Reconstructed NiCo Alloy Enables High-Rate Ni-Zn Microbattery with High Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Reconstructed NiCo Alloy Microcathode
2.2. Preparation of Zinc Microanode
2.3. Assembly of Ni-Zn MB
2.4. Structure and Composition Characterizations
2.5. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Kan, R.; Hu, S.; He, L.; Hong, X.; Tang, H.; Luo, W. Recent Advances in High-Performance Microbatteries: Construction, Application, and Perspective. Small 2020, 16, 2003251. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Xu, L.; Liu, Q.; Yang, W.; Liao, X.; Meng, J.; Hong, X.; He, L.; Mai, L. On-chip Ni-Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics. Adv. Funct. Mater. 2019, 29, 1808470. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, X.; Guo, Y.; Zhao, Y.; Liao, X.; Liu, X.; Li, Q.; He, L.; Mai, L. Wearable Textile-Based Co-Zn Alkaline Microbattery with High Energy Density and Excellent Reliability. Small 2020, 16, 2000293. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; You, G.; Sun, K.; Zhu, Z.; Liao, X.; Lv, L.; Tang, H.; Xu, B.; He, L. Advances in wearable textile-based micro energy storage devices: Structuring, application and perspective. Nanoscale Adv. 2021, 3, 6271–6293. [Google Scholar] [CrossRef] [PubMed]
- Pikul, J.H.; Gang Zhang, H.; Cho, J.; Braun, P.V.; King, W.P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 2013, 4, 1732. [Google Scholar] [CrossRef] [Green Version]
- Kyeremateng, N.A.; Hahn, R. Attainable energy density of microbatteries. ACS Energy Lett. 2018, 3, 1172–1175. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Jin, X.; Yang, H.; Gao, J.; Qu, L. An aqueous Zn-MnO2 rechargeable microbattery. J. Mater. Chem. A 2018, 6, 10926–10931. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Bandari, V.; Karnaushenko, D.D.; Karnaushenko, D.; Zhu, F.; Schmidt, O.G. On-chip batteries for dust-sized computers. Adv. Energy Mater. 2022, 12, 2103641. [Google Scholar] [CrossRef]
- Sun, P.; Li, X.; Shao, J.; Braun, P.V. High-Performance Packaged 3D Lithium-Ion Microbatteries Fabricated Using Imprint Lithography. Adv. Mater. 2021, 33, 2006229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhu, D.; He, J.; Li, J.; Chen, H.; Chen, Y.; Chao, D. A scalable top-down strategy toward practical metrics of Ni-Zn aqueous batteries with total energy densities of 165 W h kg−1 and 506 W h L−1. Energy Environ. Sci. 2020, 13, 4157–4167. [Google Scholar] [CrossRef]
- Parker, J.F.; Chervin, C.N.; Pala, I.R.; Machler, M.; Burz, M.F.; Long, J.W.; Rolison, D.R. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017, 356, 415–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Z.; Zhu, M.; Yin, Y.; Huang, Y.; Tang, H.; Ge, J.; Li, Y.; Karnaushenko, D.D.; Karnaushenko, D.; Schmidt, O.G. A Sub-Square-Millimeter Microbattery with Milliampere-Hour-Level Footprint Capacity. Adv. Energy Mater. 2022, 12, 2200714. [Google Scholar] [CrossRef]
- Hallot, M.; Roussel, P.; Lethien, C. Sputtered LiNi0.5Mn1.5O4 thin films for lithium-ion microbatteries. ACS Appl. Energy Mater. 2021, 4, 3101–3109. [Google Scholar] [CrossRef]
- Wen, W.; Wu, J.-M.; Jiang, Y.-Z.; Bai, J.-Q.; Lai, L.-L. Titanium dioxide nanotrees for high-capacity lithium-ion microbatteries. J. Mater. Chem. A 2016, 4, 10593–10600. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Shi, H.; Wang, S.-B.; Zhou, Y.-T.; Wen, Z.; Lang, X.-Y.; Jiang, Q. Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 2019, 10, 4292. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Meng, J.; Ni, K.; Guo, R.; Xia, F.; Xie, J.; Li, X.; Wen, B.; Wu, P.; Li, M.; et al. Complete Reconstruction of Hydrate Pre-Catalysts for Ultrastable Water Electrolysis in Industrial-Concentration Alkali Media. Cell Rep. Phys. Sci. 2022, 1, 100241. [Google Scholar] [CrossRef]
