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Abstract: In this work, the mechanical properties and corrosion resistance of Cr-CrN, Ti-TiN, Zr-ZrN,
and Mo-MoN coatings deposited by the physical vapor deposition (PVD) method on Ti-6Al-4V alloy
were compared. The phase composition of the coatings, their hardness and fracture resistance in
scratch tests were determined, and their structural characteristics were also studied using a scanning
electron microscope (SEM) and a transmission electron microscope (TEM). The diffraction spectra
were made using an automatic X-ray diffractometer. The value of the adhesive component of the
friction coefficient fadh of the pair “coated and uncoated Ti-6Al-4V alloy” was investigated in the
temperature range of 20–900 ◦C. The lowest value of fadh was detected for the Zr-ZrN coating at
temperatures below 400 ◦C, while for the Mo-MoN coating it was observed at temperatures above
700 ◦C. The polarization curves of the coated and uncoated samples were performed in a 3% aqueous
NaCl solution. The level of corrosion of the Ti-6Al-4V alloy samples with Cr-CrN, Ti-TiN, Zr-ZrN,
and Mo-MoN coatings was evaluated using the Tafel extrapolation method, the iteration method,
and the polarization resistance method. The results obtained with these methods indicate that the
Zr-ZrN coated sample has the best corrosion resistance in the 3 wt.% NaCl solution, with a corrosion
current density of 0.123 µA/cm2.

Keywords: nitride coatings; corrosion; polarization curves; titanium alloy; tribological properties

1. Introduction

Titanium alloys are widely used as structural materials in a variety of industries,
including aircraft and rocket construction, medical products, engine construction, and
several other areas of mechanical engineering [1–7]. Although titanium is a highly active
metal, a dense oxide film formed on its surface prevents further oxidation and interaction
with aggressive media [8–12]. However, this film can be damaged by several factors,
including electrolytic processes, chemical, mechanical, and thermal effects, etc., which
can lead to active corrosion of titanium products. This interaction with the environment
can have negative effects on both the titanium products themselves and the media that
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interact with them (e.g., titanium-induced metallosis of Ti-6Al-4V and Ti-Ni alloys in
medicine) [13–15]. The physical vapor deposition (PVD) method of modifying the surface
properties of products by depositing special coatings on their surfaces is widely used
to solve various problems, including increasing hardness, wear resistance, modifying
tribological properties, and reducing adhesive and diffusive interactions [16,17]. The PVD
coatings on product surfaces to improve their corrosion resistance are also widely used in
various industrial sectors such as aircraft, rocket and engine construction, medical products,
and mechanical tools [18,19].

Although PVD coating multi-component and multi-layer systems are often considered
anticorrosive coatings, two-component nitrides of TiN, CrN, ZrN, and MoN are still widely
used in biomedical implants based on Ti alloys [20]. These systems will be examined and
compared on their anticorrosive properties for the Ti alloys in aggressive media.

The TiN coating is one of the first PVD-deposited nitride coatings. This coating is
still actively used in various fields, including increasing the corrosion resistance of prod-
ucts made from titanium alloys and steels of various compositions [21–30]. It had been
reported in the literature that the TiN coatings did not provide complete corrosion protec-
tion [21,31,32] and that they only experienced slight corrosion along the grain boundaries
of the TiN coatings when they were exposed at a temperature of 500 ◦C onto the NaCl
crystals [31]. The interaction between TiN and NaCl results in the formation of TiO2
and a small amount of NaxTiyOz. It is the defects in the TiN coating, including cracks,
pores, etc., that are the main cause of corrosion [31,32]. Various authors have shown that an
intermediate layer between the substrate and the Ti coating can increase its corrosion resis-
tance [33–35]. This Ti-based interlayer also has a positive effect on the corrosion resistance
of the Ti-(Ti,Al)N coating deposited on titanium alloys in a solution of NaCl, H2O, and O2
at a temperature of 600 ◦C [36]. The corrosion resistance of the TiN coating can be improved
by an additional heat treatment in air at a temperature of 800 ◦C [32]. This improvement
was associated with a decrease in coating defects, which in turn can be explained by the
formation of TiO2 and Ti2O3 oxides in the TiN structure due to volumetric expansion that
has taken place and a coating microstructure that has become more dense. The thickness of
the coating also affects the corrosion resistance; and, in theory, a thicker coating provides
the best corrosion resistance, but studies show that a coating that is too thick has a lower
corrosion resistance. The increasing thickness of the Ti-TiN coating leads to an increase in
the number of internal defects in the coating, through which oxygen actively diffuses into
the deeper layers in violation of the coating structure, e.g., around embedded microparticles,
and the columnar grain boundary, which increases with increasing coating thickness [37].
Oxidation of the inner layers of the coating leads to expansion of their volume, increased
internal stresses, and active cracking, which cause their failure [37].

