Sprayed-Polyurea-Modified Asphalt: Optimal Preparation Parameters, Rheological Properties and Thermal Properties
Abstract
:1. Introduction
2. Materials, Preparation and Test Methods
2.1. Materials
2.1.1. Asphalt Binder
2.1.2. SPUA Base Material
2.2. Test Method
2.2.1. Orthogonal Experimental Design
2.2.2. Modified Asphalt Binder Preparation Process
2.2.3. Basic Performance Evaluation
2.2.4. High-Temperature Rheological Properties
- Brookfield viscosity test
- b.
- Performance grade test
- c.
- Multiple stress creep recovery test
2.2.5. Fatigue Performance
- Linear amplitude sweep test
- b.
- Time sweeping test
2.2.6. Differential Scanning Calorimetry Test
3. Results and Discussion
3.1. Orthogonal Test Analysis
3.1.1. Extreme Difference Analysis Method
3.1.2. Analysis of Variance
3.2. High-Temperature Rheological Properties
3.2.1. Brookfield Viscosity
- (1)
- Apparent viscosity
- (2)
- Activation energy
3.2.2. PG Test
- (1)
- Rutting factor
- (2)
- Phase angle
- (3)
- Temperature susceptibility
3.2.3. MSCR Test
3.3. Fatigue Performance Characterization
3.3.1. Fatigue Performance Analysis Based on LAS Test
3.3.2. Fatigue Performance Analysis Based on Time Scanning Test
3.4. Applicability of High-Temperature and Fatigue Indicators to the Performance Evaluation of Asphalt Binders
3.5. Thermal Properties Analysis
4. Conclusions
- (1)
- Combined with extreme difference analysis and ANOVA, the best preparation process parameters of modified asphalt binder under the condition of 9% content were determined as follows: shear time, rate and temperature of 40 min, 6000 rpm and 150 °C, respectively.
- (2)
- The SPUA enhanced the apparent viscosity and improved the high-temperature shear resistance while reducing the temperature sensitivity in the test temperature range.
- (3)
- Addition of SPUA admixture had a positive effect on high-temperature deformation resistance and elastic recovery performance of asphalt binders but hurt temperature sensitivity. There was higher sensitivity of the MSCR test to the viscoelastic properties of asphalt binders compared to the PG test.
- (4)
- Increasing the modifier admixture could promote the modifier’s effect on fatigue resistance of asphalt binders, but this was detrimental to stress sensitivity of asphalt binders.
- (5)
- The performance indexes obtained from the MSCR test, Brookfield viscosity and LAS test were more correlated with modifier dosage. Therefore, the MSCR test and Brookfield viscosity test were recommended to evaluate high-temperature performance of asphalt binders and the LAS test to evaluate fatigue resistance of asphalt binders.
- (6)
- The SPUA modifier had a positive effect on thermal stability of asphalt binders, and the effect increased with an increase in dosage. Higher thermal stability corresponded to better high-temperature performance.
