Multiscale CFD Modeling of Area-Selective Atomic Layer Deposition: Application to Reactor Design and Operating Condition Calculation
Abstract
:1. Introduction
2. Multiscale Modeling
2.1. Multiscale Modeling Framework
2.2. Mesoscopic Model
2.2.1. Surface kinetics
2.2.2. Quantification of Surface Reactions
2.2.3. kMC Algorithm
2.3. Macroscopic Model
2.3.1. Macroscopic Modeling Logistics
2.3.2. Reactor Geometry and Meshing
2.3.3. Characterization of Materials and Macroscopic-Phase Reactions
2.3.4. Numerical Solution Methods
2.3.5. Simulation Modeling
3. Results and Discussion
3.1. Reactor Optimization
3.1.1. Exposure Time Distribution
3.1.2. Intermixing
3.2. Multiscale Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALD | Atomic layer deposition |
ASALD | Area-selective atomic layer deposition |
BDEAS | bis(diethylamino)silane |
CFD | Computational fluid dynamics |
DEA | diethylamine |
DFT | Density functional theory |
EPE | Edge placement error |
Hacac | acetylacetone |
kMC | Kinetic Monte Carlo |
NEB | Nudged elastic band |
NGA | Nongrowth area |
SMI | Small-molecule inhibitor |
UDF | User-defined function |
UDM | User-defined memory |
References
- Wang, C.P.; Tsai, Y.P.; Lin, B.J.; Liang, Z.Y.; Chiu, P.W.; Shih, J.R.; Lin, C.J.; King, Y.C. On-Wafer FinFET-Based EUV/eBeam Detector Arrays for Advanced Lithography Processes. IEEE Trans. Electron. Devices 2020, 67, 2406–2413. [Google Scholar] [CrossRef]
- Chen, M.C.; Li, K.S.; Li, L.J.; Lu, A.Y.; Li, M.Y.; Chang, Y.H.; Lin, C.H.; Chen, Y.J.; Hou, Y.F.; Chen, C.C.; et al. TMD FinFET with 4 nm thin body and back gate control for future low power technology. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 7–9 December 2015; pp. 32.2.1–32.2.4. [Google Scholar]
- Huang, J. Research Progresses on Suppressing the Short-Channel Effects of Field-Effect Transistor. Highlights Sci. Eng. Technol. 2022, 27, 361–367. [Google Scholar] [CrossRef]
- Angelov, G.V.; Nikolov, D.N.; Hristov, M.H. Technology and Modeling of Nonclassical Transistor Devices. J. Electr. Comput. Eng. 2019, 2019, 4792461. [Google Scholar] [CrossRef] [Green Version]
- Barraud, S.; Previtali, B.; Vizioz, C.; Hartmann, J.M.; Sturm, J.; Lassarre, J.; Perrot, C.; Rodriguez, P.; Loup, V.; Magalhaes-Lucas, A.; et al. 7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing. In Proceedings of the 2020 IEEE Symposium on VLSI Technology, Hsinchu, Taiwan, 10–13 August 2020; pp. 1–2. [Google Scholar]
- Wang, S.; Liu, X.; Zhou, P. The Road for 2D Semiconductors in the Silicon Age. Adv. Mater. 2022, 34, 2106886. [Google Scholar] [CrossRef]
- Bhattacharyya, K. Tough road ahead for device overlay and edge placement error. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XXXIII; Ukraintsev, V.A., Adan, O., Eds.; International Society for Optics and Photonics. SPIE: San Jose, CA, USA, 2019; Volume 10959, p. 1095902. [Google Scholar]
- Mulkens, J.; Hanna, M.; Wei, H.; Vaenkatesan, V.; Megens, H.; Slotboom, D. Overlay and edge placement control strategies for the 7nm node using EUV and ArF lithography. In Proceedings of the Extreme Ultraviolet (EUV) Lithography VI, San Jose, CA, USA, 22–26 February 2015; Volume 9422, p. 94221Q. [Google Scholar]
- Mameli, A.; Merkx, M.J.M.; Karasulu, B.; Roozeboom, F.; Kessels, W.E.M.M.; Mackus, A.J.M. Area-Selective Atomic Layer Deposition of SiO2 Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle. ACS Nano 2017, 11, 9303–9311. [Google Scholar] [CrossRef]
