Planar Multi-Gate Artificial Synaptic Transistor with Solution-Processed AlOx Solid Electric Double Layer Dielectric and InOx Channel
Abstract
:1. Introduction
2. Experiment Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- von Neumann, J. The principles of large-scale computing machines. Ann. Hist. Comput. 1989, 10, 243–256. [Google Scholar] [CrossRef]
- Chang, T.; Yang, Y.; Lu, W. Building Neuromorphic Circuits with Memristive Devices. IEEE Circuits Syst. Mag. 2013, 13, 56–73. [Google Scholar] [CrossRef]
- Drachman, D.A. Do we have brain to spare? Neurology 2005, 64, 2004–2005. [Google Scholar] [CrossRef] [PubMed]
- Furber, S. Large-scale neuromorphic computing systems. J. Neural Eng. 2016, 13, 051001. [Google Scholar] [CrossRef] [PubMed]
- Furber, S. To Build a Brain. IEEE Spectr. 2012, 49, 44–49. [Google Scholar] [CrossRef]
- Yang, R.; Huang, H.-M.; Hong, Q.-H.; Yin, X.-B.; Tan, Z.-H.; Shi, T.; Zhou, Y.-X.; Miao, X.-S.; Wang, X.-P.; Mi, S.-B.; et al. Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors. Adv. Funct. Mater. 2018, 28, 1704455. [Google Scholar] [CrossRef]
- Choquet, D.; Triller, A. The Dynamic Synapse. Neuron 2013, 80, 691–703. [Google Scholar] [CrossRef] [Green Version]
- Kuzum, D.; Yu, S.; Wong, H.S.P. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001. [Google Scholar] [CrossRef]
- Hu, L.; Fu, S.; Chen, Y.; Cao, H.; Liang, L.; Zhang, H.; Gao, J.; Wang, J.; Zhuge, F. Ultrasensitive Memristive Synapses Based on Lightly Oxidized Sulfide Films. Adv. Mater. 2017, 29, 1606927. [Google Scholar] [CrossRef]
- Yu, H.; Gong, J.; Wei, H.; Huang, W.; Xu, W. Mixed-halide perovskite for ultrasensitive two-terminal artificial synaptic devices. Mater. Chem. Front. 2019, 3, 941–947. [Google Scholar] [CrossRef] [Green Version]
- Kuzum, D.; Jeyasingh, R.G.D.; Lee, B.; Wong, H.S.P. Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing. Nano Lett. 2012, 12, 2179–2186. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, H.; Gong, J.; Ma, M.; Han, H.; Wei, H.; Xu, W. Artificial synapses based on nanomaterials. Nanotechnology 2019, 30, 012001. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, Y.; Kaneko, Y.; Ueda, M.; Morie, T.; Fujii, E. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J. Appl. Phys. 2012, 111, 124108. [Google Scholar] [CrossRef]
- Han, H.; Yu, H.; Wei, H.; Gong, J.; Xu, W. Recent Progress in Three-Terminal Artificial Synapses: From Device to System. Small 2019, 15, e1900695. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Kong, L.-a.; Yang, J.; Gao, Y.; Sun, J. Multi-gate organic neuron transistors for spatiotemporal information processing. Appl. Phys. Lett. 2017, 110, 083302. [Google Scholar] [CrossRef]
- John, R.A.; Ko, J.; Kulkarni, M.R.; Tiwari, N.; Nguyen Anh, C.; Ing, N.G.; Leong, W.L.; Mathews, N. Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing. Small 2017, 13, 1701193. [Google Scholar] [CrossRef]
- Du, H.W.; Lin, X.; Xu, Z.M.; Chu, D.W. Electric double-layer transistors: A review of recent progress. J. Mater. Sci. 2015, 50, 5641–5673. [Google Scholar] [CrossRef]
- Tian, H.; Mi, W.; Wang, X.-F.; Zhao, H.; Xie, Q.-Y.; Li, C.; Li, Y.-X.; Yang, Y.; Ren, T.-L. Graphene Dynamic Synapse with Modulatable Plasticity. Nano Lett. 2015, 15, 8013–8019. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, N.; Zhu, L.; Shi, Y.; Wan, Q. Energy-Efficient Artificial Synapses Based on Flexible IGZO Electric-Double-Layer Transistors. IEEE Electron Device Lett. 2015, 36, 198–200. [Google Scholar] [CrossRef]
- Wan, X.; Yang, Y.; Feng, P.; Shi, Y.; Wan, Q. Short-Term Plasticity and Synaptic Filtering Emulated in Electrolyte-Gated IGZO Transistors. IEEE Electron Device Lett. 2016, 37, 299–302. [Google Scholar] [CrossRef]
- Wen, J.; Zhu, L.Q.; Fu, Y.M.; Xiao, H.; Guo, L.Q.; Wan, Q. Activity Dependent Synaptic Plasticity Mimicked on Indium-Tin-Oxide Electric-Double-Layer Transistor. Acs Appl. Mater. Interfaces 2017, 9, 37064–37069. [Google Scholar] [CrossRef]
- Liang, X.C.; Luo, Y.Y.; Pei, Y.L.; Wang, M.Y.; Liu, C. Multimode transistors and neural networks based on ion-dynamic capacitance. Nat. Electron. 2022, 5, 859–869. [Google Scholar] [CrossRef]