- (7)
- Excellent high-temperature performance and fatigue resistance of SPMA showed that SPUA material has great potential and application value in asphalt pavement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, X.L.; Qin, X.; Liu, Z.S.; Yin, Y.M.; Zou, C.; Jiang, S. New preparation method of bitumen samples for UV aging behavior investigation. Constr. Build. Mater. 2020, 233, 117278. [Google Scholar] [CrossRef]
- Liu, S.; Jin, J.; Yu, H.; Gao, Y.; Du, Y.; Sun, X.; Qian, G. Performance enhancement of modified asphalt via coal gangue with microstructure control. Constr. Build. Mater. 2023, 367, 130287. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Wen, P.; Zeng, W.; Wang, X. A comprehensive review on mechanical properties of green controlled low strength materials. Constr. Build. Mater. 2022, 363, 129611. [Google Scholar] [CrossRef]
- Yang, X.; Tang, H.; Cai, X.; Wu, K.; Huang, W.; Zhang, Q.; Li, H. Evaluating reclaimed asphalt mixture homogeneity using force chain transferring stress efficiency. Constr. Build. Mater. 2023, 365, 130050. [Google Scholar] [CrossRef]
- Yao, X.G.; Li, C.; Xu, T. Multi-scale studies on interfacial system compatibility between asphalt and SBS modifier using molecular dynamics simulations and experimental methods. Constr. Build. Mater. 2022, 346, 128502. [Google Scholar] [CrossRef]
- Liang, M.; Liang, P.; Fan, W.Y.; Qian, C.D.; Xin, X.; Shi, J.T.; Nan, G. Thermo-rheological behavior and compatibility of modified asphalt with various styrene–butadiene structures in SBS copolymers. Mater. Des. 2015, 88, 177–185. [Google Scholar] [CrossRef]
- Siddig, E.; Feng, C.P.; Ming, L.Y. Effects of ethylene vinyl acetate and nanoclay additions on high-temperature performance of asphalt binders. Constr. Build. Mater. 2018, 169, 276–282. [Google Scholar] [CrossRef]
- Brasileiro, L.; Moreno-Navarro, F.; Martínez, R.; Sol-Sánchez, M.; Matos, J.; Rubio-Gámez, M. Study of the feasability of producing modified asphalt bitumens using flakes made from recycled polymers. Constr. Build. Mater. 2019, 208, 269–282. [Google Scholar] [CrossRef]
- Celauro, C.; Bosurgi, G.; Sollazzo, G.; Ranieri, M. Laboratory and in-situ tests for estimating improvements in asphalt concrete with the addition of an LDPE and EVA polymeric compound. Constr. Build. Mater. 2019, 196, 714–726. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.; Li, Y.; Feng, L.; Huang, S. Performance development of polyurethane elastomer composites in different construction and curing environments. Constr. Build. Mater. 2023, 365, 130047. [Google Scholar] [CrossRef]
- Sun, X.; Ou, Z.; Xu, Q.; Qin, X.; Guo, Y.; Lin, J.; Yuan, J. Feasibility analysis of resource application of waste incineration fly ash in asphalt pavement materials. Environ. Sci. Pollut. Res. 2023, 30, 5242–5257. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Peng, Q.; Zhu, Y.; Jin, J.; Xu, J.; Yin, Y.; Ng, A.H.M. Modification and enhancing effect of SPUA material on asphalt binder: A study of viscoelastic properties and microstructure characterization. Case Stud. Constr. Mater. 2023, 18, e01781. [Google Scholar] [CrossRef]