- Sharma, R.K.; Gupta, R.; Gupta, M.; Gupta, R.S. Dual-Material Double-Gate SOI n-MOSFET: Gate Misalignment Analysis. IEEE Trans. Electron. Devices 2009, 56, 1284–1291. [Google Scholar] [CrossRef]
- Hobbs, R.G.; Petkov, N.; Holmes, J.D. Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms. Chem. Mater. 2012, 24, 1975–1991. [Google Scholar] [CrossRef] [Green Version]
- Jasni, A.H. Chapter 5-Fabrication of nanostructures by physical techniques. In Nanoscale Processing; Thomas, S., Balakrishnan, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 131–162. [Google Scholar]
- Amadi, E.V.; Venkataraman, A.; Papadopoulos, C. Nanoscale self-assembly: Concepts, applications and challenges. Nanotechnology 2021, 33, 132001. [Google Scholar] [CrossRef]
- Brummer, A.C.; Mohabir, A.T.; Aziz, D.; Filler, M.A.; Vogel, E.M. Fabrication and characterization of a self-aligned gate stack for electronics applications. Appl. Phys. Lett. 2021, 119, 142901. [Google Scholar] [CrossRef]
- Yasmeen, S.; Ryu, S.W.; Lee, S.H.; Lee, H.B.R. Atomic Layer Deposition Beyond Thin Film Deposition Technology. Adv. Mater. Technol. 2022, 8, 2200876. [Google Scholar] [CrossRef]
- Kinge, S.; Crego-Calama, M.; Reinhoudt, D.N. Self-Assembling Nanoparticles at Surfaces and Interfaces. ChemPhysChem 2008, 9, 20–42. [Google Scholar] [CrossRef]
- Bae, C.; Shin, H.; Nielsch, K. Surface modification and fabrication of 3D nanostructures by atomic layer deposition. MRS Bull. 2011, 36, 887–897. [Google Scholar] [CrossRef]
- Liu, T.L.; Bent, S.F. Area-Selective Atomic Layer Deposition on Chemically Similar Materials: Achieving Selectivity on Oxide/Oxide Patterns. Chem. Mater. 2021, 33, 513–523. [Google Scholar] [CrossRef]
- Okasha, S.; Harada, Y. Atomic layer deposition of self-assembled aluminum nanoparticles using dimethylethylamine alane as precursor and trimethylaluminum as an initiator. J. Nanoparticle Res. 2022, 24, 242. [Google Scholar] [CrossRef]
- Hayden, O.; Agarwal, R.; Lu, W. Semiconductor nanowire devices. Nano Today 2008, 3, 12–22. [Google Scholar] [CrossRef]
- Barth, S.; Hernandez-Ramirez, F.; Holmes, J.D.; Romano-Rodriguez, A. Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci. 2010, 55, 563–627. [Google Scholar] [CrossRef]
- Guerfi, Y.; Larrieu, G. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around. Nanoscale Res. Lett. 2016, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Yan, R.; Fardy, M. Semiconductor Nanowire: What’s Next? Nano Lett. 2010, 10, 1529–1536. [Google Scholar] [CrossRef]
- Fernández-Garrido, S.; Auzelle, T.; Lähnemann, J.; Wimmer, K.; Tahraoui, A.; Brandt, O. Top-down fabrication of ordered arrays of GaN nanowires by selective area sublimation. Nanoscale Adv. 2019, 1, 1893–1900. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.; Yeo, B.C.; Han, S.S.; Yoon, C.M.; Yang, J.Y.; Yoon, J.; Yoo, C.; Kim, H.-j.; Lee, Y.-b.; Lee, S.J.; et al. Reaction Mechanism of Area-Selective Atomic Layer Deposition for Al2O3 Nanopatterns. ACS Appl. Mater. Interfaces 2017, 9, 41607–41617. [Google Scholar] [CrossRef]
- Fang, M.; Ho, J.C. Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning. ACS Nano 2015, 9, 8651–8654. [Google Scholar] [CrossRef]
- Mullen, E.; Morris, M.A. Green Nanofabrication Opportunities in the Semiconductor Industry: A Life Cycle Perspective. Nanomaterials 2021, 11, 1085. [Google Scholar] [CrossRef]
