Prediction of Microstructure and Mechanical Properties of Atmospheric Plasma-Sprayed 8YSZ Thermal Barrier Coatings Using Hybrid Machine Learning Approaches
Abstract
:1. Introduction
2. Experiment and Modeling
2.1. YSZ TBCs Preparation and Characterization
2.1.1. Coatings Preparation
2.1.2. Coatings Characterization
2.2. Hybrid Machine Learning Models
2.2.1. Back Propagation and Extreme Learning Machines Algorithms
- (a) Random assignment of input layer weight and hidden layer bias;
- (b) Calculate the output matrix of hidden layer, ;
- (c) Calculate the output weight, .
2.2.2. Flower Pollination Algorithm
2.3. Cross Validation and Model Performance Indicators
3. Results and Discussion
3.1. Microstructure and Mechanical Properties
3.2. Comparison of Various Prediction Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Lv, Z.; Zhou, Y.; Huang, S.; Chen, H.; Xu, N. Research progress of advanced ceramic materials for thermal barrier coatings. Surf. Technol. 2022, 51, 42–52. [Google Scholar]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef]
- Gizynski, M.; Chen, X.; Dusautoy, N.; Araki, H.; Kuroda, S.; Watanabe, M.; Pakiela, Z. Comparative study of the failure mechanism of atmospheric and suspension plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 2019, 370, 163–176. [Google Scholar] [CrossRef]
- Yang, P.; Yue, W.; Li, J.; Bin, G.; Li, C. Review of damage mechanism and protection of aero-engine blades based on impact properties. Eng. Fail. Anal. 2022, 140, 106570. [Google Scholar] [CrossRef]
- Lashmi, P.G.; Ananthapadmanabhan, P.V.; Unnikrishnan, G.; Aruna, S.T. Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems. J. Eur. Ceram. Soc. 2020, 40, 2731–2745. [Google Scholar] [CrossRef]
- Qiao, L.; Wu, Y.; Hong, S.; Cheng, J.; Wei, Z. Influence of the High-Velocity Oxygen-Fuel Spray Parameters on the Porosity and Corrosion Resistance of Iron-Based Amorphous Coatings. Surf. Coat. Technol. 2019, 366, 296–302. [Google Scholar] [CrossRef]
- Balan, K.; Manimaran, S.; Rajan, A.J. Prediction of Interactions between Various Input Process Parameters Involved in Detonation Gun Coating Technique through Response Surface Methodology. Proc. Eng. 2014, 97, 1399–1405. [Google Scholar] [CrossRef] [Green Version]
- Kamnis, S.; Malamousi, K.; Marrs, A.; Allcock, B.; Delibasis, K. Aeroacoustics and Artificial Neural Network Modeling of Airborne Acoustic Emissions during High Kinetic Energy Thermal Spraying. J. Therm. Spray Technol. 2019, 28, 946–962. [Google Scholar] [CrossRef]
- Mahade, S.; Venkat, A.; Curry, N.; Leitner, M.; Joshi, S. Erosion Performance of Atmospheric Plasma Sprayed Thermal Barrier Coatings with Diverse Porosity Levels. Coatings 2021, 11, 21. [Google Scholar] [CrossRef]
- Lima, R.S. Porous APS YSZ TBC Manufactured at High Powder Feed Rate (100 g/min) and Deposition Efficiency (70%): Microstructure, Bond Strength and Thermal Gradients. J. Therm. Spray Technol. 2022, 31, 396–414. [Google Scholar] [CrossRef]
- Rejda, E.F.; Socie, D.F.; Beardsley, B. Fatigue behavior of a plasma-sprayed 8%Y2O3-ZrO2 thermal barrier coating. Fatigue Fract. Eng. Mater. Struct. 2010, 20, 1043–1050. [Google Scholar] [CrossRef]
- Wang, J.; Bai, L.; Ma, F.; Wan, S.; Yi, G.; Sun, J.; Tian, X.; Yang, Z. Evaluation of microstructure evolution of thermal barrier YSZ coating after thermal exposure. Ceram. Int. 2022, 48, 6681–6690. [Google Scholar] [CrossRef]
