In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process
Abstract
:1. Introduction
2. Method
2.1. Child–Langmuir Law
- Voltage drive
- Current drive
2.2. Plasma Equivalent Circuit
3. Experimental Apparatus
4. Results and Discussion
4.1. Assumptions
- We used the Child–Langmuir law (intermediate pressure), where << .
- As only fluctuations due to deposition were considered, the impedance of the chamber itself was not considered.
- There was no change in plasma parameters during the process. Hence, there was no change in sheath thickness.
4.2. Analysis Model
4.3. Constant Sheath Thickness
4.4. Reactance Reproducibility Problem
4.5. Change in Reactance (Considering Only the Deposition on the Wafer)
4.6. Change in Reactance (Considering Wall and Showerhead Deposition)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahu, B.B.; Han, J.G.; Shin, K.S.; Hori, M. Nitrogen radical and plasma diagnostics in dual frequency hybrid plasmas to investigate N2/SiH4 PECVD process. Plasma Process. Polym. 2016, 13, 447–458. [Google Scholar] [CrossRef]
- Baek, G.; Baek, J.H.; Kim, H.M.; Lee, S.; Jin, Y.; Park, H.S.; Park, J.S. Atomic layer chemical vapor deposition of SiO2 thin films using a chlorine-free silicon precursor for 3D NAND applications. Ceram. Int. 2021, 47, 19036–19042. [Google Scholar] [CrossRef]
- Hopwood, J.; Guarnieri, C.R.; Whitehair, S.J.; Cuomo, J.J. Langmuir probe measurements of a radio frequency induction plasma. J. Vac. Sci. Technol. A Vac. Surf. Film. 1993, 11, 152–156. [Google Scholar] [CrossRef]
- Chung, C. Experimental investigation on the floating potential of cylindrical Langmuir probes in non-Maxwellian electron distributions. Phys. Plasmas 2005, 12, 123505. [Google Scholar] [CrossRef]
- Kang, G.J.; An, S.R.; Kim, K.; Hong, S.J. An in situ monitoring method for PECVD process equipment condition. Plasma Sci. Technol. 2019, 21, 064003. [Google Scholar] [CrossRef]
- Jang, D.B.; Hong, S.J. In-situ monitoring of multiple oxide/nitride dielectric stack PECVD deposition process. Trans. Electr. Electron. Mater. 2018, 19, 21–26. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, J.J.; Lee, Y.S.; Cho, C.H.; You, S.J. Crossing Frequency Method Applicable to Intermediate Pressure Plasma Diagnostics Using the Cutoff Probe. Sensors 2022, 22, 1291. [Google Scholar] [CrossRef] [PubMed]
- You, K.H.; You, S.J.; Kim, D.W.; Na, B.K.; Seo, B.H.; Kim, J.H.; Chang, H.Y. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe. Phys. Plasmas 2016, 23, 033509. [Google Scholar] [CrossRef]
- Bang, J.Y.; Yoo, K.; Kim, D.H.; Chung, C.W. A plasma diagnostic technique using a floating probe for the dielectric deposition process. Plasma Sources Sci. Technol. 2011, 20, 065005. [Google Scholar] [CrossRef]
- Lee, M.H.; Jang, S.H.; Chung, C.W. Floating probe for electron temperature and ion density measurement applicable to processing plasmas. J. Appl. Phys. 2007, 101, 033305. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, D.; Nakamura, K.; Sugai, H. A novel technique for in-situ simultaneous measurement of thickness of deposited film and electron density with two curling probes. Plasma Sources Sci. Technol. 2020, 29, 075009. [Google Scholar] [CrossRef]
- Hotta, M.; Ogawa, D.; Nakamura, K.; Sugai, H. Real-time curling probe monitoring of dielectric layer deposited on plasma chamber wall. Jpn. J. Appl. Phys. 2018, 57, 046201. [Google Scholar] [CrossRef]
- Karkari, S.K.; Gaman, C.; Ellingboe, A.R.; Swindells, I.; Bradley, J.W. A floating hairpin resonance probe technique for measuring time-resolved electron density in pulse discharge. Meas. Sci. Technol. 2007, 18, 2649. [Google Scholar] [CrossRef]