In addition to TiN coatings, other two-component nitride coatings are also used for
corrosion protection, such as CrN [35,38–48], ZrN [49–51], and MoN [52,53].

Tests reveal the high anticorrosive properties of CrN coatings in multi-component
physiological solutions, such as Ringer’s and Hank’s solutions [44]. CrN-coated samples
have half the corrosion potential and ten times the corrosion current density of uncoated
samples. The CrN coating resists oxidation well at high temperatures up to 1160 ◦C [45].
The corrosion resistance of the CrN coating increases with the density of its microstructure
and the decrease in the level of residual stresses [46]. The thickness of the coating also
affects its corrosion resistance. The CrN coating with a thickness of 3 to 4 µm provides a
10-fold reduction in corrosion current density (icorr) compared to the uncoated aluminum
alloy sample, while a 5 µm thick coating provides a 20-fold reduction [38]. In contrast to
the columnar structure of TiN, the non-column structure of the CrN crystallite has a lower
open porosity [47,48]. Diffusion of reagents in the CrN coating occurs in a zigzag pattern,
due to which the diffusion process can be slowed down [48].

The Cr interlayer in the Cr-CrN coating, as well as the Ti layer in the Ti-TiN coating,
improve the corrosion resistance of the corresponding coatings [49]. Furthermore, the use
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of a pure metal interlayer significantly increases the adhesion between the coating and the
substrate and increases the corrosion resistance [50].

The ZrN coating has also been shown to have interesting anti-corrosion proper-
ties [51–53]. By increasing the temperature, it has been shown that the effect of the at-
mosphere on the ZrN coating leads to the formation of ZrNxOy and ZrO2 on its surface,
which further increases its pitting resistance [51]. It has also been shown that the ZrN
coating significantly increases the corrosion resistance in an aqueous Na2SO4 solution [52],
as well as the charge transfer resistance, which increases by 122 times [53]. This decrease in
the degradative intensity of the corrosion process was attributed to the high density and
strong adhesion of the ZrN coating, which prevents electrolyte penetration, reduces contact
areas between the alloy and the corrosive agent, modifies the charge transfer process in
electrochemical reactions, and prevents delamination of the coating [53].

The MoN coating has been considered an anticorrosion coating much less often [54,55].
In particular, the MoN coating was found to have a lower tendency to crack but a higher
susceptibility to degradation under the influence of H3PO4 and H2SO4 solutions compared
to the TiN coating [55].

Comparison of the properties of CrN and TiN coatings reveals that the CrN coating
offers better corrosion protection than the TiN coating [56,57]. Comparison of the corrosion
resistance of Ti-TiN, Cr-TiN, and Cr-CrN coatings shows that the Cr-CrN coating has clear
advantages and high corrosion resistance for all the coatings compared [58]. The CrN
coating showed better oxidation resistance than TiN coatings in 3.5 wt.% NaCl solution and
in 1 M H2SO4 solution [59,60]. Comparison of the corrosion currents of TiN (0.099 µA/cm2)
and ZrN (0.209 µA/cm2) coatings with a thickness of 3 µm showed that the TiN coating
has better corrosion resistance than the ZrN coating [61]. Meanwhile, the comparison
of the corrosion resistance of TiN, CrN, and ZrN coatings in anion-based ionic liquids
reveals that the ZrN coating has the highest corrosion resistance [62]. There are many
studies on the corrosion resistance of coatings containing layers of various two-component
nitrides; for example, ZrN-CrN coatings have shown extremely high corrosion resistance
in NaCl solution [63].

