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Abstract: The use of plasma in semiconductor fabrication processes has been continuously increasing
because of the miniaturization of semiconductor device structure, and plasma enhanced chemical
vapor deposition (PECVD) has become a major process in thin film deposition. As a consequence,
plasma diagnosis has become crucial during the deposition process, but the lack of in situ plasma
monitoring sensors requires further development of existing in situ sensors, such as the Langmuir
probe and optical emission spectroscopy (OES), for in situ plasma process monitoring. In this study,
electrically equivalent circuit models of the PECVD chamber functioned as a plasma impedance
model with respect to the deposited thin film thickness while plasma impedance was measured using
a radio frequency voltage–current (VI) probe. We observed a significant correlation between the
deposited film thickness of the chamber wall and the measured impedance of the PECVD chamber
cleaning application in the semiconductor industry.

Keywords: PECVD; VI probe; sheath thickness; plasma impedance; wall condition monitoring

1. Introduction

Recently, the use of plasma equipment has increased due to the miniaturization of
semiconductor devices, such as NAND flash; particularly, the development of plasma
deposition equipment has increased, and plasma diagnosis has become necessary in the
deposition of oxide or nitride films [1]. Additionally, in this process, the control of factors
such as film deposition thickness and uniformity are important [2]. Therefore, many sensors
to diagnose plasma have been studied.

Sensors for diagnosing plasma are primarily divided into electrical and optical sensors.
Electrical diagnostic sensors mainly include the single Langmuir probe (SLP) [3,4], voltage–
current (VI) probe [5,6], cut-off probe [7,8], floating probe [9,10], curling probe [11,12],
and hairpin probe [13,14]. In addition, optical diagnostic sensors include optical emission
spectroscopy (OES) [15–19].

The SLP is an intuitive sensor that can directly measure the plasma parameters of
electron density (ne) and electron temperature (Te). Plasma potential (Vp) and the electron
energy distribution function (EEDF) can be simply calculated using plasma parameters.
However, it is unfortunate that inserting any undesired object into the plasma chamber
(other than the wafer) during the process is not permitted in the semiconductor manufac-
turing environment due to plasma perturbation. The Langmuir probe, crucially, suffers
from material deposition on the probe tip-end [20–22].

OES is a well-known non-invasive in situ plasma monitoring sensor, primarily used
as an end point detector [23–25]. The benefits of OES are its non-invasiveness to the plasma
during the process and convenient installation; however, its analysis can be complex. It
also suffers from data drift over time due to viewport contamination [26–28]. Recently, nu-
merous efforts have been made to find plasma parameters based on the phenomenological
approach; however, the process of defining the collisional radiative model for mixed gas in
a higher pressure region (>1 Torr) is complicated when a collision needs to be considered.
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It is also more complicated for molecular gases such as N2 than it is for rare gases such as
Ar, for which many cases of dielectric deposition involve plasma-enhanced chemical vapor
deposition (PECVD). Plasma parameters are generally calculated through the vibration
level of N2 [29]. However, this may be more inaccurate than probe measurements because
it only considers some chemical reactions in the plasma. Electrical sensors have also been
investigated regarding plasma monitoring and analysis to alleviate concerns. However, the
insertion type of electrical sensor is vulnerable to erosion/deposition of its electrical sensor.
Some efforts to alleviate these concerns have also been investigated [30]. However, they
are still invasive and change the properties of the plasma. Given this, much-used plasma
diagnostic tools cannot be applied to the plasma deposition process due to deposition of
the measurement site.

Plasma is diagnosed using a VI probe, a type of electrical sensor, to solve the problem of
plasma characteristics change. Plasma impedance monitoring using a VI probe is another
non-invasive monitoring sensor for the plasma process/equipment diagnosis. Unlike
OES, a VI probe is an electrical diagnostic sensor that measures voltage and current to
calculate their phases from the plasma equipment’s radio frequency (RF) network. Plasma
generated by the applied RF power can be electrically modeled using an equivalent circuit
model [31–35]. Still, the impedance of plasma should be tightly controlled by the automated
impedance matching unit, known as the RF impedance matcher. Impedance matching
determines the amount of reflected power, which affects the deposited film thickness
and thin film quality of PECVD [36]. During PECVD, one of the key process quality
measurements is the deposited film’s thickness. A previous study revealed the relationship
between plasma reactance and deposition thickness employing a VI probe.

