Laser Melt Infiltration of UHMWPE into the Binary Coatings of Strontium Apatite and Colloidal Silica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Strontium Apatites
2.2. Preparation of Coating Solutions
2.3. Coatings on UHMWPE Disks and Laser Bonding by CO2 Laser Irradiation
2.4. Microscopy
2.5. Leaching of Apatite and Silica Coatings from the UHMWPE Disks
2.6. Biomimetic Deposition of Calcium Phosphate from Simulated Body Fluid
2.7. Determination of the Concentrations of Ions Eluted from the Coatings into Water
3. Results
3.1. Laser Bonding of SrZnSiP on UHMWPE
3.2. Laser Bonding of Colloidal Silica on UHMWPE
3.3. Laser Bonding of Binary Coatings of SrZnSiP and SiO2 on UHMWPE
3.4. Biomimetic Deposition of Calcium Phosphate from Simulated Body Fluid
3.5. Dissolution Behavior of Apatite and SiO2 Coatings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patil, N.A.; Njuguna, J.; Kandasubramanian, B. UHMWPE for biomedical applications: Performance; functionalization. Polym. E 2020, 125, 109529. [Google Scholar] [CrossRef]
- Chen, J.; Gao, G.; Fu, J. Clinical Applications of UHMWPE in Joint Implants. In UHMWPE Biomaterials for Joint Implants; Fu, J., Jin, Z.M., Wang, J.W., Eds.; Springer: Singapore, 2019; Volume 13. [Google Scholar] [CrossRef]
- Matsen, F.A.; Clinton, J.; Lynch, J.; Bertelsen, A.; Richardson, M.L. Glenoid component failure in total shoulder arthroplasty. J. Bone Joint Surg. Am. 2008, 90, 885–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauss, E.J.; Roche, C.; Flurin, P.H.; Wright, T.; Zuckerman, J.D. The glenoid in shoulder arthroplasty. J. Shoulder Elbow Surg. 2009, 18, 819–833. [Google Scholar] [CrossRef] [PubMed]
- Poulsson, A.H.C.; Mitchell, S.A.; Davidson, M.R.; Johnstone, A.J.; Emmison, N.; Bradley, R.H. Attachment of human primary osteoblast cells to modified polyethylene surfaces. Langmuir 2009, 25, 3718–3727. [Google Scholar] [CrossRef]
- Nejatbakhsh, S.; Anagri, A.; Omran, A.V.; Pulpytel, J.; Bazin, C.; Ullah, M.; Mirshahi, M.; Rezaie, H.; Javadpour, J.; Khonsari, F.A. Improvement of the bioactivity of UHMWPE by two different atmospheric plasma treatments. Plasma Chem. Plasma Proc. 2021, 41, 245–264. [Google Scholar] [CrossRef]
- Vrekhem, S.V.; Vloebergh, K.; Asadian, M.; Vercruysse, C.; Declercq, H.; Tongel, A.V.; Wilde, L.D.; Geyter, N.D.; Morent, R. Improving the surface properties of an UHMWPE shoulder implant with an atmospheric pressure plasma jet. Sci. Rep. 2018, 8, 4720. [Google Scholar] [CrossRef] [Green Version]
- More, S.E.; Dave, J.R.; Makar, P.K.; Bhoraskar, S.V.; Premkumar, G.B.; Tomar, V.L. Mathe, Surface modification of UHMWPE using ECR plasma for osteoblast and osteoclast differentiation. Appl. Surf. Sci. 2020, 506, 144665. [Google Scholar] [CrossRef]
- Reising, A.; Yao, C.; Storey, D.; Webster, T.J. Greater osteoblast long-term functions on ionic plasma deposited nanostructured orthopedic implant coatings. J. Biomed. Mater. Res. Part A 2007, 1, 78–83. [Google Scholar] [CrossRef]
- Kurella, A.; Dahotre, N.B. Dahotre, Surface modification for bioimplants: The role of laser surface engineering. J. Biomater. Appl. 2005, 20, 5–50. [Google Scholar] [CrossRef]
- Riveiro, A.; Maçon, A.L.; del Val, R.; Comesaña, J.; Pou, J. Laser surface texturing of polymers for biomedical applications. Front. Phys. Sec. Optics. Photonics. 2018, 6, 16. [Google Scholar] [CrossRef]