- Arshadi, A.; Brinkmann, R.P.; Hotta, M.; Nakamura, K. A simple and straightforward expression for curling probe electron density diagnosis in reactive plasmas. Plasma Sources Sci. Technol. 2017, 26, 045013. [Google Scholar] [CrossRef]
- Roh, H.; Ryu, S.; Jang, Y.; Kim, N.; Jin, Y.; Park, S.; Kim, G. Development of the virtual metrology for the nitride thickness in multi-layer plasma-enhanced chemical vapor deposition using plasma-information variables. IEEE Trans. Semicond. Manuf. 2018, 31, 232–241. [Google Scholar] [CrossRef]
- Hong, S.J.; May, G.S.; Park, D.C. Neural network modeling of reactive ion etching using optical emission spectroscopy data. IEEE Trans. Semicond. Manuf. 2003, 16, 598–608. [Google Scholar] [CrossRef]
- Kwon, H.; Hong, S.J. Use of Optical Emission Spectroscopy Data for Fault Detection of Mass Flow Controller in Plasma Etch Equipment. Electronics 2022, 11, 253. [Google Scholar] [CrossRef]
- Kim, D.H.; Hong, S.J. Use of plasma information in machine-learning-based fault detection and classification for advanced equipment control. IEEE Trans. Semicond. Manuf. 2021, 34, 408–419. [Google Scholar] [CrossRef]
- Choi, J.E.; Hong, S.J. Machine learning-based virtual metrology on film thickness in amorphous carbon layer deposition process. Meas. Sens. 2021, 16, 100046. [Google Scholar] [CrossRef]
- Oyama, K.I.; Lee, C.H.; Fang, H.K.; Cheng, C.Z. Means to remove electrode contamination effect of Langmuir probe measurement in space. Rev. Sci. Instrum. 2012, 83, 055113. [Google Scholar] [CrossRef]
- Sahu, B.B.; Han, J.G.; Hori, M.; Takeda, K. Langmuir probe and optical emission spectroscopy studies in magnetron sputtering plasmas for Al-doped ZnO film deposition. J. Appl. Phys. 2015, 117, 023301. [Google Scholar] [CrossRef]
- Naz, M.Y.; Ghaffar, A.; Rehman, N.U.; Azam, M.; Shukrullah, S.; Qayyum, A.; Zakaullah, M. Symmetric and Asymmetric Double Langmuir Probes Characterization of Radio Frequency Inductivley Coupled Nitrogen Plasma. Prog. Electromagn. Res. 2011, 115, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.J.; Yun, I. Real-time plasma uniformity measurement technique using optical emission spectroscopy with revolving module. IEEE Sens. J. 2018, 19, 2356–2361. [Google Scholar] [CrossRef]
- Kim, B.; Im, S.; Yoo, G. Performance evaluation of CNN-based end-point detection using in-situ plasma etching data. Electronics 2020, 10, 49. [Google Scholar] [CrossRef]
- Kim, M.W.; Kim, S.G.; Zhao, S.; Hong, S.J.; Han, S.S. Endpoint detection in plasma etching using principal component analysis and expanded hidden markov model. ECS Trans. 2011, 34, 943. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K.I.; Jeong, H.Y.; Lee, J.H.; Choi, Y.S. Anti-contamination SMART (Spectrum Monitoring Apparatus with Roll-to-roll Transparent film) window for optical diagnostics of plasma systems. Rev. Sci. Instrum. 2021, 92, 013507. [Google Scholar] [CrossRef]
- Jang, H.; Nam, J.; Kim, C.K.; Chae, H. Real-Time Endpoint Detection of Small Exposed Area SiO2 Films in Plasma Etching Using Plasma Impedance Monitoring with Modified Principal Component Analysis. Plasma Process. Polym. 2013, 10, 850–856. [Google Scholar] [CrossRef]
- Oh, S.-J.; Sung, D.-Y.; Ko, J.-M.; Nam, S.K. Improving Detection of Plasma Etching End Point Using Light Compensation on Optical Emission Spectra. J. Vac. Sci. Technol. B 2022, 40, 052206. [Google Scholar] [CrossRef]
