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Abstract: An environmentally friendly chelating agent, tetrasodium iminodisuccinate (IDS), was
investigated as an inhibitor in the simulated concrete pore solution on Q235 carbon steel by using Tafel
polarization (TF), electrochemical impedance spectroscopy (EIS) and surface morphology tests. The
EIS and TF results indicate that the IDS is a mixed type of inhibitor and exhibits excellent protection
efficiency (97.54%) at 200 mg/L. Furthermore, based on the Langmuir adsorption isotherm, IDS
protects carbon steel through physical and chemical adsorption. Besides, density functional theory
(DFT) and molecular dynamics (MD) simulations are applied to explore the inhibition mechanism to
support the experimental data, indicating that IDS can be used as a new green corrosion inhibitor.

Keywords: tetrasodium iminodisuccinate (IDS); corrosion inhibitor; electrochemical measurements;
Q235 carbon steel

1. Introduction

The durability of reinforced concrete structures mainly depends on the corrosion
resistance of the reinforcement, which is related to the passivation film on the surface [1,2].
When aggressive ions (Cl−) enter the reinforced concrete structure, the passivation film
will be damaged, and the concrete reinforcement will be eroded by chloride ions and
then gradually corrode. Adding inhibitors is an important way to inhibit corrosion [3–5].
The research of inhibitors exhibited significant theoretical and practical implications for
corrosion and protection of steel reinforcement.

It is reported that many traditional inorganic corrosion inhibitors have been banned be-
cause of their toxic and hazardous nature [6,7]. Organic compounds containing N, O, S, and
P commonly all exhibit good corrosion inhibition properties [8–10]. However, many organic
inhibitors are expensive and harmful to the environment. Therefore, many researchers have
extracted effective substances from natural plants as green corrosion inhibitors. Still, there
are limitations, including the complexity of the extraction process, low inhibition efficiency
and few active ingredients found to contribute to corrosion inhibition [11]. Therefore,
the search for environmentally friendly, safe, non-toxic, easily degradable, and efficient
corrosion inhibitors has recently become a major research direction [12].

Tetrasodium iminodisuccinate (IDS) is a new type of amino acid chelating agent
that is completely biodegradable, non-toxic, water-soluble and has a strong chelating
ability, especially for iron and copper metal ions. Tetrasodium iminodisuccinate (IDS) is
derived from succinic acid, a water-soluble compound. There have been many studies
on structural design based on succinic acid (SA). For example, polyepoxy succinic acid
(PESA) has good chelating properties, which exhibited excellent inhibition in alkaline
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solutions as a green inhibitor [13]. And the mechanism of ethylenediamine-tetraacetic acid
was investigated. Both the EIS results (83%) and the potentiodynamic test (85%) results
indicated that ethylenediamine-tetraacetic acid exhibited the best corrosion protection
at 0.05 M [14]. Furthermore, Teymouri et al. analyzed four carboxylate derivatives in
simulated concrete pore solutions with 0.5 M NaCl for comparative purposes, and the test
results showed that Trisodium Citrate (Cit) performed the highest corrosion inhibition at
0.1 M (91%) [15].

This work investigated the effect of tetrasodium iminodisuccinate (IDS) as a green
inhibitor. Different concentrations of IDS were used, and different ambient temperatures
were simulated. The inhibition efficiency and mechanism of IDS were studied by combining
electrochemical tests, surface morphology tests, DFT calculations and MD simulations.