- Liu, X.; Meng, J.; Zhu, J.; Huang, M.; Wen, B.; Guo, R.; Mai, L. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 2021, 33, 2007344. [Google Scholar] [CrossRef]
- Liu, X.; Ni, K.; Wen, B.; Guo, R.; Niu, C.; Meng, J.; Li, Q.; Wu, P.; Zhu, Y.; Wu, X.; et al. Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett. 2019, 4, 2585–2592. [Google Scholar] [CrossRef]
- Zhu, Z.; Kan, R.; Wu, P.; Ma, Y.; Wang, Z.; Yu, R.; Liao, X.; Wu, J.; He, L.; Hu, S. A Durable Ni-Zn Microbattery with Ultrahigh-Rate Capability Enabled by In Situ Reconstructed Nanoporous Nickel with Epitaxial Phase. Small 2021, 17, 2103136. [Google Scholar] [CrossRef]
- Zou, P.; Li, J.; Zhang, Y.; Liang, C.; Yang, C.; Fan, H.J. Magnetic-field-induced rapid synthesis of defect-enriched Ni-Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst. Nano Energy 2018, 51, 349–357. [Google Scholar] [CrossRef]
- Ren, X.; Wei, C.; Sun, Y.; Liu, X.; Meng, F.; Meng, X.; Sun, S.; Xi, S.; Du, Y.; Bi, Z.; et al. Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 2020, 32, 2001292. [Google Scholar] [CrossRef]
- Zou, W.; Li, Q.; Zhu, Z.; Du, L.; Cai, X.; Chen, Y.; Zhang, G.; Hu, S.; Gong, F.; Xu, L.; et al. Electron cloud migration effect-induced lithiophobicity/lithiophilicity transformation for dendrite-free lithium metal anodes. Nanoscale 2021, 13, 3027–3035. [Google Scholar] [CrossRef]
- Gao, P.; Zeng, Y.; Tang, P.; Wang, Z.; Yang, J.; Hu, A.; Liu, J. Understanding the synergistic effects and structural evolution of Co(OH)2 and Co3O4 toward boosting electrochemical charge storage. Adv. Funct. Mater. 2022, 32, 2108644. [Google Scholar] [CrossRef]
- Yang, C.; Xin, S.; Mai, L.; You, Y. Materials Design for High-Safety Sodium-Ion Battery. Adv. Energy Mater. 2021, 11, 2000974. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Zhao, Y.; Zhang, J.; Cao, C. Electrochemical performance of Zn-substituted Ni (OH)2 for alkaline rechargeable batteries. J. Solid State Electrochem. 2005, 9, 421–428. [Google Scholar] [CrossRef]
- Guo, Y.; Hong, X.; Wang, Y.; Li, Q.; Meng, J.; Dai, R.; Liu, X.; He, L.; Mai, L. Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. 2019, 29, 1809004. [Google Scholar] [CrossRef]
- Huang, M.; Li, M.; Niu, C.; Li, Q.; Mai, L. Recent Advances in Rational Electrode Designs for High-Performance Alkaline Rechargeable Batteries. Adv. Funct. Mater. 2019, 29, 1807847. [Google Scholar] [CrossRef]
- Gong, M.; Li, Y.; Zhang, H.; Zhang, B.; Zhou, W.; Feng, J.; Wang, H.; Liang, Y.; Fan, Z.; Liu, J.; et al. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ. Sci. 2014, 7, 2025–2032. [Google Scholar] [CrossRef]
- Jiang, K.; Zhou, Z.; Wen, X.; Weng, Q. Fabrications of High-Performance Planar Zinc-Ion Microbatteries by Engraved Soft Templates. Small 2021, 17, 2007389. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; You, G.; Zhu, Z.; Lv, L.; Liao, X.; He, X.; Yang, K.; Song, R.; Tian, P.; He, L. Reconstructed NiCo Alloy Enables High-Rate Ni-Zn Microbattery with High Capacity. Coatings 2023, 13, 603. https://doi.org/10.3390/coatings13030603
Duan Y, You G, Zhu Z, Lv L, Liao X, He X, Yang K, Song R, Tian P, He L. Reconstructed NiCo Alloy Enables High-Rate Ni-Zn Microbattery with High Capacity. Coatings. 2023; 13(3):603. https://doi.org/10.3390/coatings13030603
Chicago/Turabian StyleDuan, Yixue, Gongchuan You, Zhe Zhu, Linfeng Lv, Xiaoqiao Liao, Xin He, Kai Yang, Ruiqi Song, Peng Tian, and Liang He. 2023. "Reconstructed NiCo Alloy Enables High-Rate Ni-Zn Microbattery with High Capacity" Coatings 13, no. 3: 603. https://doi.org/10.3390/coatings13030603
APA StyleDuan, Y., You, G., Zhu, Z., Lv, L., Liao, X., He, X., Yang, K., Song, R., Tian, P., & He, L. (2023). Reconstructed NiCo Alloy Enables High-Rate Ni-Zn Microbattery with High Capacity. Coatings, 13(3), 603. https://doi.org/10.3390/coatings13030603