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Abstract: The radio frequency (RF) reactive sputtering technique has been used to prepare Zn1−xNixO
thin films with 0 ≤ x ≤ 0.08. Composite targets were obtained by mixing and pressing NiO and
ZnO powders. Sapphire, quartz and glass were used as substrates. X-ray diffraction analysis of
Ni-doped ZnO films indicates that all samples are crystalised in a hexagonal wurtzite structure
with a preferred orientation along the (002) plane. Any secondary phase, corresponding to metallic
nickel clusters or nickel oxides was not observed. High-resolution transmission electron microscopy
(HR-TEM) image observed for Zn1−xNixO thin film shows a strong preferred orientation (texture)
of crystalline columns in the direction perpendicular to the substrate surface. Different surface
morphology was revealed in AFM images depending on the film composition and growth condition.
Optical absorption spectra suggest the substitution of Zn2+ ions in the ZnO lattice by Ni2+ ions.
The energy bandgap value was also found a complex dependence with an increase in Ni dopant
concentration. In photoluminescence spectra, two main peaks were revealed, which are ascribed to
near band gap emission and vacancy or defect states. Faraday rotation demonstrates its enhance-
ment and growth of ferromagnetism with the increase in Ni content of Zn1−xNixO thin films at
room temperature.

Keywords: ZnNiO thin films; rf reactive sputtering technique; optical absorption; photoluminescence;
Faraday rotation; ferromagnetism

1. Introduction

In recent years, zinc oxide-based diluted magnetic semiconductors (DMSs) attract much
attention because of their unique characteristics and as a kind of potential material for spin-
tronic applications. Theoretical prediction of ferromagnetism [1,2] above room temperature in
transition metal (TM)-doped ZnO-based DMSs was the additional stimulus for much experi-
mental and theoretical research of these materials. However, if some researchers reported that
the TM-doped ZnO showed room temperature ferromagnetism [3–9], the others have not ob-
served such magnetic behaviour [10–13]. In the particular case of the Ni-doped ZnO films,
Wakano et al. [14] have observed ferromagnetism at 2 K and superparamagnetism at 300 K.
Ferromagnetism was observed at room temperature in the Ni-doped ZnO films [15–17].
The paramagnetism in the ZnO:Ni films was reported earlier by Yin et al. [18]. Thus, as
follows from the literature, different magnetic properties for the nickel-doped ZnO system
are reported. In this case, the factors leading to magnetism in nickel-doped ZnO are still
not clear and require careful study. No doubt, the magnetic properties of ZnO-based DMSs
depend significantly on growth technique. Different growth techniques such as MO-CVD,
magnetron sputtering, chemical vapour deposition, spray pyrolysis, pulsed laser deposi-
tion, etc., have been used for preparing ZnO and TM-doped ZnO DMSs thin films. Among
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these methods, RF reactive sputtering technique is less studied. Savchuk et al. [19–22] have
demonstrated paramagnetic behaviours of ZnMnO thin films and ferromagnetic ordering
in co-doped quaternary ZnMnFeO oxides prepared by RF sputtering.

In this work, we report on the preparation of Zn1−xNixO thin films by RF reac-
tive sputtering technique and examination of the changes in their structural, optical and
magneto-optical properties depending on the nickel content within 0.00 ≤ x ≤ 0.08.

2. Experimental Section

Thin films of Zn1−xNixO were obtained by us by the method of RF reactive sputtering.
We used quartz, sapphire and glass as substrates for sputtering. The sputtering process
was carried out in an active gas medium was consist of are mixture of argon and oxygen.
The composite targets with a diameter r of 70 mm were formed by mixing and pressing
ZnO and NiO powders with appropriate rations of components. The sputtering process
was carried out at a distance from the target to the substrate of 35 mm. The base vacuum in
the chamber was maintained equal to 2 × 10−4 Pa, and the pressure of the working gas was
0.2 and 0.8 Pa for oxygen and argon, respectively. Sputtering was carried out at an input RF
power of 300 W and a deposition rate of 10 nm/min. During deposition, the temperature
of the substrate was 350–400 ◦C. After deposition, the samples were annealed in an oxygen
atmosphere at a temperature of 500–550 ◦C.