- Zhu, H.J.; Wang, X.; Wang, Y.T.; Ji, C.; Wu, G.; Zhang, L.; Han, Z.Y. Damage behavior and assessment of polyurea sprayed reinforced clay brick masonry walls subjected to close-in blast loads. Int. J. Impact Eng. 2022, 167, 104283. [Google Scholar] [CrossRef]
- Liu, Z.C.; Wu, J.; Yu, J.; Xu, S.L. Damage assessment of normal reinforced concrete panels strengthened with polyurea after explosion. Case Stud. Constr. Mater. 2022, 17, e01695. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, B.Q.; Chen, P.W.; Su, J.J.; Arab, A.; Ding, G.; Yan, G.H.; Jiang, H.Y.; Guo, F. Investigating ballistic resistance of CFRP/polyurea composite plates subjected to ballistic impact. Thin Walled Struct. 2021, 166, 108111. [Google Scholar] [CrossRef]
- Ameri, M.; Seif, M.; Abbasi, M.; Molayem, M.; KhavandiKhiavi, A. Fatigue performance evaluation of modified asphalt binder using of dissipated energy approach. Constr. Build. Mater. 2017, 136, 184–191. [Google Scholar] [CrossRef]
- Wen, Y.K.; Guo, N.S.; Wang, L.; Jin, X.; Li, W.; Wen, H.F. Assessment of various fatigue life indicators and fatigue properties of rock asphalt composite. Constr. Build. Mater. 2021, 289, 123147. [Google Scholar] [CrossRef]
- Gao, J.F.; Wang, H.N.; Liu, C.C.; Ge, D.D.; You, Z.P.; Yu, M. High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder. Constr. Build. Mater. 2020, 230, 117063. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Peng, Q.; Yuan, J.; Cang, Z.; Lv, J. Study on adaptability of rheological index of nano-PUA-modified asphalt based on geometric parameters of parallel plate. Nanotechnol. Rev. 2021, 10, 1801–1811. [Google Scholar] [CrossRef]
- Du, Y.; Xu, L.; Deng, H.B.; Deng, D.; Ma, C.; Liu, W.D. Characterization of thermal, high-temperature rheological and fatigue properties of asphalt mastic containing fly ash cenosphere. Constr. Build. Mater. 2020, 233, 117345. [Google Scholar] [CrossRef]
- Sun, X.L.; Qin, X.; Liu, Z.S.; Yin, Y.; Jiang, S.; Wang, X. Applying feasibility analysis and catalytic purifying potential of novel modifying agent used in asphalt pavement materials. Constr. Build. Mater. 2020, 245, 118467. [Google Scholar] [CrossRef]
- Li, B.; Liu, P.; Zhao, Y.; Li, X.; Cao, G. Effect of graphene oxide in different phases on the high temperature rheological properties of asphalt based on grey relational and principal component analysis. Constr. Build. Mater. 2023, 362, 129714. [Google Scholar] [CrossRef]
- Li, Y.; Hao, P.; Zhao, C.; Ling, J.; Wu, T.; Li, D.; Liu, J.; Sun, B. Anti-rutting performance evaluation of modified asphalt binders: A review. J. Traffic Transp. Eng. 2021, 8, 339–355. [Google Scholar] [CrossRef]
- Cao, W.; Wang, C. Fatigue performance characterization and prediction of asphalt binders using the linear amplitude sweep based viscoelastic continuum damage approach. Int. J. Fatigue 2019, 119, 112–125. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Castorena, C.; Zhang, J.; Kim, Y. Identifying fatigue failure in asphalt binder time sweep tests. Constr. Build. Mater. 2016, 121, 535–546. [Google Scholar] [CrossRef]
