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Abstract: The preparation of thermal barrier coatings (TBCs) is a complex process involving the
integration of physics and chemistry, mainly involving the flight behavior and deposition behavior of
molten particles. The service life and performance of the TBCs were determined by various factors,
especially the preparation process parameters. In this work, to set up the quantitative characterization
model between the preparation process parameters and the performance characteristic parameters,
the ceramic powder particle size, spraying power and spraying distance were treated as the model
input parameters, the characteristic parameters of microstructure properties represented by the
porosity, circularity and Feret’s diameter and the mechanical property represented by the interfacial
binding strength and macrohardness were treated as the model output. The typical back propagation
(BP) model and extreme learning machine (ELM) model combined with flower pollination algorithm
(FPA) optimization algorithm were employed for modeling analysis. To ensure the robustness of the
obtained regression prediction model, the k-fold cross-validation method was employed to evaluate
and analyze the regression prediction models. The results showed that the regression coefficient R
value of the proposed FPA-ELM hybrid machine learning model was more than 0.94, the root-mean-
square error (RMSE) was lower than 2 and showed better prediction accuracy and robustness. Finally,
this work provided a novel method to optimize the TBCs preparation process, and was expected to
improve the efficiency of TBCs preparation and characterization in the future.

Keywords: thermal barrier coatings; machine learning; k-fold cross-validation; FPA-ELM

1. Introduction

The gas turbine engine is a power machine that drives the impeller to rotate at high
speeds with the energy of a flowing working medium. It is widely used in the power engine
of civil aviation and military aircraft, ship power and vehicles. The thermal efficiency of gas
turbine has been greatly improved from year to year [1,2]. However, high efficiency, energy-
saving and environmental protection gas turbine has been the goal of new generation
aero-engine. Further improving the thrust-weight ratio and thermal efficiency of gas
turbines has become a core issue. Nevertheless, the increase of the thermal efficiency of gas
turbine will inevitably greatly raise the working temperature of the combustion chamber,
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which poses a new challenge to the maximum service temperature of high-temperature
components of gas turbine [3–5].

Thermal barrier coatings are generally composed of the ceramic layer with high
temperature resistance, low thermal conductivity and corrosion resistance, as well as the
metal bonding layer with transition performance. It is widely employed to significantly
reduce the surface temperature of hot-section components, improve the resistance of matrix
alloys to high temperature oxidation corrosion, prolong the working life of the blades, and
promote the thrust and efficiency of the aero-engine [6,7].

A higher inlet temperature results in higher requirements for the service temperature
of superalloys and the performance of thermal barrier coatings. Plenty of research has
been carried out in developing new superalloy materials and thermal barrier coatings
materials, improving the TBCs structure and preparation methods [8,9]. At present, plasma
spraying is still treated as the most common TBCs preparation method. According to the
atmospheric plasma spraying, plasma arc was employed to heat the coatings powder so as
to enter the molten or semi-molten powder droplets. Then, the droplets are sprayed out
at a high speed with the air flow through the spray gun, and then impinged on the metal
substrate, deposited on the substrate surface, rapidly cooled, solidified and shrunken on
the substrate surface. It forms a mechanical inlay with the surface of the base material,
which is stacked layer by layer, and finally forms the thermal barrier coatings. Among the
spraying processes, the study of improving the microstructure of thermal barrier coatings
has been widely concerned. It is expected that by optimizing the spraying process, the
thermal barrier coatings with excellent performance can be prepared, so as to extend the
service life of thermal barrier coatings [10–15].

Taking atmospheric plasma spraying as an example, in the process of coating prepara-
tion, there are many factors affecting the TBCs microstructure and mechanical properties.
The TBCs quality is not only affected by the TBCs material itself, but also depends on the
spraying process to a large extent. Plenty of researchers have conducted a large number
of studies on the relationship between TBCs service performance and spraying process
parameters, and obtained plenty of beneficial results [16–18]. However, there are dozens of
spraying process parameters in the actual spraying process, and various process parameters
will form mutual coupling. Therefore, the relationship between TBCs microstructure and
spraying process parameters is still not fully understood. It is of great significance to
establish the relationship between spraying process and TBCs microstructure properties
and explore the influence of spraying process parameters on TBCs properties to improve
the preparation stability. However, it is impossible to explore all spraying parameters at
the same time [19,20]. Based on this problem, in this work, as shown in Figure 1, the re-
search was carried out to explore the quantitative relationship between process parameters,
microstructure characteristics and mechanical properties, and to model and analyze the
complex nonlinear relationship by combining machine learning and big data technology,
so as to further provide scientific guidance for the TBCs preparation. The main research
content of this paper was to use spraying process parameters as input, microstructure and
mechanical properties as output, combined with machine learning (ML) and optimization
algorithm for modeling, and then a cross-validation was applied to evaluate the modeling
results. More details will be shown in the following sections.
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Figure 1. Research content structure diagram.