The crystallographic studies were performed using X-ray diffractometer (D8 AD-

VANCE X-ray Diffractometer with DAVINCI) using Cu-Kα wavelength (λ = 1.54059
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scanning in 2θ range from 10◦ to 70◦. The high-resolution transmission electron microscopic
(HR-TEM) images were recorded on the samples using the Tecnai Osiris X-FEG S/TEM
microscope. Surface analysis of the samples was performed by atomic force microscopy in
dynamic mode (non–contact) with force constant K ~ 40 N/m and f0 ~ 300 kHz.

Optical absorption and photoluminescence (PL) spectra in range 350–600 nm were
measured using a grating monochromator, a photodetector system and registered computer
system. An excitation wavelength of 325 nm with intensity value of 10 mW (He-Cd laser)
was chosen to record the PL intensity in this wavelength region, at room temperature.

Magneto-optical studies of the Faraday effect (experimental measurements of the
rotation angle) in thin films and nanosized semiconductor structures deposited on relatively
thick substrates are a rather problematic task [23].

In our studies, the experimental measurement of the Faraday angle (Faraday effect)
was carried out using a specially designed setup described in [24]. A monochromatic beam
of light after passing through a focusing lens and a polariser (Rochon prism) becomes
linearly polarised and falls on a thin film under study, which is in an electromagnet with
a magnetic field of up to 5 T. The analyser (Wollaston prism) located in the path of the light
beam divides it into two beams passing through the modulator, which makes it possible
to ensure their phase shift by 180◦. In the absence of a magnetic field, the intensities of
the two light beams are completely balanced. When the electromagnet is turned on, the
resulting asymmetric signal is recorded using a system that includes a photomultiplier,
a synchronised amplifier and a personal computer. Extracting of Faraday rotation angle for
thin films was made by measuring the rotation angle from part of substrate which was not
covered in oxide film. The developed setup makes it possible to investigate the angle of
rotation with an accuracy of 10−4 rad.

3. Results and Discussion

The obtained X-ray diffraction (XRD) patterns of the pure ZnO and Ni-doped ZnO
films showed that all as-grown samples are nanostructured polycrystalline films (Figure 1).
The positions of all intense peaks can be assigned to the hexagonal wurtzite structure of
the ZnO crystal with a (002) preferred orientation. As shown in Figure 1, with an increase
in the Ni content above 2% (x > 0.02), additional diffraction peaks corresponding to (100),
(101) and (102) orientations were observed. In addition, the relational intensity of the main
(002) peak in the nickel concentration range 0 ≤ x ≤ 0.08 is significantly higher than that of
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the other peaks. At the same time, a significant result is the absence of peaks corresponding
to metallic nickel clusters or nickel oxides. The obtained results designate that Ni2+ enters
the ZnO lattice without changing the wurtzite structure and systematically replaces the
Zn2+ ions in the lattice. This result indicates a preferential texture growth along the C axis
in the studied films. Along with this, an increase in the concentration of nickel causes an
increase in the intensity of all observed diffraction peaks, which can be explained by the
refinement and improvement of the crystalline quality of these films due to doping with
nickel. Using the obtained results, namely the full width at half maximum (FWHM) of the
diffraction peak and the diffraction angle θ, the average crystallite size D was calculated
using the Debye–Scherer’s formula [25]:

D =
0.9 λ

∆θ cos θ
(1)

where θ is the Bragg angle of the diffraction peak, ∆θ is the FWHM and λ is the X-ray
wavelength.
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Figure 1. X-ray diffraction spectra of Zn1−xNixO films with different Ni contents (x).