- Neděla, O.; Slepička, P.; Švorčík, V. Surface modification of polymer substrates for biomedical applications. Materials 2017, 10, 1115. [Google Scholar] [CrossRef]
- Keselowsky, B.G.; Collard, D.M.; García, A.J. Surface chemistry modulates fibronectin conformation; directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. Part A 2003, 66, 247–259. [Google Scholar] [CrossRef]
- Bacakova, L.; Filova, E.; Parizek, M.; Ruml, T.; Svorcik, V. Modulation of cell adhesion; proliferation; differentiation on materials de-signed for body implants. Biotechnol. Adv. 2011, 29, 739–767. [Google Scholar] [CrossRef]
- Lim, J.Y.; Dreiss, A.D.; Zhou, Z.; Hansen, J.C.; Siedlecki, A.C.; Hengstebeck, R.W.; Cheng, J.; Winograd, N.; Donahue, H.J. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials 2007, 28, 1787–1797. [Google Scholar] [CrossRef]
- Keshavarz, M.; Tan, B.; Venkatakrishnan, K. Functionalized stress component onto bio-template as a pathway of cytocompatibility. Sci. Rep. 2016, 6, 35425. [Google Scholar] [CrossRef] [Green Version]
- Dadsetan, M.; Mirzadeh, H.; Sharifi-Sanjani, N.; Daliri, M. Cell behavior on laser surface-modified polyethylene terephthalate in vitro. J. Biomed. Mater. Res. 2001, 57, 183–189. [Google Scholar] [CrossRef]
- Luo, F.; Mao, R.; Huang, Y.; Wang, L.; Lai, Y.; Zhu, X.; Fan, Y.; Wang, K.; Zhang, X. Femto-second laser optimization of PEEK: Efficient bioactivity achieved by synergistic surface chemistry and structures. J. Mater. Chem. B 2022, 10, 7014–7029. [Google Scholar] [CrossRef]
- Torrisi, L.; Gammino, S.; Mezzasalma, A.M.; Visco, A.; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Krása, J.; Láska, L.; et al. Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser. Appl. Surf. Sci. 2004, 1, 164–174. [Google Scholar] [CrossRef]
- Khalil, Y.; Hopkinson, N.; Kowalski, A.; Fairclough, J.P.A.; Materials, C.U. Characterization of UHMWPE polymer powder for laser sintering. Materials 2019, 12, 3496. [Google Scholar] [CrossRef] [Green Version]
- Goodridge, R.D.; Hague, R.J.; Tuck, C.J. An empirical study into laser sintering of ultra-high molecular weight polyethylene (UHMWPE). J. Mater. Process. Technol. 2010, 210, 72–80. [Google Scholar] [CrossRef]
- Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications. Appl. Surf. Sci. 2014, 302, 236–242. [Google Scholar] [CrossRef]
- Macuvele, D.L.P.; Nones, J.; Matsinhe, J.V.; Lima, M.M.; Soares, C.; Fiori, M.A.; Riella, H.G. Advances in ultrahigh molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Mater. Sci. Eng. C 2017, 76, 1248–1262. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Leng, Y.; Gao, P. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications. Biomaterials 2005, 26, 3471–3478. [Google Scholar] [CrossRef] [PubMed]
- Senatov, F.S.; Kopylov, A.N.; Anisimova, N.Y.; Kiselevsky, M.V.; Maksimkin, A.V. UHMWPE-based nanocomposite as a material for damaged cartilage replacement. Mater. Sci. Eng. C 2015, 48, 566–571. [Google Scholar] [CrossRef]
- Ortiz-Hernández, R.; Ulloa-Castillo, N.A.; Diabb-Zavala, J.M.; Estrada-De La Vega, A.; Islas-Urbano, J.; Villela-Castrejón, J.; Elías-Zúñiga, A. Advances in the Processing of UHMWPE-TiO2 to Manufacture Medical Prostheses via SPIF. Polymers 2019, 11, 2022. [Google Scholar] [CrossRef] [Green Version]