2. Experiment and Modeling
2.1. YSZ TBCs Preparation and Characterization
2.1.1. Coatings Preparation

Gas turbine blades were usually used in harsh environments with high temperature
and high pressure, and their working conditions were very harsh, so strict requirements
were put forward for blade materials. Since nickel/cobalt superalloys were often employed
in gas turbine blades, Inconel600 nickel-based superalloy was employed as the substrate
material in this experiment. The thermal barrier coatings materials used in the experiment
contained metal bonding layer material and surface ceramic layer material. The metal
bonding layer material used in the experiment was NiCoCrAlY anti-high temperature
oxidation alloy powder, which could effectively improve the physical compatibility between
the ceramic layer and the base metal and the mismatch of thermal expansion coefficient
and other problems. A disc-shaped Inconel600 with a thickness of 3 mm and a diameter of
25.4 mm was used as the matrix material for the TBCs sample. The substrate surface was
roughened by sand blasting and ultrasonic cleaned by acetone. The adhesive layer and
YSZ ceramic coating were deposited on the substrate by atmospheric plasma spraying. The
adhesive layer uses NiCrAlY powder with particle sizes of 45–106 µm. Two kinds of 8YSZ
(8 wt.%, Y2O3 stabilized ZrO2, Beijing Sanspuri New Material Co., Ltd., Beijing, China)
powders with particle sizes of 15–45 µm and 45–90 µm were used as raw materials for the
preparation of ceramic coatings. The morphologies of the two YSZ powders were shown in
Figure 2.
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Figure 2. SEM images showing morphologies of the 8YSZ powders: (a) 15–45 µm; (b) 45–90 µm.

2.1.2. Coatings Characterization

TBCs microstructure was extracted by scanning electron microscopy (SEM, ZEISS
EVO MA15, Carl Zeiss SMT Ltd., Oberkochen, Germany), according to the ASTM E 2109 B
standard, the image analysis software ImageJ Software (vl.46, National Institutes of Health,
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Bethesda, MD, USA) was used to observe the metallographic sample of the coating, and dif-
ferent values were set on the micrograph of the coating by the grayscale of the photo. Then,
according to the values of different sizes, the black region (the pore region) in the coating
was calibrated. Finally, the porosity was estimated by the proportion of the black region.
All types of pores were isolated for image segmentation through threshold segmentation
and binarization. As shown in Figure 3, the black area represents the pores and the white
area represents the YSZ coating. To further distinguish the spherical pores (mainly for all
kinds of large pores and small pores) and crack network (mainly for the coating particles
between the layer of uncombined areas and various cracks), open operation was employed
to conduct the image processing. The so-called open operation was conducted through
continuous corrosion, followed by the expansion operation. The corrosion filter removed
pixels from the edges of an object, while the dilation filter added pixels to the edges of an
object in a binary image, where the object was the adjacent black area of the binary image
and the rest of the white area was the background. Obviously, it was far from sufficient
to use porosity alone to characterize the microstructure characteristics of porous ceramic
layer. Therefore, the circularity and Feret’s diameter (the longest distance between any
two points along the pore boundary) was added to further characterize the microstructure
of the TBCs [21]. With the application of the ImageJ software with powerful statistical
ability, for each spraying parameter, ten cross-section SEM images without overlapping
were selected for the statistical analysis of the microstructure characteristics.
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Figure 3. Extraction of microscopic features of thermal barrier coatings.