The calculation results indicate a decrease in the crystallite size with an increase in the
nickel concentration. The same behaviour was observed for ZnO:Ni [26] and ZnO:Al [27]
thin films. Obviously, the introduction of Ni atoms into the ZnO structure and an increase in
their concentration determines the preferential location of the dopant atoms in the regions
of grain boundaries or near them, which determines the decrease in the crystallite size.
The lattice constants a and c for the samples of Zn1−xNixO films were calculated using the
Formula (2) and (3) [28] and depicted in Figure 2:

1
d2
(h,k,l)

=
4
3

(
h2 + hk + k2

a2

)
+

l2

c2 (2)

where dh,k,l is the interplanar spacing obtained from Bragg’s law, a and c are the required lattice
constants and h, k and l are the Miller indices denoting the plane. Equation (2) becomes:

a =
λ√

3 sin θ
, c =

λ

sin θ
(3)
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under the first-order reflection (n = 1) on the (100) and (002) planes.
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Figure 2. Dependence of the lattice parameters “a” and “c” on the increasing Ni content (x) in
Zn1−xNixO films.

The obtained results indicate an increase in the lattice parameters of deposited
Zn1−xNixO films for a nickel content of x = 0.02 and their decrease with a further in-
crease in the concentration of Ni (x > 0.02). Taking into account the fact that the size of
Ni2+ is 0.055 nm and is close to the size of Zn2+ in the tetrahedral configuration (equal to
0.06 nm) [29], Ni2+ ions systematically replace Zn2+ ions without changing the
crystal structure.

Figure 3a,b shows cross-sectional images obtained by HR-TEM of the studied samples.
As can be seen, all samples exhibit a columnar structure along the growth direction. In
addition, this structure is dense and evenly textured. Energy dispersive X-ray detection
(EDX) maps corresponding to the selected area in Figure 3b are shown in Figure 3c. The
results indicate the presence of the elements Zn, Ni and O and do not contain other impurity
elements, except for Cu and C (from the grid and not shown here). In addition, the data
obtained indicate that Ni is evenly distributed in the film and forms a solid solution with
the ZnO matrix.

As evidenced by the results of studying the surface of films, used by the AFM method,
the growth conditions and oxide composition have a significant effect on its morphol-
ogy. Figure 4 shows two-dimensional (2D) and three-dimensional (3D) AFM images for
a 5 × 5 µm area measured by non-contact mode. It was revealed that compared with pure
ZnO films, Ni doping leads to an increase in surface roughness. In addition, as can be seen
from Figure 4, the surface of the Zn1−xNixO films consists of a mixture of columnar and
granular microstructures. Similar microstructures in AFM images recently were reported
for Ni-doped ZnO films prepared by magnetron sputtering [30–32], sol–gel spin coating
method [33–35] and pulsed laser deposition [36]. In particular, Gao et al. [30] showed that
surface roughness is affected by the oxygen partial pressure.

According to these results [30,32] the root mean square (RMS) of the studied films was
decreased when doped with Ni. Estimation of the RRMS in our study demonstrates opposite
results. For the films with Ni content of x = 0.02 the average roughness
RRMS = 35.5 nm, whereas for the films with Ni content of x = 0.06 this parameter is larger
RRMS = 65.7 nm. The results of AFM studies of all samples also indicate the growth of
columns perpendicular to the plane of any substrate used.
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Figure 5 shows the transmittance spectra of Zn1−xNixO thin films deposited on glass
and SiO2 substrates. All investigated Zn1−xNixO films show a sharp absorption edge due
to the fundamental absorption of zinc oxide. At the same time, the optical absorption
edge of Zn1−xNixO thin films shows a complex dependence on the nickel content. After
Ni doping, the absorption edge shifts to the short-wavelength region for x = 0.02 and to
the long-wavelength region of the spectrum for films with x > 0.02. The band gap Eg of
the films was calculated by us by plotting the graph (αhν)2 as a function of the photon
energy (hν). The value of Eg was determined by extrapolation of the linear part (αhν)2