Motivated by the effect of plasma impedance change on the deposited thin film’s
thickness, we extended the use of the VI probe to investigate the deposited film’s thickness
on a wafer, the showerhead and the chamber wall. We initially performed 30 consecutive
runs to understand the plasma reactance variability using a simple equivalent circuit
model as a preliminary study. As shown in Figure 1, the simple conversion of plasma
reactance holds excellent variability. The apparent results cannot be accepted as an in situ
deposition monitoring of the thin film’s thickness. To investigate the relationship between
the deposited film’s thickness and plasma reactance, the plasma sheath model and plasma
equivalent circuit model were considered with respect to the RF matching network of the
PECVD equipment. Established hypotheses were verified using a silicon dioxide (SiO2)
deposition experiment on 6-inch wafers; we found that plasma reactance is proportional to
the deposited film’s thickness.
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Figure 1. Repeatability test data for plasma reactance acquired from the VI probe over 30 consecutive
runs.
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Section 2 presents the Child–Langmuir law and an interpretation model for non-
invasive plasma diagnosis. Section 3 describes the experimental conditions and equipment.
Section 4 describes the deposition thickness and impedance measured through oxide
deposition experiments using 6-inch PECVD equipment, followed by the conclusion in
Section 5.

2. Method
2.1. Child–Langmuir Law

In general, the sheath thickness is thicker than the film thickness, so the sheath thick-
ness has a significant effect on reactance measurement. Therefore, it is necessary to define
the sheath for deposited film thickness calculations. Hence, this study assumed the Child–
Langmuir sheath. Plasmas are also generally classified as collision-less at low pressures and
collisional at high pressures. The collision model of plasma is used above the intermediate
pressure region. Therefore, it is necessary to modify the sheath model [37,38] to define
the sheath thickness. Generally, the sheath thickness is used as the collision-less Child–
Langmuir law [39]. For these reasons, a modified Child–Langmuir sheath was applied to
the collisional sheath. This collision-less Child–Langmuir model is divided into constants
of ion mobility and ion mean free path.

Collision-less Child–Langmuir law:

sm =
2
3
(ε0)

1/2(
2e
m
)

1/4 Vsh
3/4

Ji
1/2

(1)

Therefore, the collisional sheath thickness can be expressed as in [34] (p. 147).

• Voltage drive

Collisional Child–Langmuir law (constant ion mean free path):

sm = 1.682/5(ε0)
2/5(

2eλi

m
)

1/5 Vsh
3/5

Ji
2/5

(2)

Collisional Child–Langmuir law (constant ion mobility):

sm = (
9
8
)

1/3
(ε0µi)

1/3 Vsh
2/3

Ji
1/3

(3)

Vsh = (
Ks

Kcap
)

sm I0

ωε0 A
(4)

Ji = ehln0uB (5)

Here, sm is the sheath thickness, ε0 is the permittivity of vacuum, m is the ion mass,
e is the electric charge, Ji is the average ion current density, Vsh is the average sheath
voltage, µi is the mobility of ions, I0 is the current amplitude, A is the area, Ks and Kcap
are constants, hl is the edge–center density ratio, n0 is the plasma bulk density, and uB is
the Bohm velocity. However, as in this study, the average sheath voltage and average ion
current density cannot be measured directly using the VI probe. Therefore, the current
drive is converted to the current density as follows.

• Current drive

Substituting Equations (4) and (5) into voltage drive Equations (2) and (3),
Collisional Child–Langmuir law (constant ion mean free path):

sm = 0.88(
λi

ε0kTeω3ehl
2 A3 )

1/2 I0
3/2

n0
(6)
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Collisional Child–Langmuir law (constant ion mobility):

sm = 0.423µi
1

ehln0uBε0
(

I0

ωA
)

2
(7)

Here, λi is the ionic mean free path, Te is the electron temperature, and k is the
Boltzmann constant.

2.2. Plasma Equivalent Circuit

Next, we define the plasma using the plasma equivalent circuit model required for
diagnosis using the VI probe. Plasma equivalent circuits have been studied under various
conditions [34,35] (p. 142, p. 399). Therefore, a suitable equivalent circuit is considered for
intermediate pressure as 1 Torr. In Figure 2, the plasma equivalent circuit can be divided
mainly into sheath and bulk. Additionally, the deposition capacitance is related to the
deposited film’s thickness. Each element is as follows.