2. Materials and Methods
2.1. Experimental Materials and Test Solutions

In this work, we used tetrasodium iminodisuccinate (AR), as detailed in Table 1,
and the simulated concrete pore solution with the following composition: 3.5% NaCl,
0.65 mol/L KOH, 0.15 mol/L NaOH and saturated Ca(OH)2 solution (All chemicals in
this work are analytically pure). The working electrode (Q235 carbon steel) is prepared as
follows. Firstly, weld the carbon steel to the copper wire. The length of the wire exposed at
the welded end should not be too long. Then, place it in a PVC pipe of appropriate length
and diameter. The exposed surface as the working surface, and the working area is 1 cm2.
The carbon steel and PVC pipe were sealed with epoxy resin filling and placed in a dry
and ventilated place. After fixing the shape, use 80#–2000# type sandpaper to sand the test
surface, then polish it until it is smooth and flat. Then rinsed with deionized water and
wiped using anhydrous ethanol.

Table 1. Chemical characterizations of IDS.

Parameter Description

Molecular Structure
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Appearance White powder
pH (1% water solution) 11

Molecular formula C8H7NNa4O8
Molecular weight 337.10200

2.2. Electrochemical Testing

The instrument used for the tests is an electrochemical workstation (ChenHua
CHI660E, Shanghai, China), as shown in Figure 1. The materials of the three electrodes
were platinum sheet (auxiliary electrode), saturated glycerol (reference electrode) and
Q235 carbon steel (working electrode) [16,17]. The open circuit potential (EOCP) was first
measured for 1 h. Secondly, the impedance spectra were tested in the frequency range from
100 kHz to 10 mHz and at an AC amplitude of 10 mV. Resolving with Zview software (2.70).
Finally, Tafel curves were tested on Q235 carbon steel with polarization potentials ranging
from −250 to +250 mV relative to the open circuit potential at a scan rate of 1 mV/s.
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2.3. Surface Morphology Testing

The Q235 carbon steel was immersed in the test solutions for 6 h. Then, Q235 carbon
steel surfaces were observed microscopically and analyzed for composition using a scan-
ning electron microscope (GeminiSEM 500) and EDS spectrometer (Oxford UltimMax 65,
ZEISS, Oberkochen, Germany).

2.4. Quantum Chemical Calculations

Optimization of the molecules was achieved with the Gaussian 16 package [18] using
the B3LYP function. In this system, the electronic configuration was based on a 6-31 level g*
to describe the C, H, N, and O group atoms and the LANL08 basis set for Na. All geometries
were confirmed as the minimum through frequency calculations [19]. We calculated the
following parameters: the absolute chemical softness (σ), the absolute chemical hardness (η),
the electronegativity (χ), the dipole moment (µ), the electrophilicity (ω), the number of
transferred electrons (∆N). The electron affinity (E.A) and ionization potential (I.P) [20,21].
All calculation relations are as follows:

E.A = −ELUMO (1)

I.P = −EHOMO (2)

χ = − (EHOMO + ELUMO)

2
(3)

η = − (EHOMO − ELUMO)

2
(4)

σ =
1
η

(5)

ω =
χ2

2η
(6)

∆N =
XFe − Xinh

2(ηFe − ηinh)
(7)

where ηFe = 0 ev/mol, XFe = 7 ev/mol.
The adsorption mechanism of carbon steel was specifically characterized by deter-

mining the active sites of IDS, which were calculated for each atom using the Fukui
function. The values fk were obtained by the finite difference approximation introduced
by Yang and Mortier [22]. The nucleophilic attack ( fk

+) and electrophilic attack ( fk
−) are

expressed as follows:

fk
+ = qk(N + 1)− qk(N) (8)

fk
− = qk(N)− qk(N − 1) (9)
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where qk(N + 1), qk(N), qk(N − 1) denotes the charge of the anionic, neutral, and cationic
types on the k atom, respectively.

The local softness (σ±k ) and electrophilicity (ω±
k ) are calculated as follows [23]:

σ±k = σ f±k (10)

ω±
k = ω f±k (11)

The dual local descriptors are a better way to visualize the distribution of molecular
activity than the local reaction indexes, and the dual local descriptors are calculated as
shown below [24]:

f 2
k = f+k − f−k (12)

∆σk = σ+
k − σ−

k (13)

∆ωk = ω+
k −ω−

k (14)

2.5. MD Simulations

The molecular dynamics simulations were run with the Material Studio software.
We chose more suitable parameters such as the box size of 40.5385 Å × 40.1296 Å × 5.5 Å,
containing 500 H2O, a vacuum layer of 30 Å above the box set up, the NVT system with
an Andersen heat bath (298 K), 1 fs time step, time duration of 1000 ps and a reliable
COMPASS force field.

