequency voltage con-
ditions was obtained, indicating the applicability of the high-gradient valve sheet in an
electrified railroad. In the same withstand voltage case, the total leakage current flowing in
the common-gradient valve piece was about 1.45 times that of the high-gradient valve piece;
when high-frequency harmonic voltage was applied, the total leakage current flowing in
the common-gradient valve piece was about 1.34 times that of the high-gradient valve
piece, and the active power loss was about 1.33 times. Our research shows that, as long it is
noted that external insulation was not considered, the high-gradient valve piece arrestor is
more suitable for the frequent overvoltage condition of the electrified railroad.
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