Rohm = 1.14
√

sm

λi
hlmνm(l − 2sm)

(
ω

eI0

)3/2

(Aε0smkTe)
1/2 (8)

Lp = νmRohm (9)

Rstoc = (0.8mkTe)
1/2
(
ωsm

eI0

)
(10)

Ri = 0.9
√

sm

λi

(
esm I0

mε03 A3ω5

)
(11)

Rohm,sh = 0.155mνmsm

(
ωsm

eI0

)
(12)

Cs = 0.751
ε0 A
sm

(13)

where sm is sheath thickness, λi is ion mean free path, hl is bulk-sheath edge density ratio,
m is ion mass, νm is electron-neutral collision frequency, ω is RF angular frequency, I0
is current amplitude, A is the area (electrode), ε0 is the permittivity of vacuum, k is the
Boltzmann constant, Te is the electron temperature, and l is the bulk length.
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The meaning of Equations (8)–(13) can be explained as follows. Equation (8) Rohm is
the ohmic heating resistance (heating due to electron and neutron collisions). Equation (9)
Lp is the plasma inductance (electron inertia). Equation (10) Rstoc is the stochastic heating
resistance (electron and electric field repulsion). Equation (11) Ri is the ion resistance
(power loss due to ions being accelerated in each sheath). Equation (12) Rohm,sh is the
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sheath ohmic resistance, and Equation (13) Cs is the sheath capacitance. At high pressure,
the sheath thickness decreases, and the bulk length becomes relatively long [40]. Therefore,
the plasma capacitance C0 = ε0

l
A considered in the reference can be neglected.

3. Experimental Apparatus

As shown in Figure 3, the experiment was conducted in 6-inch capacitively coupled
plasma (CCP-type) PECVD equipment, a mini-plasma station manufactured by Plasmart,
Daejeon, Republic of Korea. A matcher from a 13.56 MHz RF generator supplied power to
the chamber. In addition, Z-scan, manufactured by Advanced Energy Industries, Denver,
CO, USA, was installed between the matcher and the electrode. Z-scan measured voltage,
current, and phase differences. Therefore, resistance and reactance could be calculated. The
sensor stored law data every 0.103 s (the device’s specification). Due to the impedance
matching problem, the plasma did not stabilize for approximately 30 s; therefore data after
30 s was used. In addition, the chuck and wafer were heated to 200 ◦C through the heater
located on the lower chuck for the dielectric deposition.
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Figure 3. (a) Experimental schematic and (b) simplified impedance model.

The experiment was designed around the phenomenon of changing deposition thick-
ness (ddep) with time, as shown in Figure 3a,b, which affects capacitance (Cdep). The
material being deposited, in particular, focuses on SiO2. In Figure 3a, Cdep was divided into
two factors, Cdep,wall (deposition capacitance of the wall and showerhead) and Cdep,wafer
(deposition capacitance on the wafer), which is discussed in more detail later.

The SiO2 film was deposited using SiH4 and N2O for oxide film deposition. In addition,
chamber cleaning was performed by injecting NF3 and a small amount of Ar. The standard
recipe is shown in Table 1. In addition, the cleaning recipe shown in Table 1 was used to
remove deposits or particles on the walls. The experiment was conducted to minimize
sheath thickness variation by increasing the deposition time using the same recipe.

Table 1. Experiment condition.

Condition Deposition Cleaning

SiH4 (sccm) 9 -
NF3 (sccm) - 40
N2O (sccm) 25 -
Ar (sccm) - 5

Pressure (mTorr) 500 1000
Power (W) 300 300
Temp (◦C) 200 200
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As shown in Table 2, each experiment that used the above recipe (Table 1) was clas-
sified as Experiment 1 and Experiment 2. In Experiment 1, deposition was performed
while increasing the time by 150 s from 150 to 900 s. In addition, in Experiment 2, 150 s
reproducibility experiments were performed from No. 1 to 6. In each case, a separate
experiment was conducted with one cleaning and without (w/o) cleaning.

Table 2. Experiments 1 (time increment) and 2 (150 s reproducibility).

Experiment 1 (Time Increment) Experiment 2 (150 s Reproducibility)

150 s No. 1 (150 s)
300 s No. 2 (150 s)
450 s No. 3 (150 s)
600 s No. 4 (150 s)
750 s No. 5 (150 s)
900 s No. 6 (150 s)

In addition, the wafer was replaced after opening the chamber between each process.
After the deposition, the thin film’s thickness was measured using a reflectometer, ST 2000,
manufactured by NRP, Daejeon, Republic of Korea.

4. Results and Discussion
4.1. Assumptions

In this study, the following were assumed to monitor the impedance of the deposition
thickness.

• We used the Child–Langmuir law (intermediate pressure), where λi << λDe.
• As only fluctuations due to deposition were considered, the impedance of the chamber

itself was not considered.
• There was no change in plasma parameters during the process. Hence, there was no

change in sheath thickness.