According to the ASTM C633–01 standard, the adhesion strength of TBCs was tested
by the determination of adhesion of coats-pull-off test. The bonding test was to use E7
adhesive (Shanghai synthetic resin research institute) to combine the coated end face with
a stainless steel column with the same size of sandblasted end face. The bonded samples
were placed in an oven at 120 ◦C for heat preservation. The bonded sample was fixed on the
mechanical property testing machine for tensile test, and the tensile speed was 2 mm/min.
Five samples were tested in each group, and the average value of five samples was taken
as the experimental result. Vickers indentation fracture test (VIF) was a common technique
for evaluating the cracking resistance of brittle ceramic materials. According to the GB/T
37900–2019, Vickers hardness tester was applied to the cross section of the coating with a
relatively high pressure mark load to force the coating to crack. The influence of spraying
process parameters on the mechanical properties was investigated through a statistical
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analysis of the TBCs crack behavior. The Vickers indentation method was used to measure
the macroscopic hardness under the loading of 1000 g and a loading time of 15 s.

2.2. Hybrid Machine Learning Models
2.2.1. Back Propagation and Extreme Learning Machines Algorithms

There was a complex nonlinear mapping relationship between the spraying parameters
and the physical and chemical properties of the coatings to be prepared. The quantitative
relationship between the microstructure characteristics (porosity, circularity and Feret’s
diameter) and mechanical properties (interfacial binding strength and macrohardness) of
the thermal barrier coatings need to be established, and machine learning was expected
to provide a novel solution to this problem [22–25]. However, considering the prediction
model construction problem of multi-parameter input and output, the machine learning
model of a single input corresponding to a single output or multiple inputs corresponding
to a single output would not be applicable. After comprehensive consideration, a neural
network algorithm was proposed to solve this problem.

Artificial neural network (ANN), based on the bionics principle, abstracted the infor-
mation conduction mechanism of human brain neurons from the perspective of information
processing, so as to establish a widely interconnected computing network with generaliza-
tion. Neural network not only had high computing power, but also had strong association
ability and adaptability, which made it able to realize nonlinear mapping and able to carry
out complex and tedious calculations. Its special nonlinear information processing ability
also solved the defect of traditional artificial intelligence to intuition, so the neural network
had been widely used in the field of pattern recognition and prediction. Generally, the
most commonly used ANN algorithm was the BP neural network, which was composed
of input layer, hidden layer and output layer. The hidden layer could be designed as
single layer or multi-layer. Usually, the typical three-layer structure could take into account
the complexity of the model and the workload during calculation, so this work adopted
the three-layer structure. In view of the fact that this algorithm had been widely used
in all kinds of nonlinear modeling prediction problems, there has been a lot of research
conducted and available in the literature for reference, so there was no longer a need for an
introduction [26,27].

As shown in Figure 4, extreme learning machine was a single hidden layer feedforward
neural network. This model used random weights, thresholds and Moore–Penrose gener-
alized inverse matrix theory to obtain the weight parameters of the output network and
output the final results. According to the network architecture of extreme learning machine,
compared with the traditional single-hidden layer feedforward neural network, the train-
ing process of this network was simple and the generalization ability was stronger [28,29].
Therefore, this study adopted BP algorithm and ELM algorithm to conduct modeling
analysis. The implementation process of ELM algorithm was as follows:
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Given N samples
(
xj, tj

)
(j = 1, 2, . . . , N), the extreme learning machine model with

L hidden layer nodes was as follows:

L

∑
i=1

βigi
(
xj
)
=

L

∑
i=1

βig
(
wixj + bi

)
= yi, j = 1, 2, . . . , N (1)

where, wi was the connection weight vector from the input layer to the hidden layer, bi was
the node threshold of the Z hidden layer, βi was the connection weight vector from the
hidden layer to the output layer. The goal of the single hidden layer neural network was to
make the actual output infinitely close to the expected output tj, which was as follows:

L

∑
i=1

βig
(
wixj + bi

)
= tj, j = 1, 2, . . . , N (2)

The N equations it contained could be abbreviated as follows:

Hβ = T (3)

where H was the output matrix of the hidden layer, β was the weight matrix of the output
layer, and T was the target expected output matrix.