The (Ti,Mo)N coating has the lowest corrosion resistance compared to the reference
TiN coating, and the corrosion resistance of the coating decreases as the Mo content in-
creases [64]. At the same time, the introduction of Mo into the CrN coating improves
its corrosion resistance compared to the uncoated sample and the sample with the CrN
coating containing no molybdenum [65]. Good corrosion protection was provided by the
(Mo,Ti)N coating [55].

The analysis of the studies [21–65] considered suggests the following ranking of
nitrides coatings from the worst to the best corrosion resistance:

CrN < TiN < ZrN < MoN.

The authors are not aware of any articles comparing the corrosion properties of the
four nitride coatings on Ti alloys under the same experimental conditions. Furthermore,
some reported results do not agree with the sequence presented above (e.g., ZrN has the
best properties in terms of corrosion resistance [62]), whereas the corrosion resistance
of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings is the most important parameter that
determines the areas in which they can be applied.

The objective of this investigation was therefore to carry out a comprehensive study of
the tribological characteristics of ion-plasma-prepared coatings based on Cr-CrN, Ti-TiN,
Zr-ZrN, and Mo-MoN on Ti-6Al-4V alloy and their corrosion properties in 3% aqueous
NaCl solution using the polarization curve method. The studied nitride coatings are quite
often considered as corrosion protection; however, a comprehensive comparison of their
properties has not been previously carried out in full, and such a comparison may be
useful for substantiating the choice of coatings and further studies of coatings of a more
complex composition.



Coatings 2023, 13, 750 4 of 18

2. Materials and Methods

The investigations were carried out on Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings
deposited on Ti-6Al-4V titanium alloy plates (Figure 1a). Titanium plates were made on
a lathe, and thus their surfaces (both end and side) were formed as a result of turning.
Sample sizes are shown in Figure 1a.
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Figure 1. Optical microscopy image showing the dimensions of the sample (a) and the coat-
ing process (b).

The chemical composition of Ti-6Al-4V allow is described in Table 1.

Table 1. Chemical composition of Ti-6Al-4V alloy identified by EDX analysis.

Elements Fe C Si V Ti Al Zr Others

Partition, wt.% ~0.6 ~0.1 ~0.1 3.5–5.3 86.5–90.9 5.3–6.8 ~0.3 ~0.6

The coatings were deposited using an upgraded VIT-2 vacuum plasma unit [66–70],
(IDTI RAS-MSTU STANKIN, Moscow, Russia). This unit uses a combination of filtered
vacuum cathode deposition (FCVAD) [71–76] and controlled accelerated arc deposition
(CAA-PVD) technologies [77,78]. Cathodes of Cr (99.9%), Mo (99.8%), Zr (99.8%), and Ti
(99.6%) were used. The placement of the samples during the coating process is shown in
Figure 1b. Before coating deposition, the samples were subjected to washing in a special
solution with ultrasonic stimulation. During the deposition process, the samples were
subjected to preliminary ion cleaning in order to thermally activate the surface and remove
residual contaminants and oxide films.

The main parameters of the coating deposition process are presented in Table 2.

Table 2. Main parameters of the coating deposition process at pressure N2 0.42 Pa and voltage of
substrate −150 V (DC).

Cathode Ti Zr Cr Mo

Arc current (A) 75 65 78 80

The special technique and equipment developed in co-operation with USATU-IDTI
RAS-MSTU STANKIN [79–82] were used to study the tribological properties of the samples.
When the samples were tested under conditions simulating real friction pair contact, the
strength of adhesive bonds τnn and the value of normal stresses Prn were determined. The
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specimen consists of a Ti-6Al-4V alloy bar, with and without the studied coating, which
is clamped between two parallel Ti-6Al-4V alloy plates (the setup diagram is described
in more detail in [79–82]). The plates press an indenter with varying forces, and at the
same time, the contact area between the indenter and the plates is heated from 20 to
900 ◦C. Tribological parameters were determined at temperatures of 20, 400, 700, 800,
and 900 ◦C. In addition, the contact conditions were simulated at constant loads and at
different temperatures. The force Fexp was measured directly by rotating the indenter
located between two flat plates and pressing it with the force Fsq. The values of τnn and Prn
were calculated based on the magnitude of the Fexp force [79–82]. The adhesive component
of the friction coefficient fadh was calculated using the following formula:

fadh =
τnn

prn
(1)

The diffraction spectra were made using an automatic X-ray diffractometer, DRON-4
(LNPO Burevestnik, S-Petersburg, Russia), using monochromatic CuKα radiation, in a
symmetric geometry (Bragg-Brentano geometry). The obtained diffraction spectra were
processed using software developed at the Department of Physical Material Sciences of the
National University of Science and Technology (MISiS).