4.2. Analysis Model

The model in Figure 2 was modified to diagnose film thickness change using VI probe
measurements.

Rtotal + jωXtotal = Rohm + 2Rohm,sh + 2Ri + jω
(

Xs + Xp + Xdep

)
(14)

Here, Rtotal is total resistance, Xtotal is total reactance (measured using Z-scan), Xs
is sheath resistance (associate sheath thickness), Xp is plasma bulk reactance, and Xdep
is deposition reactance. As shown in Figure 4, the reactance can be considered a series
connection of parallel bulk capacitance, sheath capacitance, and deposition capacitance. In
this case, the bulk length was greater than the sheath thickness. Therefore, bulk capacitance
was neglected as it had a negligible effect on reactance. In addition, the reactance of the
plasma was capacitive. Thus, the influence of the two factors, Xs and Xdep, was large.
However, the sheath thickness (approximately 10−2 m) was thicker than the deposition
thickness (approximately 10−10 m). Therefore, the effect of the sheath thickness on the
reactance was dominant. The sheath thickness could not be measured non-invasively
within the scope of this study. Consequently, it was necessary to assume that there was no
change in sheath thickness.
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4.3. Constant Sheath Thickness

Previously, a constant sheath thickness was assumed to minimize the effect of the
sheath thickness. However, the actual impact on reactance was large. Therefore, the sheath
thickness is

sm = 0.88
(

λi

ε0kTeω3ehl
2 A3

)1/2 I0
3/2

n0
(15)

Rohm = 1.14
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sm

λi
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Summarizing Equations (15) and (16) for the sheath thickness,

sm ∝ (λi)
1/2 I0

3/2 (17)

sm ∝ Rohm(λi)
1/2 I0

3/2 (18)

∆ sm ∝ Rohm I0
3/2 (19)

Equations (17) and (18) show that the sheath thickness is composed of current and
resistance. Additionally, λi is proportional to p

1
2 . However, as there was no recipe change

(power, pressure, and gas flow), we assumed that there was no change. So, ∆ sm is expressed
by Equation (19). As shown in Figure 5, it can be confirmed that the sheath thickness was
constant during the process.
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4.4. Reactance Reproducibility Problem

Figure 6 analyzes the problem of reactance reproducibility when measured using the
VI probe. In the case of one cleaning, a reactance change of approximately ∆ 0.5 Ω occurred.
However, a considerable change of approximately ∆ 1.5–3.5 Ω occurred when cleaning was
not performed. These changes in the reactance were due to moisture absorption by the
oxide film when the chamber was opened [41] and oxide deposition on the wall or inside
the chamber [15,26].
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4.5. Change in Reactance (Considering Only the Deposition on the Wafer)

The total reactance in the equivalent circuit in Figure 4 can be expressed as Equation (20).

jωXtotal = jω
(

Xs + Xp + Xdep

)
(20)

Components of the reactance consist of sheath reactance, plasma reactance (induc-
tance), and deposition reactance. As the sheath thickness was said to be constant, the sheath
reactance could be ignored. The inductance component was also ignored, as the reactance
had a negative value in the experiment. Therefore, the total reactance was determined by
the deposition reactance.

jωXtotal = −jω
( ddep

ω2ε0 A

)
(21)

Xtotal ∝ −ddep (22)

∆ Xtotal ∝ −∆ ddep (23)
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As shown in Equations (21)–(23), the deposition thickness is proportional to the total
reactance. However, as shown in Figure 6b, it was confirmed that the reactance decreases
exponentially over time. Therefore, the deposition thickness should increase exponentially.
To confirm this, results were compared with the thin film’s thickness measured using a

reflectometer. ddep is the deposition thickness on the wafer (Cdep = ε0
ddep

A ).
As shown in Figure 7, it was confirmed that the deposited film’s thickness was close

to linear rather than an exponential increase with time. Therefore, a model with additional
sources causing reactance change within the chamber with time is required.
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Figure 8 show that deposits were not deposited only on the wafer. Therefore, the
formula was modified and analyzed based on the deposition on the chamber wall and the
showerhead, and the above equivalent circuit was modified.
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4.6. Change in Reactance (Considering Wall and Showerhead Deposition)

Based on the preceding phenomena, deposition on walls or the showerhead should be
considered. Therefore, the above equivalent circuit was modified. As shown in Figure 9,
Cdep,wall was added in parallel to Cdep to account for the deposition of the wall and the
showerhead.