H = H(w1, w2, . . . , wL, b1, b2, . . . , bL, x1, x2, . . . , xN) ==

 g(w1·x1 + b1) · · · g(wL·x1 + b1)
... · · ·

...
g(w1·xN + b1) · · · g(wL·xN + bL)


N×L

(4)

β =

βT
1
...

βT
L


L×m

, T =

tT
1
...

tT
L


N×m

(5)

In this ELM algorithm, the weight of the input layer and the hidden layer were biased
random assignments, and the training of the ELM network could be converted into the least
squares solution problem of solving the output weight β, where the calculation formula of
the output weight β was as follows:

β = H+T (6)

where H+ was the generalized inverse matrix of H. When N samples were given, the
extreme learning machine with L hidden layer nodes was established according to the
following steps:

1. (a) Random assignment of input layer weight and hidden layer bias;
2. (b) Calculate the output matrix of hidden layer, H = g(WX + B);
3. (c) Calculate the output weight, β = H+T.

2.2.2. Flower Pollination Algorithm

Considering that the optimal network structure could not be automatically found in
the modeling process of ELM network, the accuracy and stability of the model would be
poor in the face of complex and irregular data. To enhance the stability and prediction
accuracy of ELM network, after determining the optimal activation function of ELM and
the number of hidden layer nodes, swarm intelligent optimization algorithm was used to
optimize the connection weight and neuronal threshold in the ELM model to improve the
accuracy and generalization ability of ELM prediction model.

Flower pollination algorithm (FPA) was a new meta-heuristic swarm intelligent opti-
mization algorithm proposed by Yang Xin-She in 2012 [30]. This algorithm was inspired by
the pollination process of the flowers of the natural flowering plants, and combined the
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advantages of cuckoo optimization algorithm and bat algorithm. Yang used this algorithm
to solve the multi-objective optimization problem in 2013, and achieved good results. Since
the conversion probability parameter was used to realize the dynamic control of the con-
version process between global search and local search, which better solved the balance
problem between global search and local search, FPA was simple to implement with few
parameters and was easy to adjust. Meanwhile, Levy flight mechanism was adopted to
make it have good global optimization ability. Based on this, FPA was selected to optimize
the BP and ELM models in this work.

The process of pollen pollination in nature was very complicated. When designing
an algorithm by simulating the process of pollen pollination, it was difficult to completely
simulate every detail of the process of pollen pollination. In addition, realistic simulation
of the process of pollen pollination would make the algorithm particularly complex, which
not only required a large amount of computing resources, but also led to low computational
efficiency of the algorithm and little practical application value. To make the algorithm sim-
ple and easy, the flower pollination algorithm simulated the process of flower pollination in
nature. FPA regulated the conversion between global search and local search by probability
constant, and the value range of probability constant was 0–1. The specific mathematical
implementation process of FPA algorithm was as follows:

(1) The mathematical definition of global search was xt+1
i = xt

i + γL(λ)
(

gbest − xt
i
)
,

where xt
i was the position of pollen when the current iteration number was t; gbest was the

best position obtained under the current iteration; γ was the step size control parameter;
L(λ) was the flower pollination intensity, and L(λ) > 0;

(2) The mathematical definition of local search was xt+1
i = xt

i + ε
(

xt
j − xt

k

)
, where ε

was the independent uniform distribution on [0, 1]; xt
j and xt

k was the different individuals
from the same population, i.e., the same species of origin and different flowers.

2.3. Cross Validation and Model Performance Indicators

Cross validation was a statistical method to evaluate generalization performance. In
the process of cross validation, the data were divided into K-folds, and each fold was
employed as the test set in the training model, and other K-1 folds were employed as the
training set. Finally, k precision values were obtained. A common method to evaluate the
accuracy of cross validation was to calculate the average value, which made all categories
of data able to be trained through K-fold division so that the model was more stable and
the data were more comprehensive. Therefore, this work adopted K-fold cross validation
to verify the accuracy and robustness of the machine learning model. Based on the above
flower pollination algorithm, this work proposed a method which combined K-fold cross
validation and flower pollination algorithm to optimize the model parameters of BP and
ELM models. As shown in Figure 5, the basic connotation and implementation methods of
FPA algorithm were as follows:

(1) Parameter initialization. Suppose the training sample was [xi, yi](xi ∈Rn, n is the
number of input neurons of the extreme learning machine model, I = 1,2 . . . N, N is the total
number of samples), constructed the excitation function of the extreme learning machine
and set the number of nodes in the hidden layer, where C is the number of nodes in the
hidden layer, g is the iteration times of the extreme learning machine model;

(2) Construct the fitness function of the extreme learning machine model. Taking the
root-mean-square error of K-CV as the fitness of the extreme learning machine model, the
individual with the smallest average RMSE was found;

(3) Iterative update. Calculate the fitness of the extreme learning machine model and
update the individual accordingly;

(4) Optimal parameter generation of extreme learning machine model. Judge whether
the preset algorithm termination requirements are met. If so, the optimal parameter
combination of the extreme learning machine model is obtained. Otherwise, go back to
step 2.
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In this work, the FPA population size was set to 100, the maximum number of iterations
was set to 1000, the constant P was set to 0.9, γ was set to 1, the average RMSE of K-CV
was used as fitness function, and the activation function of the ELM model was selected as
“sigmoid” function. Five-sixths of the sample data were selected as the training set, and the
remaining one-sixth of the sample data were selected as the verification set.

The reliability and accuracy of the hybrid machine learning models were assessed
using two evaluation indicators objectively, including the squared correlation coefficient R
and RMSE. Their definitions were as follows:

R =

n
∑

i=1

(
Ŷi − Ŷ

)(
Yi −Y

)
√

n
∑

i=1

(
Ŷi − Ŷ

)2
√

n
∑

i=1

(
Yi −Y

)2
(7)

RMSE =

√
n

∑
i=1

(
Yi − Ŷi

)2/n (8)

where Yi was the real value of oxide scale thickness, Ŷi was the predicted value of oxide
scale thickness estimated by machine learning model.

3. Results and Discussion
3.1. Microstructure and Mechanical Properties

There were 72 sample combinations under different process parameter combinations,
which could not all be shown here. Typical samples were sampled and displayed to
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reflect the general variation law of coating microstructure characteristics and mechanical
properties under different process parameter combinations. As shown in Figure 6, the
variation of porosity at different spraying distances prepared by coarse powder at 36 kW
increased with the increase of spraying distance.
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Figure 6. Porosity at different spray distances.

As shown in Figure 7, the circularity with different spraying distances prepared by
coarse powder at 36 kW increased with the increase of spraying distance in the low value
area of circularity. However, in the area where the value of circularity increased to almost 1,
it tended to decrease.
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Figure 7. Circularity at different spray distances.

As shown in Figure 8, with the increase of spraying power, the distribution of Feret’s
diameter with different spraying power prepared by coarse powder at the spraying distance
of 100 mm decreased in the low value area, but increased in the area that was enlarged.

As shown in Figure 9, the adhesive strength prepared by coarse powder at the spraying
distance of 100 mm with different spraying powers increased with the increase of spraying
power.

As shown in Figure 10, the hardness with different spraying power prepared by coarse
powder at the spraying distance of 100 mm increased with the increase of spraying power.
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Figure 8. Feret’s diameter at different spray powers.
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Figure 9. Adhesive strength at different spray powers.
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Figure 10. Hardness at different spray powers.

The above three microstructure parameters and two mechanical property parameters
were only part of the structure and property parameters of TBCs. Previous relevant research
studies also involved the research of related content. For atmospheric plasma TBCs, the
failure standard of TBCs were the cracking and shedding. The greater the bonding strength
of the interface between substrate and TBCs, the less easy it would be for the TBCs to fall
off the substrate. Therefore, bonding strength and hardness were important mechanical
properties to evaluate the performance of TBCs. For example, in the test range of this work,
the binding strength increased with the increase of spraying power, and with the increase of
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spraying power, the melting degree of powder particles was higher, powder droplets could
be fully expanded during deposition, defects such as pores and voids inside the coating
was reduced, and the binding strength was improved. Meanwhile, with the increase of
spraying power, the plasma flame flow temperature increased, and then the temperature
of the substrate subsequently increased, resulting in a certain heat-affected zone on the
surface of the substrate. While the melt droplets were deposited in the heat-affected zone,
there was a certain metallurgical bonding with the substrate, and the binding force was
greater than the traditional mechanical bonding, so as to improve the bonding strength
between the TBCs and the substrate.