- Giyński, M.; Chen, X.; Araki, H.; Tanaka, H.; Kuroda, S.; Watanabe, M.; Pakieła, Z. Sintering Characteristics of Thermal Barrier YSZ Coatings Made by Suspension Plasma Spraying. J. Therm. Spray Technol. 2022, 31, 1521–1539. [Google Scholar] [CrossRef]
- Roncallo, G.; Barbareschi, E.; Cacciamani, G.; Vacchieri, E. Effect of cooling rate on phase transformation in 6–8 wt% YSZ APS TBCs. Surf. Coat. Technol. 2021, 412, 127071. [Google Scholar] [CrossRef]
- Edward, J.; Sampath, S. Durability of Plasma Sprayed Thermal Barrier Coatings with Controlled Properties Part I: For Planar Disk Substrates. Surf. Coat. Technol. 2021, 424, 127678. [Google Scholar]
- Tillmann, W.; Khalil, O.; Baumann, I. Influence of Direct Splat-Affecting Parameters on the Splat-Type Distribution, Porosity, and Density of Segmentation Cracks in Plasma-Sprayed YSZ Coatings. J. Therm. Spray Technol. 2021, 30, 1015–1027. [Google Scholar] [CrossRef]
- Saremi, M.; Valefi, Z. The effects of spray parameters on the microstructure and thermal stability of thermal barrier coatings formed by solution precursor flame spray (spfs). Surf. Coat. Technol. 2013, 220, 44–51. [Google Scholar] [CrossRef]
- Karabaş, M.; Bal, E.; Kilic, A.; Taptık, İ.Y. Effect of Air Plasma Spray Parameters on the Properties of YSZ and CYSZ Thermal Barrier Coatings. J. Australas. Ceram. Soc. 2016, 52, 175–182. [Google Scholar]
- Arhami, F.; Ben Ettouil, F.; Moreau, C. As-Sprayed Highly Crystalline Yb2Si2O7 Environmental Barrier Coatings (EBCs) by Atmospheric Plasma Spray (APS). J. Therm. Spray Technol. 2023, 1–13. [Google Scholar] [CrossRef]
- Vaen, R.; Bakan, E.; Mack, D.E.; Guillon, O. A Perspective on Thermally Sprayed Thermal Barrier Coatings: Current Status and Trends. J. Therm. Spray Technol. 2022, 31, 685–698. [Google Scholar]
- Sobhanverdi, R.; Akbari, A. Porosity and microstructural features of plasma sprayed Yttria stabilized Zirconia thermal barrier coatings. Ceram. Int. 2015, 41, 14517–14528. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Zhou, H.; Fang, H.; Huang, J.; Li, Y.; Gong, H.; Li, Z. Characterization of thermal barrier coatings microstructural features using terahertz spectroscopy. Surf. Coat. Technol. 2020, 394, 125836. [Google Scholar] [CrossRef]
- Li, R.; Ye, D.; Xu, Z.; Yin, C.; Xu, H.; Zhou, H.; Yi, J.; Chen, Y.; Pan, J. Nondestructive Evaluation of Thermal Barrier Coatings Thickness Using Terahertz Time-Domain Spectroscopy Combined with Hybrid Machine Learning Approaches. Coatings 2022, 12, 1875. [Google Scholar] [CrossRef]
- Shah, M.I.; Alaloul, W.S.; Alqahtani, A.; Aldrees, A.; Musarat, M.A.; Javed, M.F. Predictive Modeling Approach for Surface Water Quality: Development and Comparison of Machine Learning Models. Sustainability 2021, 13, 7515. [Google Scholar] [CrossRef]
- Javed, M.F.; Farooq, F.; Memon, S.A.; Akbar, A.; Khan, M.A.; Aslam, F.; Alyousef, R.; Alabduljabbar, H.; Rehman, S.K.U. New Prediction Model for the Ultimate Axial Capacity of Concrete-Filled Steel Tubes: An Evolutionary Approach. Crystals 2020, 10, 741. [Google Scholar] [CrossRef]
- Ye, D.; Xu, Z.; Pan, J.; Yin, C.; Hu, D.; Wu, Y.; Li, R.; Li, Z. Prediction and Analysis of the Grit Blasting Process on the Corrosion Resistance of Thermal Spray Coatings Using a Hybrid Artificial Neural Network. Coatings 2021, 11, 1274. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Xu, Z.; Yin, C.; Zhou, H.; Li, Y. Prediction of Thermal Barrier Coatings Microstructural Features Based on Support Vector Machine Optimized by Cuckoo Search Algorithm. Coatings 2020, 10, 704. [Google Scholar] [CrossRef]