To study the nanostructure of the deposited coatings, a JEM 2100 transmission electron
microscope (TEM) (JEOL, Tokyo, Japan) was used at an accelerating voltage of 200 kV. The
composition of the coating was studied using a TEM with the INCA Energy Dispersive
X-ray (EDX) system (OXFORD Instruments, Oxford, UK).

Hardness and modulus of elasticity were measured using an automatic mechanical
tester SV-500 (Nanovea, Irvine, CA, USA) with a nanomodule equipped with a precision
piezoelectric drive and a highly sensitive load cell independent of the drive. The mea-
surement method was instrumental indentation using a Berkovich pyramid indenter. The
measurements were carried out with a load of 20 mN. Since the hardness of the coatings and
the substrate (titanium alloy) differed considerably and the thicknesses of the coatings were
small, the hardness measurement proved to be very difficult. Each sample was subjected to
40 measurements with a minimum load (20 mN) to identify the dimensions of the cavity.

The resistance of the coatings to damage during scratch tests was studied on the
Nanovea equipment in accordance with ASTM C1624-05, measuring the load from 0 to 40 N.

Electrochemical corrosion studies of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coat-
ings were carried out by potentiodynamic polarization measurements (PDP) using an
AUTOLAB PGSTAT302 N potentiostat-galvanostat (Metrohm, Herisau, Switzerland) in
a standard YaSE-2 three-electrode electrochemical cell with a graphite counter-electrode
and a silver/silver chloride-saturated reference electrode at 25 ◦C. The surface area of
the working electrode was 1 cm2. All potential values measured against the saturated
silver-silver chloride reference electrode were converted to the hydrogen scale. The cor-
rosion resistance of the Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings was estimated
using potentiodynamic curves obtained in a 3 wt.% NaCl solution (potential sweep rate
Vp = 1 mV/s) at an electrode polarization of ±800 mV [83–87], determined by the formula:

η = E − Ecorr, (2)

where E is the electrode potential under current and Ecorr is the steady-state potential for
the corrosion process.

Corrosion currents were calculated using the mathematical modeling functions of the
corrosion process in the Nova 2.0 software package using three methods:

1. By the Tafel extrapolation method of the cathode and anode curves with an electrode
polarization of ±100 mV from the Tafel Equation (3):

η = a + b lg icorr, (3)
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where a = nF
RT lgio and b = nF

RT are the Tafel coefficients, with V and V/decade units,
respectively, icorr is the corrosion current density (A/cm2), R is the universal gas constant,
8.314 J/(mol·K), T is the absolute temperature, K, F is the Faraday constant, 96,485.33 C/mol,
io is the exchange current density (A/cm2), and n is the number of electrons involved in
the reaction.

2. By the iteration method based on the array of experimental data (η = ±200 mV) in
the Nova 2.0 software package according to Equation (4) [88]:

i = icorr

[
exp

(
E− Ecorr

bc

)
− exp

(
Ecorr − E

ba

)]
(4)

where bc and ba are the Tafel coefficients for the anode and cathode process (V/decade).
3. By the method of polarization resistance based on experimental data at low polar-

izations (η = ±40 mV):

η ≈ RT
nF

i
i0

= R0i (5)

where R0 = RT
i0nF is the charge transfer resistance, Ohm [83].

3. Results and Discussion

Figure 2 shows a general view of the samples with the considered coatings, showing
the typical colors of these coatings.
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Figure 2. Optical microscopy images showing general view of the samples with the (a) Ti-TiN,
(b) Zr-ZrN, (c) Cr-CrN, (d) Mo-MoN coatings under consideration.