on the energy axis. As can be seen from Figure 6, the calculated values of Eg increase
with increasing Ni content up to x = 0.02 and decrease at x > 0.02. A more complex nature
of the Eg(x) dependence, but very similar to that shown in Figure 6, was reported for
nanoparticles [37] and Zn1−xNixO nanoclusters [38]. The sinusoidal behaviour of Eg was
also found on ZnO thin films doped with Ni [39]. Other studies have shown a decrease
in Eg at low Ni concentrations and an increase in Eg at higher Ni concentrations [38,40].
Many research groups report data [30,32,41] on the observation of only a decrease in Eg
with increasing x. This behaviour of Eg(x) can be caused by the formation of the Ni defect
energy level. In addition, the Zni impurity creates shallow donor levels, which can lead
to a decrease in the band gap of ZnO. According to studies [40], the decrease in Eg with
increasing Ni content for sputtered thin films can be related to structural defects that can
create localised states in the band gap. This decrease in the Eg is attributed mainly due to
the s, p–d exchange interactions between band electrons and d electrons associated with
the doped Ni2+ cations [40,42].
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The initial increase in band gap from x = 0 to 0.02 the authors of the paper [37] have
attributed to the s, p–d spin exchange interaction between the band carriers and localised
spin of the transition metal ions. At the same time, the authors of the paper [43] have
attributed this increase to the improvement of the crystalline structure of the films. Be-
cause of the nanostructured character of the prepared Zn1−xNixO films according to the
demonstrated above TEM and AFM images the same mechanisms can be applied also
to explain the observed Eg(x) dependence (Figure 6). Additional absorption below the
absorption edge can be seen for slightly thicker Zn1−xNixO films compared to those we
used for the analysis of the absorption edge. From Figure 7 we can see in the transmit-
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tance spectrum of Zn0.96Ni0.04O film three absorption bands in the wavelength range
480–2000 nm. The absorption peaks identified in the long-wavelength region of the spec-
trum are caused by d–d transitions in tetrahedrally coordinated Ni2+ ions. The observed
peaks can be attributed to 3T1(F)→ 1T1(G), 3T1(F)→ 1T1(D) and 3T1(F)→ 3T1(P) transitions
of the Ni2+ ions [44–47].
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The room temperature photoluminescence spectra of the Zn1−xNixO thin films are
shown in Figure 8. For all samples, an intense emission band at 380 nm is observed in the
PL spectrum. This typical emission occurs in all studied films because of the near-band
edge emission due to exciton-related transitions. The energy position of this band directly
depends on the nickel content and is in good agreement with the results obtained from the
optical absorption spectra. The energy position of this band directly depends on the nickel
content and is in good agreement with the results obtained from the optical absorption
spectra. The second emission peak near 460 nm is due to various vacancies and defect
states. An increase in the concentration of nickel in thin films leads to broadened and
a slight decrease in its intensity. Gao et al. [30] discussed possible manifestation of the
six intrinsic defects in this region such as: interstitial oxygen, antisite oxygen, oxygen
vacancy, interstitial zinc, antisite zinc and zinc vacancy.

The magneto-optical Faraday effect combines and synthesises two areas of physics—
optics and magnetism. This effect occupies an important place in the study of the magneto-
optical properties and the magnetic subsystem of various materials, in particular, DMS.
The magnitude of the Faraday effect in DMS is directly related to the exchange interaction
between the band states of electrons (holes) and localised d-(f−) electrons of magnetic ions
and is proportional to the magnetisation of the magnetic subsystem. To our best knowledge,
the magneto-optical Faraday effect was negligible for Ni-doped zinc oxides [43]. Figure 9
shows the spectral dependence of the Faraday rotation in Zn1−xNixO thin films. The
increase in the Faraday rotation in the region of the absorption edge is clearly observed
with the increase in Ni content. As noted above, for DMS materials, the exchange interaction
between band carriers and magnetic ions (s, p–d exchange interaction) leads to a strong
increase in the Faraday rotation [48,49].
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The ratio of angle θF to the product magnetic field B and sample thickness d is known
as the Verdet constant (V):

V =
θF

B d
(4)
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In accordance with to the microscopic model of the magneto-optical Faraday ef-
fect in bulk DMS [49,50] the Verdet constant as a function of photon energy hν can be
expressed as:

V(hν) = Z · f(X) + C · Y · g(X), (5)

where X = E/Eg, Eg is the band-gap energy, E is photon energy and Z, C and Y are fitting
parameters. The function f(X) has a positive sign, while the function g(X) is negative
and characterises the “pure” Zeeman and exchange contributions, respectively. Therefore,
there is competition between two contributions with opposite signs depending on the
temperature and the content of Ni in the studied material.