- Xu, Z.; Ye, D.; Chen, J.; Zhou, H. Novel Terahertz Nondestructive Method for Measuring the Thickness of Thin Oxide Scale Using Different Hybrid Machine Learning Models. Coatings 2020, 10, 805. [Google Scholar] [CrossRef]
- Shah, M.I.; Javed, M.F.; Aslam, F.; Alabduljabbar, H. Machine learning modeling integrating experimental analysis for predicting the properties of sugarcane bagasse ash concrete. Constr. Build. Mater. 2022, 314, 125634. [Google Scholar] [CrossRef]
- Yang, X.S. Flower Pollination Algorithm for Global Optimization. In Unconventional Computation and Natural Computation; Durand-Lose, J., Jonoska, N., Eds.; UCNC 2012; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7445. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Hu, J. A K-fold averaging cross-validation procedure. J. Nonparametric Stat. 2015, 27, 167–179. [Google Scholar] [CrossRef] [Green Version]
Performance Indicator R | Porosity | Circularity | Feret’s Diameter | Adhesive Strength | Hardness |
---|---|---|---|---|---|
BP | 0.8219 | 0.7691 | 0.6219 | 0.6895 | 0.6021 |
FPA-BP | 0.9437 | 0.9705 | 0.9413 | 0.9612 | 0.9426 |
ELM | 0.9563 | 0.8033 | 0.7642 | 0.8003 | 0.8369 |
FPA-ELM | 0.9715 | 0.9581 | 0.9503 | 0.9578 | 0.9709 |
Performance Indicator R K-CV | Porosity | Circularity | Feret’s Diameter | Adhesive Strength | Hardness |
---|---|---|---|---|---|
BP | 0.0952 | 0.2176 | 0.1846 | 0.2978 | 0.1763 |
FPA-BP | 0.8935 | 0.9006 | 0.9003 | 0.8974 | 0.8996 |
ELM | 0.4185 | 0.5127 | 0.4876 | 0.5189 | 0.6001 |
FPA-ELM | 0.9411 | 0.9628 | 0.9788 | 0.9473 | 0.9516 |
Performance Indicator RMSE | Porosity | Circularity | Feret’s Diameter | Adhesive Strength | Hardness |
---|---|---|---|---|---|
BP | 0.8536 | 1.0623 | 2.126 | 3.7415 | 24.1579 |
FPA-BP | 0.3215 | 0.2215 | 1.0126 | 1.5768 | 4.7859 |
ELM | 0.6547 | 0.9578 | 3.1245 | 2.1748 | 9.5762 |
FPA-ELM | 0.2148 | 0.0954 | 0.1268 | 0.4785 | 2.9872 |
Performance Indicator RMSE K-CV | Porosity | Circularity | Feret’s Diameter | Adhesive Strength | Hardness |
---|---|---|---|---|---|
BP | 3.1458 | 1.8412 | 3.6547 | 3.0145 | 28.1144 |
FPA-BP | 0.3254 | 0.3369 | 0.9142 | 1.8742 | 5.8423 |
ELM | 0.5476 | 1.3247 | 4.6987 | 4.1785 | 7.3719 |
FPA-ELM | 0.0917 | 0.1081 | 0.3697 | 0.2357 | 1.9743 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Li, D.; Yang, M.; Ye, D. Prediction of Microstructure and Mechanical Properties of Atmospheric Plasma-Sprayed 8YSZ Thermal Barrier Coatings Using Hybrid Machine Learning Approaches. Coatings 2023, 13, 602. https://doi.org/10.3390/coatings13030602
Zhu H, Li D, Yang M, Ye D. Prediction of Microstructure and Mechanical Properties of Atmospheric Plasma-Sprayed 8YSZ Thermal Barrier Coatings Using Hybrid Machine Learning Approaches. Coatings. 2023; 13(3):602. https://doi.org/10.3390/coatings13030602
Chicago/Turabian StyleZhu, Han, Dongpeng Li, Min Yang, and Dongdong Ye. 2023. "Prediction of Microstructure and Mechanical Properties of Atmospheric Plasma-Sprayed 8YSZ Thermal Barrier Coatings Using Hybrid Machine Learning Approaches" Coatings 13, no. 3: 602. https://doi.org/10.3390/coatings13030602
APA StyleZhu, H., Li, D., Yang, M., & Ye, D. (2023). Prediction of Microstructure and Mechanical Properties of Atmospheric Plasma-Sprayed 8YSZ Thermal Barrier Coatings Using Hybrid Machine Learning Approaches. Coatings, 13(3), 602. https://doi.org/10.3390/coatings13030602