3. Results and Discussion
3.1. Open Circuit Potential

The measurement of the Open circuit potential has an essential influence on the
reliability of the results of electrochemical impedance tests and polarization curve tests.
The curves are presented in Figure 2. The Open circuit potential of Q235 carbon steel
immersed in corrosion solution without IDS keeps moving in a negative direction and
eventually stabilizes at around 3600 s [25,26]. However, the Open circuit potential with
various concentrations of IDS shows a trend of short time increase firstly and then decrease
and reaches a stable change at around 3600 s. This is because the IDS inhibitor has a
beneficial effect and can produce a film to protect carbon steel. Although, because the high
content of aggressive ions in a strongly alkaline environment caused corrosion to occur
eventually, a downward trend was observed. Based on the results of this experiment can be
obtained, carbon steel in the treatment is completed after treatment, and carbon steel needs
to be immersed for at least 1 h to reach stability before continuing to test the EIS and TF.
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3.2. Electrochemical Impedance Spectroscopy

Figure 3 represents the Nyquist and Bode plots without and with corrosion inhibitors,
respectively. All Nyquist curves demonstrate a single capacitive loop, and the smallest
impedance arc radius is shown in Figure 3a without corrosion inhibitor. Impedance arc
radius increases with the addition of IDS, and the greater the concentration of IDS, the more
obvious the protective behavior. As shown in Figure 3b, we can see the low−frequency
impedance value and the maximum phase angle both increase with the addition of IDS,
which suggests that the IDS has a good protective effect on carbon steel, a more stable
protective layer can be formed on a carbon steel surface to prevent corrosive ions from
eroding carbon steel [27–29].
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As shown in Figure 4, this equivalent circuit diagram has been used in many articles
about corrosion and has been applied several times in alkaline environments [30–32].
For example, in Figure 4, there is a solution resistance (Rs); a thin film resistance (Rf); a
charge transfer resistance (Rct), and constant phase angle elements (CPE1 and CPE2). The
expression for a constant phase element (CPE) is as follows [33]:

ZCPE = Y0
−1(jω)−n (15)

where Y0 denotes the scaling factor, ω denotes the angular frequency, j denotes the imagi-
nary root, and n can be used as an indicator of surface inhomogeneity (−1 ≤ n ≤ 1) [34]. The
double-layer capacitance (Cdl) and the inhibition efficiency (IEEIS%) are shown below [35]:

Cdl = Y0(2π fmax)
n−1 (16)

IEEIS% =
Rct − Rct0

Rct
× 100 (17)

where fmax indicates the frequency at which the imaginary part of the impedance reaches
its maximum value.
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As shown in Figure 5, the Rct value increases with the increase of IDS concentration, as
shown in Table 2, where the corrosion efficiency is 96.79% at 200 mg/L of IDS. In addition,
the corrosion-inhibiting effect of IDS can also be expressed by the Cdl. We found that the
Cdl value showed an overall decreasing trend, and usually, the Cdl can be expressed by the
Helmholtz model as follows [36]:

Cdl =
ε0ε

d
S (18)

where d denotes the thickness of the double electric layer, S indicates effective carbon steel
area, and ε0, ε are the vacuum and the dielectric constant of the steel surface. The dielectric
constant of the carbon steel surface is reduced after the water molecules are replaced by
IDS molecules, and the double electric layer will be thickened. Therefore, the value of Cdl
will be reduced.
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Table 2. Impedance parameters of Q235 carbon steel after fitted.