The competition between diamagnetic and paramagnetic states should also be detected
in the Zn1−xNixO thin films studied by us. In fact, the enhancement of the Faraday rotation
and changes in its spectral dependence are due to the positive and negative parts due to the
contribution of the pure Zeeman and s, p–d exchange interactions, respectively. As a result,
competition between these two contributions with opposite signs leads to the negative sign
and the observed enhancement of the Faraday rotation in the Ni-doped ZnO thin films.

Additional information about the behaviour of the magnetic subsystem of Zn1−xNixO
thin films is provided by the study of the dependence of the Faraday rotation on the
magnetic field. On the basis of such studies, we discovered features caused by an increase
in the Ni content. For the films with x ≥ 4% and in magnetic fields above 0.7 T, a clear
saturation effect was observed on the θF(B) dependence. In addition, a detailed analysis of
many θF(B) curves of all studied samples made it possible to find a magnetic hysteresis
loop at room temperature, starting with the composition of Zn0.96Ni0.04O (Figure 10). On
the contrary, the observed linear dependence of θF(B) and the absence of hysteresis for the
Zn0.98Ni0.02O film indicates paramagnetism in these samples. The revealed results of the
magnetic behaviour can be explained in terms of the magnetic polaron model (BMP).
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According to works [51,52], the coexistence of O vacancies in ZnO lattices and Ni
doping does not form secondary magnetic phases (clusters of Ni metal and nickel oxide).
The magnetic properties of such an alloyed system are exclusively internal. In this case,
in the BMP model, intrinsic ferromagnetism is caused by electrons captured by donor
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defects (for example, oxygen vacancies), which occupy extended orbits and, overlapping,
form a spin-split impurity zone with localised spins of transition Ni2+ ions [52,53]. This is
consistent with the results by the authors [54,55], where the increasing density of oxygen
vacancies ensured the formation of BMP and led to an increase in ferromagnetism.

From obtained results of the FR and PL investigations, we suggest that increasing the
doping level of TM elements and defect concentration in the ZnO films results in increasing
ferromagnetic ordering.

4. Conclusions

The Zn1−xNixO thin films with 0 ≤ x ≤ 0.08 were prepared successfully using by RF
reactive sputtering technique on quartz, sapphire and glass substrates at room temperature.
XRD analysis of Zn1−xNixO thin films showed that the incorporation of nickel ions into
the ZnO did not change the hexagonal wurtzite structure of the lattice with the preferred
orientation of their growth along the (002) axis with good crystallinity.

It is observed from AFM images that the surface morphology of the Zn1−xNixO thin
films is characterised by a mixture of granular and columnar microstructures and growth
perpendicular to the surface along the z-direction. The increase in the content of Ni leads
to an increase in the root mean square values of the surface roughness.

The absorption edge shifts to low wavelengths (blue shift) with an increase in Ni
content up to x = 0.02 and shifts to higher wavelengths (red shift) with an increase in Ni
content for x > 0.02. The absorption measurement in the wavelength range 350–2100 nm
shows absorption bands associated with the d–d electrons transition of Ni2+ within the
tetrahedral symmetry. The two emission peaks in room temperature PL spectra are ascribed
to exciton-related transitions and broadened intensive emission associated with vacancy or
defect states. Changes in spectral dependence of the Faraday rotation angle and its negative
sign are due to s, p–d exchange interaction between band carriers and spins of magnetic
ions in Zn1−xNixO thin films. Magnetic field dependence of Faraday rotation confirmed
ferromagnetic behaviour in Zn1−xNixO films with increasing Ni content higher than 2% at
room temperature.
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