The surface morphology of the Ti-TiN, Zr-ZrN, Cr-CrN, and Mo-MoN coatings is
almost identical, with the surface microparticles being slightly more pronounced in the
case of the Ti-TiN and Zr-ZrN coated samples than those coated with Cr-CrN and Mo-MoN
(Figure 3). The thickness of the coatings varies from 1.8 to 3.5 µm, and they have a columnar
grain structure, with clearly pronounced grain boundaries.

The hardness of the prepared coatings and their critical failure load during scratch
tests are presented in Table 3. The highest hardness (31.7 ± 1.8 GPa) was observed for the
Zr-ZrN coating, while the lowest (20.9 ± 1.1 GPa) was for the Mo-MoN coating. During
scratch tests, all coatings showed high resistance to damage and strength of adhesive bonds
with the substrate, a columnar grain structure, and clearly pronounced grain boundaries.

Table 3. Hardness, elastic modulus, and fracture force during the scratch testing of the Ti-TiN, Zr-ZrN,
Cr-CrN and Mo-MoN coatings.

Coating Hardness (GPa) Elastic Modulus (GPa) Critical Load LC2 (N)

Ti-TiN 24.9 ± 1.3 266.7 ± 26.2 >40
Zr-ZrN 31.7 ± 1.8 248.5 ± 37.4 >40
Cr-CrN 29.9 ± 1.3 217.2 ± 28.2 32

Mo-MoN 20.9 ± 1.1 226.6 ± 31.4 38



Coatings 2023, 13, 750 7 of 18Coatings 2023, 13, x FOR PEER REVIEW 7 of 18 
 

 

    

  
(a) (b) 

    

  
(c) (d) 

Figure 3. Surface morphology (top) and structural features (right—TEM, left—SEM) (bottom) of 
the samples with the (a) Ti-TiN, (b) Zr-ZrN, (c) Cr-CrN, (d) Mo-MoN coatings. 

The hardness of the prepared coatings and their critical failure load during scratch 
tests are presented in Table 3. The highest hardness (31.7 ± 1.8 GPa) was observed for the 
Zr-ZrN coating, while the lowest (20.9 ± 1.1 GPa) was for the Mo-MoN coating. During 
scratch tests, all coatings showed high resistance to damage and strength of adhesive 
bonds with the substrate, a columnar grain structure, and clearly pronounced grain 
boundaries. 

Table 3. Hardness, elastic modulus, and fracture force during the scratch testing of the Ti-TiN, Zr-
ZrN, Cr-CrN and Mo-MoN coatings. 

Coating Hardness (GPa) Elastic Modulus (GPa) Critical Load LC2 (N) 
Ti-TiN 24.9 ± 1.3 266.7 ± 26.2 >40 
Zr-ZrN 31.7 ± 1.8 248.5 ± 37.4 >40 
Cr-CrN 29.9 ± 1.3 217.2 ± 28.2 32 

Mo-MoN 20.9 ± 1.1 226.6 ± 31.4 38 

Figure 3. Surface morphology (top) and structural features (right—TEM, left—SEM) (bottom) of the
samples with the (a) Ti-TiN, (b) Zr-ZrN, (c) Cr-CrN, (d) Mo-MoN coatings.

Phase analysis of the coated samples reveals the presence of a c-TiN, c-ZrN, c-CrN,
or c-MoN phase, respectively (Figure 4). On the other hand, the ZrN-coated sample
contains an insignificant amount of the α-Zr phase that may belong to trace amounts of Zr
microparticles on the coating surface. The α-Ti and β-Ti phases of the substrate (titanium
alloy) and the intermetallic compound (TiV) were also detected.