Inhibitor C
(mg/L)

Rs
(Ω cm2)

Rf
(Ω cm2)

Y1 (×10−5

sn·ohm−1·cm−2) n1 Rct
(Ω cm2)

Y2 (×10−5sn·ohm−1·
cm−2) n2 Cdl

(×10−5 F) IEEIS%

Blank 0 1.49 697.90 8.99 0.89 957.90 231.19 0.56 66.81 —

IDS

50 1.91 900.30 7.74 0.79 1948.00 65.93 0.36 17.80 50.83
100 1.53 3024.00 11.62 0.88 7254.00 14.37 0.24 14.41 86.79
150 2.80 6388.00 6.25 0.86 17,933.00 9.99 0.43 16.99 94.66
200 3.78 7193.00 7.95 0.97 29,866.00 6.78 0.50 13.51 96.79

3.3. Tafel Polarization Curves

We measured the effect of IDS at different concentrations on carbon steel at 298 K
with the Tafel polarization test, as shown in Figure 6. The following parameters are
used: corrosion potential (Ecorr), corrosion current density (Icorr), and slope of the curve
branches (βc, βa) inhibition efficiency (IETP%) to express the polarization curves [37,38].
The inhibition efficiency (IETP%) was calculated as follows:

IETP% =
Icorr0 − Icorr

Icorr0
× 100 (19)

where Icorr0 and Icorr denote the corrosion current density in the absence and presence of
IDS. Besides, the rates (CR, mm/year) of carbon steel corrosion were calculated below.

CR =
A × Icorr

n × F × ρ = 0.0116 × Icorr (20)

In the above equation, n denotes the charge transfer number, A denotes iron atomic
weight (55.85 g/mol), F represents the Faraday constant (1F = 96,485.33 C/mol), ρ denotes
the iron density (7.86 g/cm3).
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From Figure 6 we can see that the addition of IDS caused the polarization curves
to move downward significantly. The polarization curves shifted in the direction of the
negative potential. If the Ecorr of the inhibitor varies by more than 85 mV, it will be classified
as an anode or cathode type [39,40]. The value of Ecorr shifted did not exceed 85 mV,
denoting that IDS is a mixed-type inhibitor, inhibiting both anode and cathode. Table 3
illustrates that the values of Icorr and CR decrease significantly and the calculated value
of IETP% increases and the IETP% value of IDS reaches 98.30% at 200 mg/L, which can
indicate that the greater the concentration of IDS, the stronger the protective effect of the
adsorption film.

Table 3. The polarization curve parameters of Q235 steel with different concentrations of IDS.

Inhibitor C
(mg/L)

Ecorr
(V) βa (mV/Dec) βc (mV/Dec) Icorr (µA/cm−2) CR (mm/year) IETP %

Blank 0 −0.32441 92.79 204.88 22.71 0.263 —

IDS

50 −0.38642 108.25 128.44 9.51 0.110 58.10
100 −0.35376 141.31 183.74 3.27 0.038 85.62
150 −0.37065 123.69 117.29 0.71 0.008 96.86
200 −0.38989 117.36 98.00 0.39 0.004 98.30

According to the electrochemical impedance test and polarization curve test results,
the trend of corrosion inhibition efficiency we obtained with the two methods is the same.
Table 4 shows the average efficiency. IDS reached the efficiency of 97.54% at 200 mg/L,
providing significant protection to the Q235 carbon steel.

Table 4. The average efficiency obtained by combining the two methods.