- Kim, H.; Mazumder, M.; Lee, S.-J.; Lee, M.-S. Characterization of recycled crumb rubber modified binders containing wax warm additives. J. Traffic Transp. Eng. 2018, 5, 197–206. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Zhang, Y.; Yan, C.; Lv, Q.; Guan, W. Evaluation of the terminal blend crumb rubber/SBS composite modified asphalt. Constr. Build. Mater. 2021, 278, 122377. [Google Scholar] [CrossRef]
- Hong, Z.; Yan, K.; Wang, M.; You, L.; Ge, D. Low-density polyethylene/ethylene–vinyl acetate compound modified asphalt: Optimal preparation process and high-temperature rheological properties. Constr. Build. Mater. 2022, 314, 125688. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Z.; Zhao, F.; Liu, F.; Wang, J. Improving the performance of RET modified asphalt with the addition of polyurethane prepolymer (PUP). Constr. Build. Mater. 2019, 206, 560–575. [Google Scholar] [CrossRef]
- Lei, L.; Li, D.; Chen, Y.; Tian, Y.; Pei, J. Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer. Constr. Build. Mater. 2021, 293, 123480. [Google Scholar]
- Wang, Z.; Ye, F. Experimental investigation on aging characteristics of asphalt based on rheological properties. Constr. Build. Mater. 2020, 231, 117158. [Google Scholar] [CrossRef]
- Dong, R.; Zhao, M.; Xia, W.; Yi, X.; Dai, P.; Tang, N. Chemical and microscopic investigation of co-pyrolysis of crumb tire rubber with waste cooking oil at mild temperature. Waste Manag. 2018, 79, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, P.; Ding, Z.; Yang, L.; Zhao, J. Investigations on viscosity and flow behavior of polyphosphoric acid (PPA) modified asphalt at high temperatures. Constr. Build. Mater. 2019, 228, 116610. [Google Scholar] [CrossRef]
- Neda, K.; Ataollah, S.; Mousavi, R. Rheological behavior of asphalt binders and fatigue resistance of SMA mixtures modified with nano-silica containing RAP materials under the effect of mixture conditioning. Constr. Build. Mater. 2021, 303, 124433. [Google Scholar]
- Yongjun, M.; Chaoliang, G.; Qixiong, Z.; Yue, Q.; Weikang, K.; Liupeng, F. Study on multiple Damage-Healing properties and mechanism of laboratory simulated recycled asphalt binders. Constr. Build. Mater. 2022, 346, 128468. [Google Scholar]
- Xiaolong, S.; Qin, X.; Guotao, F.; Yongqiang, Z.; Zhengbing, Y.; Qian, C.; Junshen, Y. Effect Investigation of Ultraviolet Ageing on the Rheological Properties, Micro-Structure, and Chemical Composition of Asphalt Binder Modified by Modifying Polymer. Adv. Mater. Sci. Eng. 2022, 2022, 7190428. [Google Scholar]
- Bo, L.; Yufan, C.; Fang, L.; Jianlong, Z. Evaluation of rheological and aging behavior of modified asphalt based on activation energy of viscous flow. Constr. Build. Mater. 2022, 321, 126347. [Google Scholar]