- Chen, R.; Kim, H.; McIntyre, P.C.; Porter, D.W.; Bent, S.F. Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification. Appl. Phys. Lett. 2005, 86, 191910. [Google Scholar] [CrossRef]
- Mackus, A.J.M.; Merkx, M.J.M.; Kessels, W.M.M. From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity. Chem. Mater. 2019, 31, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lee, M.; Lucero, A.; Cheng, L.; Kim, J. Area-Selective ALD of TiO2 Nanolines with Electron-Beam Lithography. J. Phys. Chem. C 2014, 118, 23306–23312. [Google Scholar] [CrossRef]
- Sinha, A.; Hess, D.W.; Henderson, C.L. Area selective atomic layer deposition of titanium dioxide: Effect of precursor chemistry. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2006, 24, 2523–2532. [Google Scholar] [CrossRef] [Green Version]
- Merkx, M.J.M.; Angelidis, A.; Mameli, A.; Li, J.; Lemaire, P.C.; Sharma, K.; Hausmann, D.M.; Kessels, W.M.M.; Sandoval, T.E.; Mackus, A.J.M. Relation between Reactive Surface Sites and Precursor Choice for Area-Selective Atomic Layer Deposition Using Small Molecule Inhibitors. J. Phys. Chem. C 2022, 126, 4845–4853. [Google Scholar] [CrossRef]
- Merkx, M.J.M.; Sandoval, T.E.; Hausmann, D.M.; Kessels, W.M.M.; Mackus, A.J.M. Mechanism of Precursor Blocking by Acetylacetone Inhibitor Molecules during Area-Selective Atomic Layer Deposition of SiO2. Chem. Mater. 2020, 32, 3335–3345. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.; Ou, F.; Wang, H.; Tom, M.; Orkoulas, G.; Christofides, P.D. Atomistic-mesoscopic modeling of area-selective thermal atomic layer deposition. Chem. Eng. Res. Des. 2022, 188, 271–286. [Google Scholar] [CrossRef]
- Poodt, P.; Cameron, D.C.; Dickey, E.; George, S.M.; Kuznetsov, V.; Parsons, G.N.; Roozeboom, F.; Sundaram, G.; Vermeer, A. Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol. A 2012, 30, 010802. [Google Scholar] [CrossRef] [Green Version]
- Suntola, T.; Antson, J. Method for Producing Compound Thin Films. Google Patents 4,058,430A, 15 November 1977. [Google Scholar]
- Freeman, D.C.; Levy, D.H.; Cowdery-Corvan, P.J. Process for depositing organic materials. Google Patents 7,858,144B2, 28 December 2010. [Google Scholar]
- Sun, W.; Kim, Y.; Shin, J.; Yang, W. Shower head of Combinatorial Spatial Atomic Layer Deposition apparatus. Google Patents 20,170,025,417A, 2017. [Google Scholar]
- Pan, D.; Jen, T.C.; Yuan, C. Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al2O3. Int. J. Heat Mass Transf. 2016, 96, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Cong, W.; Li, Z.; Cao, K.; Feng, G.; Chen, R. Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method. Chem. Eng. Sci. 2020, 217, 115513. [Google Scholar] [CrossRef]
- Li, Z.; Cao, K.; Li, X.; Chen, R. Computational fluid dynamics modeling of spatial atomic layer deposition on microgroove substrates. Int. J. Heat Mass Transf. 2021, 181, 121854. [Google Scholar] [CrossRef]
- De la Huerta, C.M.; Nguyen, V.H.; Dedulle, J.M.; Bellet, D.; Jiménez, C.; Muñoz-Rojas, D. Influence of the Geometric Parameters on the Deposition Mode in Spatial Atomic Layer Deposition: A Novel approach to Area-Selective Deposition. Coatings 2018, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.; Tom, M.; Orkoulas, G.; Christofides, P.D. Multiscale Computational Fluid Dynamics Modeling of Spatial Thermal Atomic Layer Etching. Comput. Chem. Eng. 2022, 163, 107861. [Google Scholar] [CrossRef]
- Tom, M.; Yun, S.; Wang, H.; Ou, F.; Orkoulas, G.; Christofides, P.D. Machine learning-based run-to-run control of a spatial thermal atomic layer etching reactor. Comput. Chem. Eng. 2022, 168, 108044. [Google Scholar] [CrossRef]