Inhibitor C
(mg/L)

IEEIS
(%)

IETP
(%)

Average of IE
(%)

IDS

50 50.83 58.10 54.46
100 86.79 85.62 86.21
150 94.66 96.86 95.76
200 96.79 98.30 97.54

3.4. Adsorption Isotherm Behavior

The adsorption isotherm is of great value in elucidating the form and mechanism of
the adsorption of inhibitors. Therefore, we fitted various adsorption curves based on the
average of the inhibition efficiencies shown in Table 4 to represent the surface coverage (θ)
and used the correlation coefficient to select the most suitable adsorption isotherm for
this experiment. As shown in Figure 7, We found that the adsorption of IDS matched the
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Langmuir adsorption isotherm (R2 close to 1). Where the three adsorption isotherms were
calculated using these equations [41]:

Langmuir :
C
θ
=

1
Kads

+ C (21)

Temkin : exp(−2aθ) = KadsC (22)

Frumkin :
θ

1 − θ exp(−2aθ) = KadsC (23)

In these formulas, C denotes the inhibitor content, θ is expressed as the average of the
inhibition efficiency (Table 4), and a is the molecular interaction during adsorption. The
equilibrium constant (Kads) and the standard Gibbs free energy (∆Gads) are correlated as
follows [42]:

∆Gads = −RTln
(

1 × 103Kads

)
(24)
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We can see that the negative value of ∆Gads means that the IDS is spontaneously
adsorbed onto carbon steel. The adsorption process is usually divided into physical
adsorption and chemisorption. In general, the values of ∆Gads below −20 kJ/mol are
physical adsorption, where there is no electron transfer in the process. The values of
∆Gads above −40 kJ/mol are chemisorption due to the bonding of the corrosion inhibitor
molecules to the d-space orbitals on the metal surface by means of ligand covalent bonding.
Between the two is mixed adsorption [43]. We can see that the value of ∆Gads for IDS
is −24.67 KJ/mol, reflecting that IDS protected carbon steel with physical and chemical
adsorption. Physical adsorption is the dominant process.

3.5. Surface Studies

Figure 8a,b represent the SEM images of the Q235 carbon steel immersed in the
simulated concrete pore solution without inhibitor and containing 200 mg/L IDS for 6h.
We can see that the carbon steel surface is rough with deeper cracks and corrosion pits in
Figure 8a, indicating that the surface has been attacked. Comparing the SEM image with
200 mg/L IDS added, the cracks and holes are reduced, and the surface is smoother except
for the grinding marks. Figure 9a,b shows the corresponding EDS images. Analyzing the
two EDS images, we can see the increase of C elements on the surface after adding IDS
because it is present in the molecular structure of IDS. The reduction of O and Cl elements
and the increase of Fe elements mean that the addition of IDS reduces the number of active
sites on the metal surface and decreases the probability of corrosion. Besides, the carbon
steel surfaces all have silicon elements left from the sandpaper grinding process.
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3.6. Effect of Temperature

Tafel polarization tests were taken to investigate the IDS effect at different temperatures
in this work. As shown in Figure 10, we can observe the corrosion current density increases
with increasing temperature. From Table 5 and Figure 11a, the efficiency (IETP%) decreases
with increasing temperature after adding 200 mg/L IDS, indicating high temperatures
accelerate the corrosion and reduce the adsorption of IDS, which means that IDS molecule
on the carbon steel substrate desorption occurs, contributing to a decrease in inhibition
efficiency [44].
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Table 5. Polarization parameters for the Q235 carbon steel at different temperatures.

T Inhibitor Ecorr (V) βa (mV/Dec) βc (mV/Dec) Icorr (µA/cm−2) IETP (%)

298 K
Blank −0.32441 92.79 204.88 22.71 -
IDS −0.38989 117.36 98.00 0.39 98.30

308 K
Blank −0.32636 59.43 166.72 25.29 -
IDS −0.34479 41.39 72.15 1.64 93.53

318 K
Blank −0.34050 74.73 129.54 33.08 -
IDS −0.36863 54.93 57.47 3.98 87.96

328 K
Blank −0.36870 82.32 112.23 40.70 -
IDS −0.36087 65.61 56.74 5.62 86.19

In this work, the activation energy of the carbon steel corrosion process is calculated
using the Arrhenius model [45]:

Icorr = k·exp
−Ea

RT
(25)

The entropy and enthalpy of activation (∆Sa, ∆Ha) for corrosion dissolution of car-
bon steel are calculated by the alternative Arrhenius model, as shown in the following
equation [45]:

Icorr =
RT
hN

exp
(

∆Sa

R

)
·
(
−∆H

RT

)
(26)

In the above equation, N denotes Avogadro’s number, Ea denotes the apparent acti-
vation energy, R denotes the gas constant, k denotes the pre-exponential factor, h denotes
Planck’s constant. For example, Figure 11b,c shows the relationship between Log (Icorr)
and 1/T, Log (Icorr/T) and 1/T, and the slopes of the fitted line provide (−Ea/2.303R) and
(−∆Ha/2.303R), the intercepts gives (log k) and [log (R/hN) ∆Sa/2.303R] [46].
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The Ea value increases after adding IDS in Table 6, and it can be assumed that the IDS
molecules have a strong adsorption capacity, thus inhibiting the corrosion reaction. The
positive value of ∆Ha suggests carbon steel is a heat absorption process when dissolved,
and ∆Ha (Blank) < ∆Ha (IDS) indicates the dissolution of the carbon steel becomes less after
adding IDS. The negative value of ∆Sa suggests that the activation complex is an interaction
phase rather than a dissociation phase in the rate-determining phase [47]. The increase in
∆Sa value after adding IDS is due to solvent entropy increase, implying that IDS can form
the protective layer [48].

Table 6. Thermodynamic activation parameters of Q235 carbon steel.

Inhibitor Ea
(KJ mol−1)

∆Ha
(KJ mol−1)

∆Sa
(J mol−1 K−1)

Blank 16.34 13.75 −173.19
IDS 73.02 70.42 −14.58



Coatings 2023, 13, 613 11 of 17

3.7. DFT Calculations

The energy (EHOMO, ELUMO) is instrumental in predicting the adsorption center in an
inhibitor molecule. The value of EHOMO is related to an inhibitor molecule’s ability to give
electrons, the value of ELUMO is related to an inhibitor molecule’s ability to accept electrons,
∆E is an energy difference between two orbitals, a low ∆E indicates the molecule is less
stable and more likely to be involved in binding [49,50]. Figure 12 shows that the electron
density distribution (HOMO) is located in the amino group. The carbon atom is attached to
the amino group. In contrast, the electron density distribution (LUMO) is mainly located
in the sodium group of carboxylic acid. Positive and negative electrostatic potentials are
shown in green and blue in the electrostatic potential diagram. For the IDS molecule,
the negative ESP region is located around the Na atoms (sodium groups of carboxylic
acid), while the positive ESP region is concentrated around the C atoms. Thus, it can be
shown that the sodium groups of carboxylic acid in the IDS molecule are important in the
electrophile attack and easily form chemical bonds with Fe atoms.
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The theoretical chemical parameters of the IDS are listed in Table 7. Generally, organic
inhibitors with low hardness (η) values and high softness (σ) values adsorb well on metal
surfaces. Lukovits’ study revealed that the corrosion inhibition efficiency of the inhibitor
increases with the increase of the molecular electron supply ability for ∆N < 3.6 [51]. The
∆N we obtained by calculation is less than 3.6, indicating that the IDS inhibitor is more
likely to transfer electrons to the carbon steel surface. Furthermore, the dipole moments (µ)
we calculated have high values, confirming the high inhibition efficiency of IDS [52].