- Hazim, A.-S.; Haryati, Y.; Mohd, S.; Khleel, S.; Putra, J.; Norazah, B.; Radhi, R.; Abdul, H.N. Effects of maltene on the attributes of reclaimed asphalt pavement: Performance optimization. Constr. Build. Mater. 2021, 302, 124210. [Google Scholar]
- Ming, L.; Zhengmei, Q.; Xuehao, L.; Cong, Q.; Ning, G.; Zhaoxin, L.; Linping, S.; Zhanyong, Y.; Jizhe, Z. The Effects of Activation Treatments for Crumb Rubber on the Compatibility and Mechanical Performance of Modified Asphalt Binder and Mixture by the Dry Method. Front. Mater. 2022, 9, 845718. [Google Scholar]
- Li, P.; Jiang, X.; Ding, Z.; Zhao, J.; Shen, M. Analysis of viscosity and composition properties for crumb rubber modified asphalt. Constr. Build. Mater. 2018, 169, 638–647. [Google Scholar] [CrossRef]
- Xu, X.; Guo, H.; Wang, X.; Zhang, M.; Wang, Z.; Yang, B. Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder. Constr. Build. Mater. 2019, 224 (Suppl. 1), 732–742. [Google Scholar] [CrossRef]
- Ashish, P.K.; Singh, D.; Bohm, S. Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder. Constr. Build. Mater. 2016, 113, 341–350. [Google Scholar] [CrossRef]
- Han, L.; Qingshan, X.; Haibo, D.; Hong, Z.; Yanjun, Q. Rheological properties of model wax doped asphalt binders. Constr. Build. Mater. 2022, 350, 128865. [Google Scholar]
- Jiang, J.; Zhao, Y.; Lu, G.; Dai, Y.; Ni, F.; Dong, Q. Effect of binder film distribution on the fatigue characteristics of asphalt Binder/Filler composite based on image analysis method. Constr. Build. Mater. 2020, 260, 119876. [Google Scholar] [CrossRef]
- Daryoosh, D.; Mahdi, H.; Saqib, G.; Shane, U.B. Combined effect of waste polymer and rejuvenator on performance properties of reclaimed asphalt binder. Constr. Build. Mater. 2021, 268, 121059. [Google Scholar]
- Kumar, D.A.; Dharamveer, S. Evaluation of fatigue performance of asphalt mastics composed of nano hydrated lime filler. Constr. Build. Mater. 2020, 269, 121322. [Google Scholar]
Properties | Unit | Test Result | Specification | |
---|---|---|---|---|
Performance grade | °C | 64 | ASTM D7643-10 | |
Softening point | °C | 46.25 | ASTM D36 | |
Ductility (10 °C) | cm | 60 | ASTM D113 | |
Penetration (25 °C) | 0.1 mm | 65 | ASTM D5 | |
Dynamic viscosity (60 °C) | Pa·s | 218 | ASTM D2170 | |
After TRTOF Aging | Mass variation | % | −0.114 | ASTM D2872 |
Penetration ratio | % | ≥81 | ASTM D5 | |
Ductility (10 °C) | cm | ≥6 | ASTM D113 |
Solid Content/% | Viscosity/cps | Tensile Strength/MPa | Elongation at Break/% |
---|---|---|---|
81–85 | ≤800 | 28 | 375 |
Factors | |||
---|---|---|---|
Levels | Shear time (A) | Shear rate (B) | Shear temperature (C) |
3000 rpm | 10 min | 120 ℃ | |
4000 rpm | 25 min | 135 ℃ | |
5000 rpm | 40 min | 150 ℃ |
Test Number | Shear Time (A) | Shear Rate (B) | Shear Temperature (C) | Test Program |
---|---|---|---|---|
1 | 120 °C | 10 min | 5000 rpm | A1B1C1 |
2 | 120 °C | 25 min | 6000 rpm | A1B2C2 |
3 | 120 °C | 40 min | 7000 rpm | A1B3C3 |
4 | 135 °C | 10 min | 6000 rpm | A2B1C2 |
5 | 135 °C | 25 min | 7000 rpm | A2B2C3 |
6 | 135 °C | 40 min | 5000 rpm | A2B3C2 |
