The Properties of the CH3NH3PbI3/TiO2 Composite Layer Prepared from PbO-TiO2 Mesoporous Layer under Air Ambience
Abstract
:1. Introduction
2. Experiment
2.1. Preparation of Precursor Solution
2.2. Preparation of Pb-TiO2 Electrode, CH3NH3PbI3/TiO2 Composite Layer, and Perovskite Solar Cell
2.3. Characterization
3. Results and Discussion
3.1. The Effect of Pb:Ti on the Properties of Prepared PbO-TiO2 Composite Thin Films
3.2. Optimization of Dip Coating for the Preparation of Perovskite Absorption Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Rhee, J.H.; Chung, C.C.; Diau, E.W.G. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. NPG Asia Mater. 2013, 5, e68. [Google Scholar] [CrossRef] [Green Version]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Dunlop, E.D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X.J. Solar cell efficiency tables (Version 61). Prog. Photovolt. Res. Appl. 2023, 31, 3–16. [Google Scholar] [CrossRef]
- Jeong, M.; Choi, I.W.; Go, E.M.; Cho, Y.J.; Kim, M.J.; Lee, B.K.; Jeong, S.H.; Jo, Y.H.; Choi, H.W.; Lee, J.Y.; et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.H.; Yantara, N.; Dharani, S.; Graetzel, M.; Mhaisalkar, S.; Boix, P.P.; Mathews, N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 2013, 49, 11089–11091. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, J.W.; Yantara, N.; Boix, P.P.; Kulkarni, S.A.; Mhaisalkar, S.; Grätzel, M.; Park, N.-G. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 2013, 13, 2412–2417. [Google Scholar] [CrossRef]
- Bi, D.; Moon, S.J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E.M.J.; Nazeeruddin, M.K.; Grätzel, M.; Hagfeldt, A. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 2013, 3, 18762–18766. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, K. Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J. Phys. Chem. Lett. 2013, 4, 2880–2884. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Luo, Y.; Wei, H.; Luo, J.; Dong, J.; Lv, S.; Xiao, J.; Xu, Y.; Zhu, L.; Xu, X. Modified Two-Step Deposition Method for High-Efficiency TiO2/CH3NH3PbI3 Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 9711–9718. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, X.; Zhao, Y.; Shi, J.J.; Xu, Y.; Luo, Y.H.; Li, D.M.; Wu, H.J.; Meng, Q.B. DMF as an Additive in a Two-Step Spin-Coating Method for 20% Conversion Efficiency in Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 26937–26947. [Google Scholar] [CrossRef]
- Han, Y.; Xie, H.; Lim, E.L.; Bi, D. Review of Two-Step Method for Lead Halide Perovskite Solar Cells. Solar RRL 2022, 6, 2101007. [Google Scholar] [CrossRef]
- Eperon, G.E.; Burlakov, V.M.; Docampo, P.; Goriely, A.; Snaith, H.J. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater. 2014, 24, 151–157. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.S.; Wang, H.H.; Liu, Y.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2013, 136, 622–625. [Google Scholar] [CrossRef]
- Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q. Rutile TiO2 Nanowires Perovskite Solar Cells. Chem. Commun. 2014, 50, 14720–14723. [Google Scholar] [CrossRef] [PubMed]
- Leijtens, T.; Lauber, B.; Eperon, G.E.; Stranks, S.D.; Snaith, H.J. The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Dastan, D.; Gosavi, S.W.; Chaure, N.B. Studies on Electrical Properties of Hybrid Polymeric Gate Dielectrics for Field Effect Transistors. Macromol. Symp. 2015, 347, 81–86. [Google Scholar] [CrossRef]