- Puértolas, J.A.; Kurtz, S.M. Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. J. Mech. Behav. Biomed. Mater. 2014, 39, 129–145. [Google Scholar] [CrossRef]
- Noyama, Y.; Miura, T.; Ishimoto, T.; Itaya, T.; Niinomi, M.; Nakano, T. Bone loss and reduced bone quality of the human femur after total hip arthroplasty under stress-shielding effects by titanium-based implant. Mater. Trans. 2012, 53, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, A.; Kawasaki, S.; Akahane, M.; Tanaka, Y. Fabrication of bioactive poly (ether ether ketone) by laser melt infiltration of poly(ether ether ketone) inside the strontium apatite coatings. Mater. Chem. Phys. 2022, 288, 126352. [Google Scholar] [CrossRef]
- Furukawa, A. The formation of strontium apatites through alkaline hydrolysis of strontium hydrogen phosphate and their crystallographic characterization. Ceram. Int. 2021, 47, 21848–21861. [Google Scholar] [CrossRef]
- Egawa, T.; Inagaki, Y.; Akahane, M.; Furukawa, A.; Inoue, K.; Ogawa, M. Silicate-substituted strontium apatite nanocoating improves osteogenesis around artificial ligament. BMC Musculoskelet. Disord. 2019, 20, 396. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, H.; Inagaki, Y.; Furukawa, A.; Kira, T.; Kawasaki, S.; Uchihara, Y.; Akahane, M.; Tanaka, Y. Silicate/zinc-substituted strontium apatite coating improves the osteoinductive properties of β-tricalcium phosphate bone graft substitute. BMC Musculoskelet. Disord. 2021, 22, 673. [Google Scholar] [CrossRef]
- Kawasaki, S.; Inagaki, Y.; Akahane, M.; Furukawa, A.; Shigematsu, H.; Tanaka, Y. In vitro osteogenesis of rat bone marrow mesenchymal cells on PEEK disks with heat-fixed apatite by CO2 laser bonding. BMC Musculoskelet. Disord. 2020, 21, 692. [Google Scholar] [CrossRef]
- Beck, G.R.; Ha, S.-W.; Camalier, C.E.; Yamaguchi, M.; Li, Y.; Lee, J.-K.; Weitzmann, M.N. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo, Nanomedicine: Nanotechnology. Biol. Med. 2012, 8, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Anitha, A.; Menon, D.; Sivanarayanan, T.B.; Koyakutty, M.; Mohan, C.C.; Nair, S.V.; Nair, M.B. Bioinspired composite matrix containing hydroxyapatite-silica core-shell nanorods for bone tissue engineering. ACS Appl. Mater. Interfaces 2017, 9, 26707–26718. [Google Scholar] [CrossRef]
- Latifi, S.M.; Fathi, M.H.; Golozar, M.A. Preparation and characterisation of bioactive hydroxyapatite–silica composite nanopowders via sol–gel method for medical applications. Adv. Appl. Ceram. 2011, 110, 8–14. [Google Scholar] [CrossRef]
- Garibay-Alvarado, J.A.; Herrera-Ríos, E.B.; Vargas-Requena, C.L.; de Jesús Ruíz-Baltazar, Á.; Reyes-López, S.Y. Cell behavior on silica-hydroxyapatite coaxial composite. PLoS ONE 2021, 16, e0246256. [Google Scholar] [CrossRef]
- Bogya, E.S.; Károly, Z.; Barabás, R. Atmospheric plasma sprayed silica–hydroxyapatite coatings on magnesium alloy substrates. Ceram. Int. 2015, 41, 6005–6012. [Google Scholar] [CrossRef]
- Grandfield, K.; Zhitomirsky, I. Electrophoretic deposition of composite hydroxyapatite–silica–chitosan coatings. Mater. Charact. 2008, 59, 61–67. [Google Scholar] [CrossRef]
- Resende, P.M.; Gutiérrez-Fernández, E.; Aguirre, M.H.; Nogales, A.; Martín-González, M. Polyethylene three-dimensional nano-networks: How lateral chains affect metamaterial formation. Polymer 2021, 212, 123145. [Google Scholar] [CrossRef]