7 | 150 °C | 10 min | 7000 rpm | A3B1C3 |
8 | 150 °C | 25 min | 5000 rpm | A3B2C1 |
9 | 150 °C | 40 min | 6000 rpm | A3B3C2 |
Test Number | Shear Time | Shear Rate | Shear Temperature | Blank Group | Failure Temperature |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 66.5 |
2 | 2 | 2 | 1 | 2 | 67.2 |
3 | 3 | 3 | 1 | 3 | 68.9 |
4 | 1 | 2 | 2 | 3 | 67.8 |
5 | 2 | 3 | 2 | 1 | 69 |
6 | 3 | 1 | 2 | 2 | 69.5 |
7 | 1 | 3 | 3 | 2 | 68.9 |
8 | 2 | 1 | 3 | 3 | 70.1 |
9 | 3 | 2 | 3 | 1 | 71.5 |
K1 | 203.20 | 206.10 | 202.60 | 207.00 | - |
K2 | 206.30 | 206.50 | 206.30 | 205.60 | - |
K3 | 209.90 | 206.80 | 210.50 | 206.80 | - |
k1 | 67.73 | 68.70 | 67.53 | 69.00 | - |
k2 | 68.77 | 68.83 | 68.77 | 68.53 | - |
k3 | 69.97 | 68.93 | 70.17 | 68.93 | - |
R | 2.23 | 0.23 | 2.63 | 0.47 | - |
RC > RA > RB, optimal process: A3B3C3 |
Test Number | Shear Time | Shear Rate | Shear Temperature | Blank Group | Softening Point |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 47.6 |
2 | 2 | 2 | 1 | 2 | 48.65 |
3 | 3 | 3 | 1 | 3 | 49.6 |
4 | 1 | 2 | 2 | 3 | 49.1 |
5 | 2 | 3 | 2 | 1 | 49.4 |
6 | 3 | 1 | 2 | 2 | 50.05 |
7 | 1 | 3 | 3 | 2 | 50.95 |
8 | 2 | 1 | 3 | 3 | 50.65 |
9 | 3 | 2 | 3 | 1 | 51.8 |
K1 | 147.65 | 148.30 | 145.85 | 148.80 | - |
K2 | 148.70 | 149.55 | 148.55 | 149.65 | - |
K3 | 151.45 | 149.95 | 153.40 | 149.35 | - |
k1 | 49.22 | 49.43 | 48.62 | 49.60 | - |
k2 | 49.57 | 49.85 | 49.52 | 49.88 | - |
k3 | 50.48 | 49.98 | 51.13 | 49.78 | - |
R | 1.27 | 0.55 | 2.52 | 0.28 | - |
RC > RA > RB, optimal process: A3B3C3 |
Test Number | Shear Time | Shear Rate | Shear Temperature | Blank Group | Penetration |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 4.9 |
2 | 2 | 2 | 1 | 2 | 4.4 |
3 | 3 | 3 | 1 | 3 | 4.1 |
4 | 1 | 2 | 2 | 3 | 3.8 |
5 | 2 | 3 | 2 | 1 | 3.7 |
6 | 3 | 1 | 2 | 2 | 4.0 |
7 | 1 | 3 | 3 | 2 | 3.9 |
8 | 2 | 1 | 3 | 3 | 3.8 |
9 | 3 | 2 | 3 | 1 | 3.6 |
K1 | 12.59 | 12.66 | 13.37 | 12.12 | - |
K2 | 11.91 | 11.83 | 11.50 | 12.28 | - |
K3 | 11.69 | 11.70 | 11.32 | 11.79 | - |
k1 | 4.20 | 4.22 | 4.46 | 4.04 | - |
k2 | 3.97 | 3.94 | 3.83 | 4.09 | - |
k3 | 3.90 | 3.90 | 3.77 | 3.93 | - |
R | 0.30 | 0.32 | 0.68 | 0.16 | - |
RC > RB > RA, optimal process: A3B3C3 |
Test Number | Shear Time | Shear Rate | Shear Temperature | Blank Group | Ductility |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 9.0 |
2 | 2 | 2 | 1 | 2 | 7.1 |
3 | 3 | 3 | 1 | 3 | 6.8 |
4 | 1 | 2 | 2 | 3 | 8.4 |
5 | 2 | 3 | 2 | 1 | 7.2 |
6 | 3 | 1 | 2 | 2 | 7.1 |
7 | 1 | 3 | 3 | 2 | 7.6 |
8 | 2 | 1 | 3 | 3 | 7.5 |
9 | 3 | 2 | 3 | 1 | 7.2 |
K1 | 25.00 | 23.60 | 22.90 | 23.40 | - |
K2 | 21.80 | 22.70 | 22.70 | 21.80 | - |
K3 | 21.10 | 21.60 | 22.30 | 22.70 | - |
k1 | 8.33 | 7.87 | 7.63 | 7.80 | - |
k2 | 7.27 | 7.57 | 7.57 | 7.27 | - |
k3 | 7.03 | 7.20 | 7.43 | 7.57 | - |
R | 1.30 | 0.67 | 0.20 | 0.53 | - |
RA > RB > RC, optimal process: A1B1C1 |
Test Number | Shear Time | Shear Rate | Shear Temperature | Blank Group |
---|---|---|---|---|
Sj | 7.50 | 0.08 | 10.42 | 0.38 |
DOF | 2.00 | 2.00 | 2.00 | 2.00 |