- Dai, S.; Wang, Y.; Zhang, J.; Zhao, Y.; Xiao, F.; Liu, D.; Wang, T.; Huang, J. Wood-Derived Nanopaper Dielectrics for Organic Synaptic Transistors. Acs Appl. Mater. Interfaces 2018, 10, 39983–39991. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Zhu, L.Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding Artificial Synapses Based on Laterally Proton-Coupled Transistors on Chitosan Membranes. Adv. Mater. 2015, 27, 5599–5604. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Yang, Y.; Ren, T.-L. Top-Gate Electric-Double-Layer IZO-Based Synaptic Transistors for Neuron Networks. IEEE Electron Device Lett. 2017, 38, 588–591. [Google Scholar] [CrossRef]
- He, Y.; Yang, Y.; Nie, S.; Liu, R.; Wan, Q. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J. Mater. Chem. C 2018, 6, 5336–5352. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Xiao, H.; Liu, Y.H.; Wan, C.J.; Shi, Y.; Wan, Q. Multi-gate synergic modulation in laterally coupled synaptic transistors. Appl. Phys. Lett. 2015, 107, 143502. [Google Scholar] [CrossRef]
- Li, S.; Lyu, H.; Li, J.; He, Y.; Gao, X.; Wan, Q.; Shi, Y.; Pan, L. Multiterminal Ionic Synaptic Transistor with Artificial Blink Reflex Function. IEEE Electron Device Lett. 2021, 42, 351–354. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Chen, C.; Mao, H.; Zhu, Y.; Zhu, Y.; Yang, Y.; Wan, C.; Wan, Q. Freestanding multi-gate IZO-based neuromorphic transistors on composite electrolyte membranes. Flex. Print. Electron. 2021, 6, 044008. [Google Scholar] [CrossRef]
- Liang, X.; Li, Z.; Liu, L.; Chen, S.; Wang, X.; Pei, Y. Artificial synaptic transistor with solution processed InOx channel and AlOx solid electrolyte gate. Appl. Phys. Lett. 2020, 116, 012102. [Google Scholar] [CrossRef]
- Liang, X.; Liu, L.; Cai, G.; Yang, P.; Pei, Y.; Liu, C. Evidence for Pseudocapacitance and Faradaic Charge Transfer in High-Mobility Thin-Film Transistors with Solution-Processed Oxide Dielectrics. J. Phys. Chem. Lett. 2020, 11, 2765–2771. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.Y.; Wang, H.; Xie, F.Y.; Chen, J.; Cao, H.T.; Xu, J.B. Facile and Environmentally Friendly Solution-Processed Aluminum Oxide Dielectric for Low-Temperature, High-Performance Oxide Thin-Film Transistors. Acs Appl. Mater. Interfaces 2015, 7, 5803–5810. [Google Scholar] [CrossRef] [PubMed]
- Kornyshev, A.A. Double-layer in ionic liquids: Paradigm change? J. Phys. Chem. B 2007, 111, 5545–5557. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Hong, K.; Xie, W.; Lee, K.H.; Zhang, S.P.; Lodge, T.P.; Frisbie, C.D. Electrolyte-Gated Transistors for Organic and Printed Electronics. Adv. Mater. 2013, 25, 1822–1846. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.Q.; Wan, C.J.; Guo, L.Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buonomano, D.V.; Maass, W. State-dependent computations: Spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 2009, 10, 113–125. [Google Scholar] [CrossRef]
- Atluri, P.P.; Regehr, W.G. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 1996, 16, 5661–5671. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Li, Z.; Pei, Y. Planar Multi-Gate Artificial Synaptic Transistor with Solution-Processed AlOx Solid Electric Double Layer Dielectric and InOx Channel. Coatings 2023, 13, 719. https://doi.org/10.3390/coatings13040719
Luo Y, Li Z, Pei Y. Planar Multi-Gate Artificial Synaptic Transistor with Solution-Processed AlOx Solid Electric Double Layer Dielectric and InOx Channel. Coatings. 2023; 13(4):719. https://doi.org/10.3390/coatings13040719
Chicago/Turabian StyleLuo, Yu, Zhenwen Li, and Yanli Pei. 2023. "Planar Multi-Gate Artificial Synaptic Transistor with Solution-Processed AlOx Solid Electric Double Layer Dielectric and InOx Channel" Coatings 13, no. 4: 719. https://doi.org/10.3390/coatings13040719
APA StyleLuo, Y., Li, Z., & Pei, Y. (2023). Planar Multi-Gate Artificial Synaptic Transistor with Solution-Processed AlOx Solid Electric Double Layer Dielectric and InOx Channel. Coatings, 13(4), 719. https://doi.org/10.3390/coatings13040719