- de Jongh, P.E.; Eggenhuisen, T.M. Melt infiltration: An emerging technique for the preparation of novel functional nanostructured materials. Adv. Mater. 2013, 25, 6672–6690. [Google Scholar] [CrossRef]
- Busse, W.F.; Longworth, R. Effect of molecular weight distribution and branching on the viscosity of polyethylene melts. J. Polym. Sci. 1962, 58, 49–69. [Google Scholar] [CrossRef]
- Johner, A.; Shin, K.; Obukhov, S. Nanofluidity of a polymer melt: Breakdown of Poiseuille’s flow model. EPL 2010, 91, 38002. [Google Scholar] [CrossRef]
- Yao, Y.; Butt, H.J.; Floudas, G.; Zhou, J.; Doi, M. Theory on capillary filling of polymer melts in nanopores. Macromol. Rapid Commun. 2018, 39, 1800087. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Obukhov, S.; Chen, J.T.; Huh, J.; Hwang, Y.; Mok, S.; Dobriyal, P.; Thiyagarajan, P.; Russell, T.P. Enhanced mobility of confined polymers. Nat. Mater. 2007, 6, 961–965. [Google Scholar] [CrossRef]
- Yung, K.L.; Kong, J.; Xu, Y. Studies on flow behaviors of polymer melts in nanochannels by wetting actions. Polymer 2007, 48, 7645–7652. [Google Scholar] [CrossRef]
- Zhang, M.; Dobriyal, P.; Chen, J.-T.; Russell, T.P.; Olmo, J.; Merry, A. Wetting Transition in Cylindrical Alumina Nanopores with Polymer Melts. Nano Lett. 2006, 6, 1075–1079. [Google Scholar] [CrossRef]
- Wang, Y.N.; Jiang, S.; Pan, H.; Tang, R. Less is more: Silicate in the crystallization of hydroxyapatite in simulated body fluids. Cryst. Eng. Comm. 2016, 18, 379–383. [Google Scholar] [CrossRef]
- Popa, A.C.; Stan, G.E.; Husanu, M.A.; Mercioniu, I.; Santos, L.F.; Fernandes, H.R.; Ferreira, J.M.F. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry. Int. J. Nanomed. 2017, 12, 683. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.J.; Thomas, J.J.; Taylor, H.F.W.; Jennings, H.M. Solubility and structure of calcium silicate hydrate. Cem. Concr. Res. 2004, 34, 1499–1519. [Google Scholar] [CrossRef] [Green Version]
- Kawano, K.; Shire, T.; O’Sullivan, C. Coupled particle-fluid simulations of the initiation of suffusion. Soils Found. 2018, 58, 972–985. [Google Scholar] [CrossRef]
- Ng, T.T.; Zhou, W.; Ma, G.; Chang, X.L. Macroscopic and microscopic behaviors of binary mixtures of different particle shapes and particle sizes. Int. J. Solids Struct. 2018, 135, 74–84. [Google Scholar] [CrossRef]
- Davis, K.E.; Russel, W.B.; Glantschnig, W.J. Disorder-to-order transition in settling suspensions of colloidal silica: X-ray measurements. Science 1989, 245, 507–510. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furukawa, A.; Tanaka, Y. Laser Melt Infiltration of UHMWPE into the Binary Coatings of Strontium Apatite and Colloidal Silica. Coatings 2023, 13, 580. https://doi.org/10.3390/coatings13030580
Furukawa A, Tanaka Y. Laser Melt Infiltration of UHMWPE into the Binary Coatings of Strontium Apatite and Colloidal Silica. Coatings. 2023; 13(3):580. https://doi.org/10.3390/coatings13030580
Chicago/Turabian StyleFurukawa, Akira, and Yasuhito Tanaka. 2023. "Laser Melt Infiltration of UHMWPE into the Binary Coatings of Strontium Apatite and Colloidal Silica" Coatings 13, no. 3: 580. https://doi.org/10.3390/coatings13030580
APA StyleFurukawa, A., & Tanaka, Y. (2023). Laser Melt Infiltration of UHMWPE into the Binary Coatings of Strontium Apatite and Colloidal Silica. Coatings, 13(3), 580. https://doi.org/10.3390/coatings13030580