We used the Fukui index to study the specific reaction sites of IDS molecules in the
adsorption process. Higher f−k values indicate atoms with a high electron-giving capacity
and a high reactivity to participate in the electron-philic attack, while higher f+k values
indicate atoms with high reactivity to participate in nucleophilic reactions [53]. The Fukui
Index is summarised in Table 8. The results show that for the IDS molecule, the higher
f+k values were distributed among the Na28, Na25, Na26, Na27 atoms on the sodium
carboxylate group, the higher f−k values were distributed among the N9 atom in the amino
group and the O16 and O5 atoms in the sodium carboxylate group. These atoms have a
strong ability to accept and give electrons, respectively. The active sites are further observed
by the dual local descriptors as shown in Figure 13. If the values ( f 2

k , ∆σk and ∆ω) of the
sites are less than 0, the process prefers electrophilic attack, but if the values ( f 2

k , ∆σk and
∆ω) of the sites > 0, the process prefers nucleophilic attack [23]. In Figure 13, the order of
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the most active sites giving electrons is: N9 > O16 > O5, and the trend of electron-accepting
ability is Na28 > Na25 > Na26 > Na27.

Table 7. The theoretical chemical parameters of IDS.

Descriptor IDS

EHOMO (ev) −5.88618
ELUMO (ev) −0.26908

I.P (ev) 5.88618
E.A (ev) 0.26908
∆E (ev) 5.61711
χ (ev) 3.07763
η (ev) 2.80855
σ (ev−1) 0.35606
ω 1.68624

∆N 0.69829
µ (Debye) 6.74497
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Table 8. Dual local descriptors, Fukui functions, local softness, electrophilicity of IDS.

Atoms fk
+ fk− fk

2 σk
+ σk− ∆σk ω+ ω− ∆ω

1(C) 0.0028 0.0186 −0.158 0.0125 0.0817 −0.0692 0.0029 0.02571 −0.02281
2(C) 0.0014 0.0319 −0.0305 0.006 0.1399 −0.1339 0.00139 0.04410 −0.04271
3(C) 0.0015 0.02 −0.0186 0.0065 0.088 −0.0815 0.00152 0.02765 −0.02613
4(C) 0.0032 0.0052 −0.002 0.0142 0.0228 −0.0086 0.0033 0.00719 −0.00389
5(O) 0.0065 0.0609 −0.0544 0.0286 0.2675 −0.2389 0.00665 0.08419 −0.07754
6(O) −0.0026 0.0345 −0.0371 −0.0113 0.1516 −0.1629 −0.00263 0.04769 −0.05032
7(O) −0.0021 0.0432 −0.0452 −0.009 0.1896 −0.1986 −0.0021 0.05972 −0.06182
8(O) 0.0056 0.028 −0.0224 0.0246 0.123 −0.0984 0.00573 0.03871 −0.03298
9(N) 0.0042 0.1933 −0.1891 0.0183 0.8485 −0.8302 0.00426 0.26722 −0.26296
10(C) 0.0015 0.0216 −0.0201 0.0064 0.0947 −0.0883 0.00149 0.02986 −0.02837
11(C) 0.0034 0.0157 −0.0124 0.0149 0.0691 −0.0542 0.00347 0.02170 −0.01823
12(C) 0.0041 0.0084 −0.0042 0.0182 0.0367 −0.0185 0.00423 0.01161 −0.00738
13(C) 0.0016 0.0228 −0.0213 0.007 0.1003 −0.0933 0.00162 0.03152 −0.02990
14(O) 0.0085 0.0326 −0.0242 0.0372 0.1433 −0.1061 0.00865 0.04507 −0.03642
15(O) −0.0038 0.0257 −0.0295 −0.0165 0.1128 −0.1293 −0.00385 0.03553 −0.03938
16(O) −0.0032 0.0791 −0.0823 −0.0139 0.3472 −0.3611 −0.00325 0.10935 −0.11260
17(O) 0.003 0.0395 −0.0364 0.0133 0.1732 −0.1599 0.00311 0.05460 −0.05149