The analysis of the evolution of the adhesive component of the friction coefficient
fadh as a function of temperature (Figure 5) shows that with an increase in temperature
from 20 to 700 ◦C, the value of fadh increases for all samples. With the continuous increase
in temperature above 700 ◦C, different trends appear in the samples with the different
coatings. The Mo-MoN-coated sample shows a noticeable decrease in the fadh value with
increasing temperature in the temperature range of 700 to 900 ◦C. At a temperature of
900 ◦C, the Mo-MoN-coated sample shows the lowest fadh value of all considered samples.
Such a fadh behavior for this sample can be associated with the beginning of the formation
of a tribologically active molybdenum oxide (MoO2) film [87]. For the other samples, an
increase in the fadh value is detected up to a temperature of 800 ◦C, then a slight decrease
in temperature is observed from 800 to 900 ◦C. This decrease can be associated with both
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the general plasticization of the material and the beginning of the formation of oxides
of the respective metals that affect the tribological properties. At a room temperature
of 20 ◦C, the minimum value of fadh is detected for the Zr-ZrN coated sample, and the
maximum value for the Cr-CrN coated sample, which is in good agreement with the
literature results [66–74,87–89]. In the temperature range of 20–400 ◦C, the sample with the
Zr-ZrN coating has the best tribological properties, while at temperatures between 700 and
900 ◦C, the sample with the Mo-MoN coating provides the minimum fadh value. All the
coatings considered, except for Cr-CrN, lead to a decrease in the fadh value over the whole
temperature range compared to the uncoated sample, as has also been demonstrated for
Zr-ZrC coatings [90–92].
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The potentiodynamic polarization curves (the potentiodynamic polarization mea-
surements (PDP)) of the considered Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings on
the surface of the Ti-6Al-4V alloy and in the 3 wt.% NaCl solution are shown in Figure 6.
The value of the equilibrium (near-equilibrium) potential of the corrosion process for the



Coatings 2023, 13, 750 9 of 18

uncoated sample of the Ti-6Al-4V alloy is −0.045 V, which indicates the good corrosion
resistance of this material in the 3 wt.% NaCl solution in the presence of oxygen and is in
good agreement with the results reported in the literature [32,36]. The deposition of the
Ti-TiN coating reduces the value of the steady-state corrosion potential to −0.078 V, which
is in line with the known corrosion resistance data of Ti-6Al-4V titanium alloy and titanium
nitride coating [36,37]. On the other hand, the deposition of Cr-CrN, Zr-ZrN, and Mo-MoN
coatings leads to an increase in the equilibrium potential of the corrosion process to −0.026,
−0.017, and +0.095 V, respectively, indicating the higher corrosion resistance of the CrN,
ZrN, and MoN systems compared to the Ti-6Al-4V alloy and the TiN system.
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To determine the corrosion current density of the studied samples in the 3 wt.% aque-
ous NaCl solution at the temperature of 25 ◦C, the mathematical modeling of the corrosion
process was applied by iterations based on the experimental data and by using Tafel’s
extrapolation of the anodic and cathodic polarization curves using the Nova 2.0 software
(Table 4 and Figure 7).

Table 4. Results of mathematical modeling of the corrosion process on the samples made of Ti-6Al-4V
alloy with different coatings in the 3 wt.% aqueous solution of NaCl at the temperature of 25 ◦C, by
the method of iterations based on experimental data arrays.

Coating
Corrosion
Potential

(V)

Corrosion
Current Density

(µA/cm2)

Corrosion
Penetration
(µm/Year)

Tafel Coef-
Ficient bc,

(V)

Tafel Coef-
Ficient ba

(V)

Calculated
Corrosion

Potential (V)

Polarization
Resistance

(kOhm)

Cr-CrN −0.026 0.38 3.4 0.201 0.208 −0.027 115.8
Mo-MoN 0.095 8.19 72.2 0.403 0.421 0.098 10.9

Ti-TiN −0.078 1.48 13.0 0.233 2.493 −0.096 62.6
Zr-ZrN −0.017 0.34 3.0 0.281 0.367 −0.021 202.9

uncoated −0.045 0.69 6.0 0.146 1.201 −0.062 82.5
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of NaCl (the potential sweep rate Vp = 1 mV/s).

Figure 7 shows the experimental polarization curves for the Zr-ZrN coated and un-
coated Ti –6Al-4V alloy samples, as well as the calculated polarization curves using mathe-
matical modeling by the iteration method according to Equation (3). The experimental and
calculated curves coincide completely in the considered potential range. The values of the
corrosion current density were calculated considering Equation (3) and using the iteration
method in the cathodic and anodic potential range (±100 mV) of the curves (Figure 7) close
to the quasi-equilibrium corrosion potential. The data obtained are presented in Table 5.

Table 5. Results of mathematical modeling of the corrosion process on the samples of Ti-6Al-4V alloy
with different coatings in the 3 wt.% aqueous solution of NaCl at the temperature of 25 ◦C, by the
method of Tafel extrapolation of the anodic and cathodic polarization curves.