- Dastan, D.; Londhe, P.U.; Chaure, N.B. Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J. Mater. Sci. Mater. Electron. 2014, 25, 3473–3479. [Google Scholar] [CrossRef]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, B.; Huang, W.; Gao, D.; Liang, Z. Efficient and reproducible CH3NH3PbI3-x(SCN)x perovskite based planar solar cells. Chem. Commun. 2015, 51, 11997–11999. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Xiao, C.; Wang, C.; Saparov, B.; Duan, H.S.; Zhao, D.; Xiao, Z.; Schulz, P.; Harvey, S.P.; Liao, W.; et al. Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells. Adv. Mater. 2016, 28, 5214–5221. [Google Scholar] [CrossRef] [PubMed]
- Nanu, M.; Schoonman, J.; Goossens, A. Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. Nano Lett. 2005, 5, 1716–1719. [Google Scholar] [CrossRef]
- Cui, X.; Chen, Y.; Zhang, M.; Harn, Y.W.; Qi, J.B.; Gao, L.K.; Lin, Z.W.; Huang, J.S.; Yang, Y.K.; Lin, Z.Q. Tailoring carrier dynamics in perovskite solar cells via precise dimension and architecture control and interfacial positioning of plasmonic nanoparticles. Energy Environ. Sci. 2020, 13, 1743–1752. [Google Scholar] [CrossRef]
- Chen, J.; Zuo, L.; Zhang, Y.; Lian, X.; Fu, W.; Yan, J.; Li, J.; Wu, G.; Li, C.Z.; Chen, H. High-Performance Thickness Insensitive Perovskite Solar Cells with Enhanced Moisture Stability. Adv. Energy Mater. 2018, 8, 1800438. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, M.J.; Pang, S.P.; Huang, C.S.; Zhou, Z.M.; Wang, D.; Wang, N.; Cui, G.L. Carrier Transport in CH3NH3PbI3 Films with Different Thickness for Perovskite Solar Cells. Adv. Mater. Interfaces 2016, 3, 1600327. [Google Scholar] [CrossRef]
Name | PbI2 | N,N-Dimethylformamide | CH3NH3I | 2,2′,7,7′-Tetrakis(N,N-Di-P-Methoxypheny-Amine)-9,9′-Spirobifluorene | Isopropyl Alcohol | Ter-butylpyridine | Lithium bis(trifluoromethanesulfonyl)imide | Acetonitrile | Chlorobenzene |
---|---|---|---|---|---|---|---|---|---|
Purity | 99.99% | 99.9% | 99.5% | 99.8% | 99.9% | 96% | 98% | - | 99.5% |
Amount/Concentration | 0.461 g | 1 mL | 500 mg | 72.3 mg | 50 mL | 28.8 μL | 52 mg | 100 μL | 1 mL |
Pb:Ti | EDS Result |
---|---|
1:10 | 0.037 |
1:08 | 0.1 |
1:06 | 0.097 |
1:04 | 0.125 |
1:02 | 0.388 |
Element | Wt% | At% |
---|---|---|
CK | 02.27 | 07.01 |
OK | 23.93 | 55.57 |
NaK | 01.78 | 02.88 |
MgK | 00.45 | 00.69 |
SiK | 05.09 | 06.73 |
PbM | 41.17 | 07.38 |
CaK | 00.77 | 00.72 |
TiK | 24.53 | 19.02 |
Crystal Phase | FWHM/° |
---|---|
110 | 0.07 |
220 | 0.19 |
310 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhu, W.; Ni, Y.; Yuan, H. The Properties of the CH3NH3PbI3/TiO2 Composite Layer Prepared from PbO-TiO2 Mesoporous Layer under Air Ambience. Coatings 2023, 13, 669. https://doi.org/10.3390/coatings13040669
Chen Q, Zhu W, Ni Y, Yuan H. The Properties of the CH3NH3PbI3/TiO2 Composite Layer Prepared from PbO-TiO2 Mesoporous Layer under Air Ambience. Coatings. 2023; 13(4):669. https://doi.org/10.3390/coatings13040669
Chicago/Turabian StyleChen, Qinmiao, Wei Zhu, Yi Ni, and Hongcun Yuan. 2023. "The Properties of the CH3NH3PbI3/TiO2 Composite Layer Prepared from PbO-TiO2 Mesoporous Layer under Air Ambience" Coatings 13, no. 4: 669. https://doi.org/10.3390/coatings13040669
APA StyleChen, Q., Zhu, W., Ni, Y., & Yuan, H. (2023). The Properties of the CH3NH3PbI3/TiO2 Composite Layer Prepared from PbO-TiO2 Mesoporous Layer under Air Ambience. Coatings, 13(4), 669. https://doi.org/10.3390/coatings13040669