25(Na) 0.2344 0.0435 0.1908 1.029 0.1911 0.8379 0.23956 0.06013 0.17943
26(Na) 0.2276 0.0405 0.1871 0.9992 0.1778 0.8214 0.23264 0.05599 0.17665
27(Na) 0.2197 0.0381 0.1817 0.9647 0.1672 0.7975 0.2246 0.05267 0.17193
28(Na) 0.2611 0.0427 0.2184 1.1463 0.1874 0.9589 0.26689 0.05903 0.20786
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3.8. MD Simulations

Figure 14a,b represents the side and top views of the stable equilibrium configuration
of IDS adsorbed on the surface of Fe (110), respectively, it can be seen that the sodium
carboxylate groups and N atoms of IDS molecules are preferentially adsorbed on the
surface. The adsorption energy (Eads) is expressed as follows [28,54]:

Eads = Etotal − Esur f ace − Einhibitor (27)

where Etotal represents the total energy, Esurface represents the energy of Fe, and Einhibitor
represents that of the inhibitor molecule. The calculated adsorption energy is negative in
Table 9, which further indicates that IDS is spontaneously adsorbed on the surface.
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Table 9. The activation parameters of Q235 carbon steel.

Etotal
(kcal/mol)

Esurface
(kcal/mol)

Einhibitor
(kcal/mol)

Eads
(kcal/mol)

−55,044.77 −54,499.59 −472.04 −73.14

It is well known that corrosion occurs when water molecules in the air attach to
the carbon steel surface, and the addition of IDS will replace the water molecules, thus
inhibiting the corrosion of carbon steel. We can see from Figure 15a that the density of
water molecules with the addition of IDS decreases within 20 Å, which is consistent with
our experimental results.
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3.9. Mechanism of Inhibition

The IDS inhibitor protects carbon steel through physical and chemical adsorption in
this work. Figure 16a shows the carbon steel surface was attacked by chloride ions and
suffered severe corrosion when no inhibitor was added. Figure 16b represents the inhibition
of carbon steel by adding IDS. The physical adsorption process means that the positive
charges in the IDS molecules adsorb to the surface. As a result, the protective film formed
at the carbon steel-solution interface protects the carbon steel, reducing the diffusion of
oxygen and the entry of aggressive ions and water molecules. The chemisorption process
refers to the interaction between the –COONa groups and the N atoms of the IDS and the
empty d-orbitals of the Fe atoms on the carbon steel surface, forming covalent bonds and
covering the surface, enhancing the protective effect.
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3.10. Comparison of Similar Corrosion Inhibitors

We compared IDS with reported corrosion inhibitors like its molecular structure, and
the inhibition effects derived from the comparison are summarized in Table 10. As a result,
we can obtain that IDS exhibits the highest corrosion inhibition effect. Without adding
any auxiliary conditions, our reported IDS reaches an efficiency of 97.54% at 200 mg/L,
which is higher than the corrosion efficiency of corrosion inhibitors reported in similar
environments. This indicates that IDS is of good research value in the field of corrosion
and can be used as an efficient corrosion inhibitor.

Table 10. Comparison of the protection efficiency of IDS with corrosion inhibitors of similar molecular
structure for carbon steel.

Inhibitor
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4. Conclusions

We investigated the inhibition effect and mechanism of IDS through a series of test
methods and calculations. At last, we have found several conclusions:

1. The ddouble-layer capacitance (Cdl) was significantly reduced, and the charge transfer
resistance (Rct) was significantly increased after adding IDS. This demonstrates that
corrosion of Q235 carbon steel can be effectively retarded when adding IDS to the
simulated concrete solution.

2. IDS acts on both the cathode and anode of Q235 carbon steel, the IDS efficiency reached
97.54% at 200 mg/L.

3. IDS on carbon steel surface is spontaneous, mainly physical adsorption, which matches
the Langmuir adsorption model well.

4. The DFT and MD simulations support the results of the tests and further indicate the
sodium carboxylate groups in the IDS molecule play a major role in the corrosion
inhibition process. It can be used as a new type of highly efficient inhibitor.
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