Coating
Corrosion
Potential

(V)

Corrosion
Current
Density

(µA/cm2)

Corrosion
Penetration
(µm/Year)

Tafel
Coef-Ficient

bc,
(V)

Tafel
Coef-Ficient

ba
(V)

Calculated
Corrosion

Potential (V)

Polarization
Resistance

(kOhm)

Cr-CrN −0.026 0.218 1.93 0.1552 0.1670 −0.028 29.427
Mo-MoN 0.095 8.190 72.48 0.2055 0.2047 0.098 0.783

Ti-TiN −0.078 1.480 13.10 0.1268 0.4140 −0.096 4.334
Zr-ZrN −0.017 0.341 3.02 0.1986 0.2610 −0.021 18.812

uncoated −0.045 0.390 3.45 0.0969 0.5814 −0.062 16.449

The result of the modeling using the iteration method showed that for all the consid-
ered coatings, the value of the coefficient, bc, for the cathodic corrosion process is between
0.15 and 0.40 V, which indicates difficulties in the diffusion of the oxidizing agent to reach
the surface [86]. On the cathodic branches of the polarization curves in the potential range
between −0.1 and 0.2 V, the reduction process of dissolved oxygen takes place according to
the following reaction:

O2 + 2H2O + 4e− → 4OH− (6)
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Figure 7. Polarization curves of the electrode made of Ti-6Al-4V titanium alloy (a) with the Zr-
ZrN coating and (b) without coating in the 3 wt.% solution of NaCl: points—experimental data,
straight lines—extrapolation of Tafel sections, curved line—results of mathematical modeling by the
iteration method.

Figure 6 shows well-defined linear sections on the anodic part of the curve. The
region of cathodic potentials close to the corrosion potential contains information about
the cathodic process occurring at the electrode and the anodic dissolution process [84].
The coefficient, ba, calculated for the anodic curves according to Equation (4) is between
0.21 and 2.5 V, while from the extrapolation of the Tafel sections, the coefficient, ba, for the
anodic curves is between 0.17 and 0.58 V, indicating a significant role of diffusion in the
corrosion kinetics, which may be due to the formation of oxide and oxonitride films of
the respective metals on the surface of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings as
reported in the literature [32,35,38–43,52–55]. The values of the cathode Tafel coefficient
(bc) and anode Tafel coefficient (ba) are significantly higher than the same Tafel coefficient
with electrochemical kinetics [93].

The formation of such dielectric films is accompanied by a sharp increase in the
electrical resistance of the coating–electrolyte interface. In this case, Equation (3) and Tafel’s
method of extrapolating polarization curves to determine the corrosion rate are obviously of
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little use since the corrosion process takes place in the low resistance region [86]. Therefore,
a corrosion process was simulated using the polarization resistance method (see Table 6).

Table 6. Calculation results of the corrosion process characteristics using the method of determining
the polarization resistance in the region of the corrosion potential in the 3 wt.% aqueous solution of
NaCl at the temperature of 25 ◦C.

Coating
Corrosion
Potential

(V)

Corrosion
Current Density

(µA/cm2)

Corrosion
Penetration
(µm/Year)

Polarization
Resistance

(kOhm)

Cr-CrN −0.026 0.248 2.19 105.0
Mo-MoN 0.095 2.310 20.40 11.2

Ti-TiN −0.078 0.411 3.63 63.3
Zr-ZrN −0.017 0.123 1.09 210.9

Uncoated −0.045 0.372 3.28 70.0

Table 6 shows that the current density determined by the polarization resistance
method is 3 to 4 times lower than the current density determined by the iteration method
according to Equation (3) and by the method of extrapolating the Tafel cross-sections of the
anodic and cathodic polarization curves (Figure 8).
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Figure 8. Comparative diagram of the corrosion current density values for the plates made of
Ti-6Al-4V alloy and coated with Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN in the 3 wt.% solution of
NaCl, calculated by mathematical modeling of the corrosion process by the methods of iteration,
polarization resistance, and Tafel extrapolation.