The change of spraying process parameters would lead to the change of microstruc-
ture characteristics and mechanical properties. The atmospheric plasma spraying TBCs
contained a large number of lamellar unbonded defects, macropores, vertical cracks and
lamellar particle surfaces. The stacking mode of interlayer interfaces may affect the bonding
strength of lamellar interfaces, and thus affecting the cracking resistance of the TBCs. The
melting index of coating powder would be directly affected with the change of spraying
process parameters, which would lead to the change of micro-pore structure parameters.
Meanwhile, the mechanical properties of TBCs were affected by the change of microstruc-
ture characteristics. Therefore, the reduction of pores and cracks increased the density of
TBCs, thus improving the hardness and the binding strength.

Many studies had shown that changes in micropore characteristics and mechanical
properties of thermal barrier coatings caused by changes in process parameters were
more of a qualitative or semi-quantitative characterization, which could not be directly
employed to guide the quantitative preparation of coatings. Therefore, it would be fuzzy
to regulate the microstructure of TBCs through changes in process parameters so as to
improve their comprehensive properties, including the thermodynamic properties of TBCs.
Therefore, the establishment of machine learning regression models, including spraying
process parameters, microstructure parameters and mechanical properties, would be of
great benefit to improve the service performance of TBCs.

3.2. Comparison of Various Prediction Models

As shown in Figure 11, the FPA-ELM model was trained through the training set
composed of the microstructure and mechanical property data of 72 groups of thermal
barrier coating test samples. The figure showed the fitness function change curve of porosity
model training. It could be seen from the fitness evolution curve that while the training
model was iterated for 386 times, the training error of FPA-ELM model parameters reached
the minimum value and met the training requirements. In this case, it was considered that
the optimal value could be obtained by reaching the critical maximum number of iterations.
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As shown in Figure 12, to further verify the prediction accuracy and robustness of the
proposed machine learning model, K-fold cross validation was used to verify the model
again [31]. Considering that the total number of sample data were 72, it was divided into
6 groups and verified for 6 times, respectively, so the design was a 6-fold cross validation.
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As shown in Table 1, from the perspective of R, the prediction results of the four models
of BP, FPA-BP, ELM and FPA-ELM on the five parameters of thermal barrier coatings could
be compared and analyzed. The conclusion could be drawn that the prediction performance
of BP model without FPA optimization was unstable and had overall deviation compared
with that of ELM model without FPA optimization. Although the regression prediction
effect of the direct use of ELM model was improved compared with that of BP model,
nevertheless, the overall prediction effect was still unsatisfactory.

Table 1. The R prediction comparison results of the five parameters of the BP, FPA-BP, ELM and
FPA-ELM model.

Performance
Indicator R Porosity Circularity Feret’s

Diameter
Adhesive
Strength Hardness

BP 0.8219 0.7691 0.6219 0.6895 0.6021
FPA-BP 0.9437 0.9705 0.9413 0.9612 0.9426

ELM 0.9563 0.8033 0.7642 0.8003 0.8369
FPA-ELM 0.9715 0.9581 0.9503 0.9578 0.9709

As shown in the comparison between Tables 1 and 2, the following conclusions could
be drawn when the four models of BP, FPA-BP, ELM and FPA-ELM were cross-verified by
the 6-fold method: the predictive performance of the BP model without FPA optimization
decreased rapidly and remained at a very low level. Compared with the BP model without
FPA optimization, although the regression performance of the ELM model without FPA
optimization was superior to that of the BP model without FPA optimization, it still could
not meet the actual demand of regression prediction. At this time, it could be seen that after
adding FPA optimization, the regression prediction effect of FPA-BP and FPA-ELM models
had been greatly improved, in which the R-value of FPA-BP model was maintained at
about 0.9, and the R-value of FPA-ELM model was over 0.94, indicating that the FPA-ELM
model was comprehensively superior to FPA-BP model. It had better prediction accuracy
and stability.
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Table 2. The R prediction comparison results of the five parameters of the BP, FPA-BP, ELM and
FPA-ELM model obtained by 6-fold CV.