- Poodt, P.; Lankhorst, A.; Roozeboom, F.; Spee, K.; Maas, D.; Vermeer, A. High-Speed Spatial Atomic-Layer Deposition of Aluminum Oxide Layers for Solar Cell Passivation. Adv. Mater. 2010, 22, 3564–3567. [Google Scholar] [CrossRef]
- Sharma, K.; Hall, R.A.; George, S.M. Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor. J. Vac. Sci. Technol. A 2015, 33, 01A132. [Google Scholar] [CrossRef] [Green Version]
- Poodt, P.; van Lieshout, J.; Illiberi, A.; Knaapen, R.; Roozeboom, F.; van Asten, A. On the kinetics of spatial atomic layer deposition. JOurnal Vac. Sci. Technol. A 2013, 31, 01A108. [Google Scholar] [CrossRef] [Green Version]
- Maroudas, D. Multiscale modeling of hard materials: Challenges and opportunities for chemical engineering. AIChE J. 2000, 46, 878–882. [Google Scholar] [CrossRef]
- Yun, S.; Tom, M.; Luo, J.; Orkoulas, G.; Christofides, P.D. Microscopic and Data-Driven Modeling and Operation of Thermal Atomic Layer Etching of Aluminum Oxide Thin Films. Chem. Eng. Res. Des. 2022, 177, 96–107. [Google Scholar] [CrossRef]
- Roh, H.; Kim, H.L.; Khumaini, K.; Son, H.; Shin, D.; Lee, W.J. Effect of deposition temperature and surface reactions in atomic layer deposition of silicon oxide using Bis(diethylamino)silane and ozone. Appl. Surf. Sci. 2022, 571, 151231. [Google Scholar] [CrossRef]
- Broas, M.; Kanninen, O.; Vuorinen, V.; Tilli, M.; Paulasto-Kröckel, M. Chemically stable atomic-layer-deposited Al2O3 films for processability. ACS Omega 2017, 2, 3390–3398. [Google Scholar] [CrossRef] [Green Version]
- Rahane, A.B.; Deshpande, M.D.; Kumar, V. Structural and electronic properties of (Al2O3)n clusters with n = 1–10 from first principles calculations. J. Phys. Chem. C 2011, 115, 18111–18121. [Google Scholar] [CrossRef]
- Scandolo, S.; Giannozzi, P.; Cavazzoni, C.; de Gironcoli, S.; Pasquarello, A.; Baroni, S. First-principles codes for computational crystallography in the Quantum-ESPRESSO package. Z. für Krist. -Cryst. Mater. 2005, 220, 574–579. [Google Scholar] [CrossRef]
- Jónsson, H.; Mills, G.; Jacobsen, K.W. Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations; Berne, B.J., Ciccotti, G., Coker, D.F., Eds.; World Scientific: Singapore, 1998; pp. 385–404. [Google Scholar]
- Jansen, A.P.J. (Ed.) An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions; Springer Berlin: Heidelberg, Germany, 2012; Volume 1, pp. 38–119. [Google Scholar]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Schwille, M.C.; Schössler, T.; Schön, F.; Oettel, M.; Bartha, J.W. Temperature dependence of the sticking coefficients of bis-diethyl aminosilane and trimethylaluminum in atomic layer deposition. J. Vac. Sci. Technol. A 2017, 35, 01B119. [Google Scholar] [CrossRef]
- Lee, G.; Lee, B.; Kim, J.; Cho, K. Ozone Adsorption on Graphene: Ab Initio Study and Experimental Validation. J. Phys. Chem. C 2009, 113, 14225–14229. [Google Scholar] [CrossRef] [Green Version]
- Voter, A.F. Introduction to the Kinetic Monte Carlo Method. In Proceedings of the Radiation Effects in Solids, Erice, Sicily, Italy, 17–29 July 2004; pp. 1–23. [Google Scholar]
- Li, N.; Marcus, S.D.; Ngo, T.T.; Griffin, K. Gas Separation Control in Spatial Atomic Layer Deposition. Google Patents 11,230,763B2, 25 January 2022. [Google Scholar]
- ANSYS, Ansys Fluent Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2022.