The comparison of the polarization resistance calculated by the different mathematical
models of the corrosion process for the surfaces of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN
coatings in a 3% aqueous NaCl solution at a temperature of 25 ◦C is shown in Figure 9.
The values of the polarization resistance (Ro) calculated by the iteration method and the
polarization resistance method are almost comparable for all considered samples, while the
results of the Tafel extrapolation method give underestimated Ro values.
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Figure 9. Comparative diagram of the polarization corrosion resistance values for the plates made of
Ti-6Al-4V alloy and coated with Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings in the 3 wt.% solution
of NaCl, defined by mathematical modeling of the corrosion process by the iteration methods.

Therefore, it can be concluded that the most appropriate method to evaluate the cor-
rosion process rate for Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings is the polarization
resistance calculation method. This is because the corrosion current density is insignifi-
cant for these coatings (Figure 8), and it is a linear function of the electrode polarization
(Equation (5)) [85]. On the other hand, the iteration method (Equation (4)) is applicable for
large electrode polarizations (η = ±200 mV) at higher current densities [86].

The lowest corrosion currents in the 3 wt.% NaCl solution were obtained for the
Zr-ZrN (0.123 µA/cm2) and Cr-CrN (0.248 µA/cm2) coatings (Figure 8), which is in good
agreement with the literature results [61,94]. Probably, the best corrosion resistance of the
ZrN is related to the high value of the contact angle at the solid–liquid interface that was
shown in [62].

It should also be noted that the Ti-TiN coating exhibits a corrosion current of 0.411 µA/cm2,
similar to that of the Ti-6Al-4V alloy (corrosion current of 0.372 µA/cm2) in the 3% NaCl
solution, which can be explained by the similarity of the elemental composition of the
titanium alloy and the Ti-TiN coating.

The Mo-MoN coating is distinguished by a maximum corrosion current of 2.310 µA/cm2,
which is most likely associated with the increased oxidative activity of the molybdenum
compounds formed during the corrosion process in the 3 wt.% NaCl solution.

4. Conclusions

The mechanical and corrosion resistance properties of Cr-CrN, Ti-TiN, Zr-ZrN, and
Mo-MoN two-component nitride coatings deposited on the Ti-6Al-4V alloy substrate were
compared, and it was found that:

1. The maximum hardness (31.7 ± 1.8 GPa) was detected for the Zr-ZrN coating, while
the lowest hardness (20.9 ± 1.1 GPa) was observed for the Mo-MoN coating.

2. The phase analysis reveals the presence of an fcc phase in all coatings: c-TiN, c-ZrN,
c-CrN, or c-MoN, respectively.

3. In the temperature range of 20–400 ◦C, the minimum value of the adhesive component
of the friction coefficient fadh was detected for the sample with the Zr-ZrN coating
and in the temperature range of 700–900 ◦C for the sample with the Mo-MoN coating.
Over the whole temperature range, all coatings, except Cr-CrN, lead to a reduction in
fadh compared to the uncoated sample.
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4. From the comparison of the corrosion properties of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-
MoN coatings in a 3 wt.% NaCl solution, it was found that the most acceptable method
for evaluating the rate of the corrosion process from the analysis of the polarization
curves of these coatings is the polarization resistance calculation method. This is
due to the formation of dielectric oxide films during the corrosion process of Cr-CrN,
Ti-TiN, Zr-ZrN, and Mo-MoN coatings, which is accompanied by a strong increase in
the electrical resistance of the coating–electrolyte interface.

5. The minimum corrosion currents in the 3% NaCl solution were observed for the
Zr-ZrN (0.123 µA/cm2) and Cr-CrN (0.248 µA/cm2) coatings. However, the Mo-MoN
coating stands out with an increase in corrosion current (2.310 µA/cm2) compared
to the uncoated Ti-6Al-4V alloy (0.372 µA/cm2), and this phenomenon is probably
due to the oxidative activity of the molybdenum compounds formed during the
corrosion process.

6. The Zr-ZrN coating is best suited to improve the tribological and anti-corrosion
properties of titanium friction pairs used in media with properties such as those of the
3 wt.% NaCl solution. The improvement of the mechanical and corrosion resistance
properties of the materials can be achieved by depositing multi-component coatings
based on the ZrN system on their surfaces, as well as by using coatings with nanolayer
structures. The properties of these coatings should be investigated further.
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