Performance
Indicator
R K-CV

Porosity Circularity Feret’s
Diameter

Adhesive
Strength Hardness

BP 0.0952 0.2176 0.1846 0.2978 0.1763
FPA-BP 0.8935 0.9006 0.9003 0.8974 0.8996

ELM 0.4185 0.5127 0.4876 0.5189 0.6001
FPA-ELM 0.9411 0.9628 0.9788 0.9473 0.9516

Similar to the above analysis, as shown in Tables 3 and 4, from the perspective of
RMSE, the prediction results of the four models of BP, FPA-BP, ELM and FPA-ELM on
the five parameters of thermal barrier coating were compared and analyzed. For the five
parameters, the RMSE values of the two regression models after FPA were maintained
at a low level in their respective fields. In particular, the RMSE of the FPA-ELM model
was below 1 on the remaining four characteristic parameters; however, hardness reached
1.9743. Therefore, by comparing and analyzing the regression effects of different prediction
models, the above conclusions based on R-value analysis could be drawn, but not as high
as the differentiation degree of R. However, it was still clear that FPA-ELM model was
comprehensively superior to FPA-BP model, and FPA-ELM model had better pre-accuracy
and stability.

Table 3. The RMSE prediction comparison results of the five parameters of the BP, FPA-BP, ELM and
FPA-ELM model.

Performance
Indicator

RMSE
Porosity Circularity Feret’s

Diameter
Adhesive
Strength Hardness

BP 0.8536 1.0623 2.126 3.7415 24.1579
FPA-BP 0.3215 0.2215 1.0126 1.5768 4.7859

ELM 0.6547 0.9578 3.1245 2.1748 9.5762
FPA-ELM 0.2148 0.0954 0.1268 0.4785 2.9872

Table 4. The RMSE prediction comparison results of the five parameters of the BP, FPA-BP, ELM and
FPA-ELM model obtained by 6-fold CV.

Performance
Indicator

RMSE K-CV
Porosity Circularity Feret’s

Diameter
Adhesive
Strength Hardness

BP 3.1458 1.8412 3.6547 3.0145 28.1144
FPA-BP 0.3254 0.3369 0.9142 1.8742 5.8423

ELM 0.5476 1.3247 4.6987 4.1785 7.3719
FPA-ELM 0.0917 0.1081 0.3697 0.2357 1.9743

In conclusion, it could be proven that the FPA-ELM model proposed in this study has
good robustness and high reliability, and can provide artificial intelligence and big data
methods to solve problems in the future in the study and characterization of the relationship
between the preparation process parameters of thermal barrier coating, microstructure
characteristics and mechanical properties.

4. Conclusions

In this work, it was shown that the spray process parameter had vital effects on the
microstructure features and mechanical properties of the atmospheric plasma-sprayed
YSZ coatings. Moreover, they had a complex nonlinear relationship and influenced each
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other, and directly determined the service performance and life of TBCs. Through the
combination of machine learning algorithm and intelligent optimization algorithm, it tried
to solve the practical application problems that had puzzled the TBCs engineers for a
long time. The obtained hybrid machine learning regression prediction model would be
employed to achieve the quantitative control during TBCs preparation. Based on the above
studies, the following conclusions could be made:

1. With the change of the spraying process parameters, the melting index in the
deposition process would be directly affected, thus leading to the change of a variety of
microstructural characteristic parameters, including porosity, circularity and Feret’s diam-
eter, which would directly affect the internal and interfacial mechanical properties. The
coupling correlation between process parameters, microstructure parameters and mechan-
ical properties, and direct exhaustive experiments for qualitative and semi-quantitative
characterization were limited in guiding effect, so it was necessary and useful to combine
big data technology to conduct quantitative modeling in a limited sample space;

2. According to the comparison of BP model and ELM model, it was found that the
regression performance of ELM model was better than that of BP model. However, after the
cross validation of k-fold, the optimization algorithm needed to be introduced to update
the weights and thresholds iteratively to further improve the robustness and accuracy of
the prediction model;

3. Finally, a hybrid machine learning regression prediction model named FPA-ELM
was obtained, which showed relatively strong prediction and generalization ability after
repeated training and verification. From this, we could make further prospects that machine
learning would be expected to offer novel methods for the research and development of
new TBCs materials, structural regulation and performance improvement through more
data accumulation and in-depth training in the future.
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