- Nishiguchi, T.; Saitoh, S.; Kameda, N.; Morikawa, Y.; Kekura, M.; Nonaka, H.; Ichimura, S. Rapid Oxidation of Silicon Using UV-Light Irradiation in Low-Pressure, Highly Concentrated Ozone Gas below 300 °C. Jpn. J. Appl. Phys. 2007, 46, 2835. [Google Scholar] [CrossRef]
- Benson, S.W.; Axworthy, A.E. Mechanism of the Gas Phase, Thermal Decomposition of Ozone. J. Chem. Phys. 1957, 26, 1718–1726. [Google Scholar] [CrossRef]
- Pan, D.; Li, T.; Chien Jen, T.; Yuan, C. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models. J. Vac. Sci. Technol. A 2014, 32, 01A110. [Google Scholar] [CrossRef]
- Shaeri, M.R.; Jen, T.C.; Yuan, C.Y. Reactor scale simulation of an atomic layer deposition process. Chem. Eng. Res. Des. 2015, 94, 584–593. [Google Scholar] [CrossRef]
- Peltonen, P.; Vuorinen, V.; Marin, G.; Karttunen, A.J.; Karppinen, M. Numerical study on the fluid dynamical aspects of atomic layer deposition process. J. Vac. Sci. Technol. A 2018, 36, 021516. [Google Scholar] [CrossRef] [Green Version]
- Elers, K.E.; Blomberg, T.; Peussa, M.; Aitchison, B.; Haukka, S.; Marcus, S. Film uniformity in atomic layer deposition. Chem. Vap. Depos. 2006, 12, 13–24. [Google Scholar] [CrossRef]
- Kim, J.; Chakrabarti, K.; Lee, J.; Oh, K.Y.; Lee, C. Effects of ozone as an oxygen source on the properties of the Al2O3 thin films prepared by atomic layer deposition. Mater. Chem. Phys. 2003, 78, 733–738. [Google Scholar] [CrossRef]
- Andreoni, W.; Yip, S. Handbook of Materials Modeling: Methods: Theory and Modeling, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Yun, S.; Tom, M.; Ou, F.; Orkoulas, G.; Christofides, P.D. Multiscale Computational Fluid Dynamics Modeling of Thermal Atomic Layer Etching: Application to Chamber Configuration Design. Comput. Chem. Eng. 2022, 161, 107757. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, J.; Oh, H.; Kim, J.; Shong, B.; Park, T.J.; Kim, W.H. Inhibitor-free area-selective atomic layer deposition of SiO2 through chemoselective adsorption of an aminodisilane precursor on oxide versus nitride substrates. Appl. Surf. Sci. 2022, 589, 152939. [Google Scholar] [CrossRef]
- Fang, G.; Xu, L.; Ma, J.; Li, A. Theoretical Understanding of the Reaction Mechanism of SiO2 Atomic Layer Deposition. Chem. Mater. 2016, 28, 1247–1255. [Google Scholar] [CrossRef]
No. | * Skewness | ** Orthogonal Quality | *** Element Quality | **** Aspect Ratio |
---|---|---|---|---|
R1 | 0.2536 | 0.7446 | 0.8194 | 1.9136 |
R2 | 0.2471 | 0.7512 | 0.8244 | 1.8949 |
R3 | 0.2469 | 0.7514 | 0.8246 | 1.8933 |
† R4 | 0.2483 | 0.7499 | 0.8239 | 1.8971 |
Thermophysical Parameter | Hacac | BDEAS | DEA |
---|---|---|---|
Standard Enthalpy of Formation [J/kmol] | −3.844 × 10 | −6.484 × 10 | −7.25 × 10 |
Standard Entropy of Formation [J/kmol·K] | −3.502 × 10 | 5.338 × 10 | −4.845 × 10 |
Specific Heat [J/kg·K] | 208.2 | Polynomial † | Polynomial † |
Thermal Conductivity † [W/m·K] | 0.0100 | 0.0100 | 0.02 |
Viscosity † [kg/(m·s)] | 6.00 × 10 | 1.10 × 10 | 3.19 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, S.; Wang, H.; Tom, M.; Ou, F.; Orkoulas, G.; Christofides, P.D. Multiscale CFD Modeling of Area-Selective Atomic Layer Deposition: Application to Reactor Design and Operating Condition Calculation. Coatings 2023, 13, 558. https://doi.org/10.3390/coatings13030558
Yun S, Wang H, Tom M, Ou F, Orkoulas G, Christofides PD. Multiscale CFD Modeling of Area-Selective Atomic Layer Deposition: Application to Reactor Design and Operating Condition Calculation. Coatings. 2023; 13(3):558. https://doi.org/10.3390/coatings13030558
Chicago/Turabian StyleYun, Sungil, Henrik Wang, Matthew Tom, Feiyang Ou, Gerassimos Orkoulas, and Panagiotis D. Christofides. 2023. "Multiscale CFD Modeling of Area-Selective Atomic Layer Deposition: Application to Reactor Design and Operating Condition Calculation" Coatings 13, no. 3: 558. https://doi.org/10.3390/coatings13030558
APA StyleYun, S., Wang, H., Tom, M., Ou, F., Orkoulas, G., & Christofides, P. D. (2023). Multiscale CFD Modeling of Area-Selective Atomic Layer Deposition: Application to Reactor Design and Operating Condition Calculation. Coatings, 13(3), 558. https://doi.org/10.3390/coatings13030558