- Stancu, G.D.; Leroy, O.; Coche, P.; Gadonna, K.; Guerra, V.; Minea, T.; Alves, L.L. Microwave air plasmas in capillaries at low pressure II. Experimental investigation. J. Phys. D Appl. Phys. 2016, 49, 435202. [Google Scholar] [CrossRef]
- Yeom, H.J.; Kim, J.H.; Choi, D.H.; Choi, E.S.; Yoon, M.Y.; Seong, D.J.; Lee, H.C. Flat cutoff probe for real-time electron density measurement in industrial plasma processing. Plasma Sources Sci. Technol. 2020, 29, 035016. [Google Scholar] [CrossRef]
- Godyak, V.A.; Piejak, R.B.; Alexandrovich, B.M. Electron energy distribution function measurements and plasma parameters in inductively coupled argon plasma. Plasma Sources Sci. Technol. 2002, 11, 525. [Google Scholar] [CrossRef]
- Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H. Diagnostic of capacitively coupled radio frequency plasma by homogeneous discharge model. Phys. Lett. A 2012, 376, 1356–1359. [Google Scholar] [CrossRef]
- Seong, I.; Kim, S.; Lee, Y.; Cho, C.; Lee, J.; Jeong, W.; You, S. Development of a Noninvasive Real-Time Ion Energy Distribution Monitoring System Applicable to Collisional Plasma Sheath. Sensors 2022, 22, 6254. [Google Scholar] [CrossRef]
- Chabert, P.; Braithwaite, N. Physics of Radio-Frequency Plasmas, 1st ed.; Cambridge University Press: New York, NY, USA, 2011; pp. 142–154. [Google Scholar]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; p. 399. [Google Scholar]
- Choi, S.Y.; White, J.M. Large Area PECVD Technology. ECS Trans. 2009, 25, 701. [Google Scholar] [CrossRef]
- Benilov, M.S. The Child–Langmuir law and analytical theory of collisionless to collision-dominated sheaths. Plasma Sources Sci. Technol. 2008, 18, 014005. [Google Scholar] [CrossRef]
- Lieberman, M.A. Dynamics of a collisional, capacitive RF sheath. IEEE Trans. Plasma Sci. 1989, 17, 338–341. [Google Scholar] [CrossRef]
- Lisovskiy, V.; Yegorenkov, V.; Artushenko, E.; Booth, J.P.; Martins, S.; Landry, K.; Cassagne, V. Normal regime of the weak-current mode of an rf capacitive discharge. Plasma Sources Sci. Technol. 2012, 22, 015018. [Google Scholar] [CrossRef]
- Mutsukura, N.; Kobayashi, K.; Machi, Y. Plasma sheath thickness in radio-frequency discharges. J. Appl. Phys. 1990, 68, 2657–2660. [Google Scholar] [CrossRef]
- Kasashima, Y.; Fumihiko, U. Monitoring of Condition of Deposited Film Causing Particles in Plasma Etching by Using Practical Load Impedance Monitoring Method. J. Vac. Soc. Jpn. 2016, 59, 270–275. [Google Scholar] [CrossRef]
Condition | Deposition | Cleaning |
---|---|---|
SiH4 (sccm) | 9 | - |
NF3 (sccm) | - | 40 |
N2O (sccm) | 25 | - |
Ar (sccm) | - | 5 |
Pressure (mTorr) | 500 | 1000 |
Power (W) | 300 | 300 |
Temp (°C) | 200 | 200 |
Experiment 1 (Time Increment) | Experiment 2 (150 s Reproducibility) |
---|---|
150 s | No. 1 (150 s) |
300 s | No. 2 (150 s) |
450 s | No. 3 (150 s) |
600 s | No. 4 (150 s) |
750 s | No. 5 (150 s) |
900 s | No. 6 (150 s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.K.; Song, W.S.; Hong, S.J. In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process. Coatings 2023, 13, 559. https://doi.org/10.3390/coatings13030559
Park HK, Song WS, Hong SJ. In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process. Coatings. 2023; 13(3):559. https://doi.org/10.3390/coatings13030559
Chicago/Turabian StylePark, Hyun Keun, Wan Soo Song, and Sang Jeen Hong. 2023. "In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process" Coatings 13, no. 3: 559. https://doi.org/10.3390/coatings13030559
APA StylePark, H. K., Song, W. S., & Hong, S. J. (2023). In Situ Plasma Impedance Monitoring of the Oxide Layer PECVD Process. Coatings, 13(3), 559. https://doi.org/10.3390/coatings13030559