MSE | 3.75 | 0.04 | 5.21 | 0.19 |
F | 19.61 | 0.22 | 27.25 | 1.00 |
P | 0.05 | 0.82 | 0.04 | 0.50 |
Sig | √ | × | √ |
Test Number | Shear Time | Shear Rate | Shear Temperature | Blank Group |
---|---|---|---|---|
Sj | 2.57 | 0.49 | 9.76 | 0.12 |
DOF | 2.00 | 2.00 | 2.00 | 2.00 |
MSE | 1.28 | 0.25 | 4.88 | 0.06 |
F | 20.72 | 3.99 | 78.76 | 1.00 |
P | 0.05 | 0.20 | 0.01 | 0.50 |
Sig | √ | × | √ | - |
Test Number | Shear Time | Shear Rate | Shear Temperature | Blank Group |
---|---|---|---|---|
Sj | 0.15 | 0.18 | 0.86 | 0.04 |
DOF | 2.00 | 2.00 | 2.00 | 2.00 |
MSE | 0.07 | 0.09 | 0.43 | 0.02 |
F | 3.53 | 4.34 | 20.64 | 1.00 |
P | 0.22 | 0.19 | 0.05 | 0.50 |
Sig | × | × | √ | - |
Test Number | Shear Time | Shear Rate | Shear Temperature | Blank Group |
---|---|---|---|---|
Sj | 2.88 | 0.67 | 0.06 | 0.43 |
DOF | 2.00 | 2.00 | 2.00 | 2.00 |
MSE | 1.44 | 0.33 | 0.03 | 0.21 |
F | 6.72 | 1.56 | 0.15 | 1.00 |
P | 0.13 | 0.39 | 0.87 | 0.50 |
Sig | × | × | × | - |
Asphalt Type | Eα (Slope, kJ/mol) | A (Intercept) | R2 |
---|---|---|---|
Base asphalt | 21.5 | −7.4 | 0.98 |
SPMA6 | 23.1 | −8.1 | 0.98 |
SPMA9 | 23.4 | −8.2 | 0.97 |
SPMA12 | 24.3 | −8.5 | 0.97 |
Asphalt Type | |A| (Slope) | B (Intercept) | R2 |
---|---|---|---|
Base asphalt | 8.32 | 18.10 | 0.99 |
SPMA6 | 8.53 | 18.79 | 0.99 |
SPMA9 | 8.61 | 18.97 | 0.99 |
SPMA12 | 8.64 | 19.20 | 0.99 |
High-Temperature Index | Slope | Intercept | Correlation Coefficient |
---|---|---|---|
Failure temperature | 65.2 | 66.242 | 0.81 |
Softening point | 61.7 | 47.62 | 0.83 |
Viscosity at 135 °C | 2533.3 | 252.33 | 0.99 |
Jnr (at 0.1 kPa) | −2725.0 | 527.1 | 0.91 |
Jnr (at 3.2 kPa) | −2750.0 | 542.6 | 0.90 |
R (at 0.1 kPa) | 13.9 | 0.14 | 0.83 |
R (at 3.2 kPa) | 0.8 | −0.005 | 0.93 |
Fatigue Index | Slope | Intercept | Correlation Coefficient |
---|---|---|---|
Nf at 2.5% applied stress | 12,767 | 135 | 0.91 |
Nf at 5% applied stress | 116,283 | −2458.2 | 0.86 |
Np50 | 13,400 | 494 | 0.84 |
Np20 | 11,283 | −55.9 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Q.; Sun, X.; Liu, Z.; Jin, J.; Yu, H.; Yin, Y. Sprayed-Polyurea-Modified Asphalt: Optimal Preparation Parameters, Rheological Properties and Thermal Properties. Coatings 2023, 13, 544. https://doi.org/10.3390/coatings13030544
Peng Q, Sun X, Liu Z, Jin J, Yu H, Yin Y. Sprayed-Polyurea-Modified Asphalt: Optimal Preparation Parameters, Rheological Properties and Thermal Properties. Coatings. 2023; 13(3):544. https://doi.org/10.3390/coatings13030544
Chicago/Turabian StylePeng, Qinyuan, Xiaolong Sun, Zhisheng Liu, Jiao Jin, Huayang Yu, and Yingmei Yin. 2023. "Sprayed-Polyurea-Modified Asphalt: Optimal Preparation Parameters, Rheological Properties and Thermal Properties" Coatings 13, no. 3: 544. https://doi.org/10.3390/coatings13030544
APA StylePeng, Q., Sun, X., Liu, Z., Jin, J., Yu, H., & Yin, Y. (2023). Sprayed-Polyurea-Modified Asphalt: Optimal Preparation Parameters, Rheological Properties and Thermal Properties. Coatings, 13(3), 544. https://doi.org/10.3390/coatings13030544