Cdep = ε0

(
Adep,wallddep,wafer + Adep,waferddep,wall

ddep,wallddep,wafer

)
(24)
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Adep,wall is the deposition area on the wall, Adep,wafer is the deposition area on the
wafer, ddep,wall is the deposition thickness on the wall, and ddep,wafer is the deposition thick-
ness on the wafer. Cdep can be obtained by calculating the parallel capacitance as follows.

jωXtotal = −jω
ddep,waferddep,wall

ω2ε0

(
Adep,wallddep,wafer

) (25)

Substituting Equation (24) into the total reactance can be expressed as Equation (25).
Additionally, usually Adep,wall > Adep,wafer, and ddep,wafer >> ddep,wall. Therefore, if we
ignore the terms of ddep,wafer,

jωXtotal = −jω
ddep,wall

ω2ε0 Adep,wall
(26)

∆ jωXtotal = −∆ jωddep,wall (27)

Asω, ε0, and Adep,wall remain unchanged, Equation (26) is changed to Equation (27), as
follows; the total reactance is composed of elements related to the wall and the showerhead.

But if Adep,wall > Adep,wafer, ddep,wafer (> or ≈) ddep,wall, so

Cdep = ε0

(
Adep, wallddep,wafer + Adep,waferddep,wall

ddep,wallddep,wafer

)
(28)

It is expressed as in Equation (28). Also, if expressed as total reactance,

jωXtotal = −jω
ddep,wallddep,wafer

ω2ε0

(
Adep,wallddep,wafer + Adep,waferddep,wall

) (29)

∆ jωXtotal = ∆ jω
−ddep,wallddep,wafer(

Adep,wallddep,wafer + Adep,waferddep,wall

) (30)

In this case, the deposition term on the wafer cannot be ignored. Therefore, we
compared cases of one cleaning and w/o cleaning.

As shown in Figure 10a, the change in reactance in Experiment 1 (w/o cleaning) was
slightly different. This means that in Experiment 1 (w/o cleaning), the correlation with
the deposition thickness on the wafer was low. Additionally, as shown in Figure 10b,
the correlation was usually high in Experiment 1 (one cleaning). The result of increased
correlation of thin film deposited on the wafer supports our observation, and can be
inferred by Equations (27) and (30). For one cleaning, ddep,wafer (> or ≈) ddep,wall, as shown
in Equation (30), reactance includes the deposition thickness of the wafer. For w/o cleaning,
ddep,wafer >> ddep,wall, as in Equation (27), the reactance is expressed only as a factor for
the wall.
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Figure 10. Experiment 1: comparison of change in reactance and film thickness (a) without chamber
cleaning and (b) with one chamber cleaning.

Figure 11a is the result of comparing the changes in the reactance in Experiment 2. The
processing time was relatively short, at 150 s. Experiment 2 had a shorter deposition time
and less chamber contamination than Experiment 1. Therefore, the correlation was high in
the case of Experiment 2 (one cleaning) because there were few chamber contaminants. In
Figure 11b, the correlations are shown to have been low for Experiment 2 (w/o cleaning),
as expected.
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5. Conclusions

The deposition thickness of the oxide film was monitored in situ during the deposition
using Z-scan in a CCP-type 6-inch PECVD. The experiment was conducted by changing the
deposition time without changing the recipe for a constant sheath thickness. In addition,
Experiment 1: time split test and Experiment 2: 150 s reproducibility tests were conducted.
The effect of one cleaning or w/o cleaning was also observed in each experiment. This
study assumed a constant sheath thickness in the analysis model.

The sheath thickness calculated through the circuit model and the collision Child–
Langmuir model was constant for the same process. In addition, it was confirmed that the
reproducibility of the reactance was slightly low. However, this was due to the moisture
absorption by the chamber opening and deposition on the wall and the showerhead. In



Coatings 2023, 13, 559 12 of 13

addition, the change in the deposition thickness on the wafer was exponential, but the
change in reactance was linear. Therefore, other factors that increase reactance with time
in the chamber were considered. The model was modified by adding deposition effects
on the chamber walls or the showerhead. When the modified circuit model was analyzed,
the reactance was greatly affected by the deposition of the wall and the showerhead.
To prove this, one cleaning and w/o cleaning were analyzed. In general, one cleaning
showed a higher correlation than w/o cleaning. Therefore, the conditions of the wall
and the showerhead were important for impedance monitoring. As a result, the effect of
reactance change in the chamber was analyzed, and limited deposition thickness monitoring
was possible. Through this study, it is predicted that wall and showerhead deposition
monitoring will be possible in a process using a long deposition time.
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