The Effect of Structure and Mechanical Properties Change of Current Collector during Cycling on Sb-Based Lithium-Ion Batteries’ Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nano Sb@HCMs
2.2. Materials Characterization
2.3. Electrochemical Characterization
3. Results and Discussion
3.1. Morphology, Structure, and Mechanical Performance Evolution of Cu Current Collector during Cycling
3.1.1. Morphology and Structure Analysis
3.1.2. Mechanical Properties
3.2. Morphology, Structure, and Mechanical Performance Evolution of Al Current Collector during Cycling
3.2.1. Morphology and Structure Analysis
3.2.2. Mechanical Properties
4. Conclusions
- (1)
- There exists the migration of C, Sb, and Li atoms to the inside of Cu current collector, and the diffusion of Li, Co, and O atoms to the inside of Al current collector during cycling, which results in a porous film of Li2SbCu and a relatively dense film of Al2O3 formed on the surface of Cu and Al current collector, respectively. The thickness of films increases with cycling.
- (2)
- The formation of films leads to the poor conductivity and weak bond between active layer and current collector, and the increase of hardness of 0.84 GPa and modulus of 22.5 GPa for Cu current collector after 100 cycles, all of which finally results in the decrease of rate performance and cycling stability of LIBs.
- (3)
- The restriction effect from cracks or poles of Al2O3 film leads to the smaller contact modulus and hardness of Al foils after cycles than the original Al foils. It caused hardness decrease of 0.53 GPa and modulus decrease of 18.93 GPa of Al current collector after 100 cycles, and no large change of the contact modulus and indentation hardness can be found after fifty cycles, which contributes to the improvement of cycling stability and charge capacity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zinatloo-Ajabshir, S.; Morassaei, M.S.; Salavati-Niasari, M. Eco-friendly synthesis of Nd2Sn2O7-based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos. Part B Eng. 2019, 167, 643–653. [Google Scholar] [CrossRef]
- Shubha, J.P.; Adil, S.F.; Khan, M.; Hatshan, M.R.; Khan, A. Facile Fabrication of a ZnO/Eu2O3/NiO-Based Ternary Heterostructure Nanophotocatalyst and Its Application for the Degradation of Methylene Blue. ACS Omega 2021, 6, 3866–3874. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.H.; Zinatloo-Ajabshir, S.; Naji, H.; Marjerrison, C.A.; Greedan, J.E.; Behzad, M. Structural characterization, phase analysis and electrochemical hydrogen storage studies on new pyrochlore SmRETi2O7 (RE = Dy, Ho, and Yb) microstructures. Ceram. Int. 2022, 49, 253–263. [Google Scholar] [CrossRef]
- Rezayeenik, M.; Mousavi-Kamazani, M.; Zinatloo-Ajabshir, S. CeVO4/rGO nanocomposite: Facile hydrothermal synthesis, characterization, and electrochemical hydrogen storage. Appl. Phys. A 2023, 129, 47. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Bai, Z.C.; Fan, N.; Sun, C.H.; Ju, Z.C.; Guo, C.L.; Yang, J.; Qian, Y.T. Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries. Nanoscale 2013, 5, 2442–2447. [Google Scholar] [CrossRef]
- Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R.P.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421–443. [Google Scholar] [CrossRef]
- Parekh, M.H.; Parikh, V.P.; Kim, P.J.; Misra, S.; Qi, Z.M.; Wang, H.Y.; Pol, V.G. Encapsulation and networking of silicon nanoparticles using amorphous carbon and graphite for high performance Li-ion batteries. Carbon 2019, 148, 36–43. [Google Scholar] [CrossRef]
- Wang, N.N.; Ma, X.J.; Xu, H.Y.; Chen, L.; Yue, J.; Niu, F.E.; Yang, J.; Qian, Y.T. Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 2014, 6, 193–199. [Google Scholar] [CrossRef]
- Roy, P.; Srivastava, S.K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484. [Google Scholar] [CrossRef]
- Guo, M.Q.; Zhang, X.G.; Bai, Z.C.; Ye, J.Y.; Meng, W.J.; Song, H.; Wang, Z.H. Hollow SnNi@PEO nanospheres as anode materials for lithium ion batteries. Int. J. Hydrogen Energy 2017, 42, 15290–15298. [Google Scholar] [CrossRef]
- Meng, W.J.; Han, J.; Dang, Z.Z.; Li, D.; Jiang, L. Dual Doping of Titania for Enhanced Na Storage Performance. ACS Appl. Mater. Interfaces 2021, 13, 44214–44223. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.J.; Dang, Z.Z.; Li, D.S.; Jiang, L.; Fang, D.N. Efficient Sodium Storage in Selenium Electrodes Achieved by Selenium Doping and Copper Current Collector Induced Displacement Redox Mechanisms. Adv. Funct. Mater. 2022, 32, 2204364. [Google Scholar] [CrossRef]
- Qian, J.F.; Chen, Y.; Wu, L.; Cao, Y.L.; Ai, X.P.; Yang, H.X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070–7072. [Google Scholar] [CrossRef]
- Ramireddy, T.; Rahman, M.M.; Xing, T.; Chen, Y.; Glushenkov, A.M. Stable anode performance of an Sb-carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation. J. Mater. Chem. A 2014, 2, 4282–4291. [Google Scholar] [CrossRef]
- Hou, H.S.; Zou, G.Q.; Ge, P.; Zhao, G.G.; Wei, W.F.; Ji, X.B.; Huang, L.P. Synergistic effect of cross-linked carbon nanosheet frameworks and Sb on the enhancement of sodium storage performances. New J. Chem. 2017, 41, 13724–13731. [Google Scholar] [CrossRef]
- Han, Q.G.; Sheng, Y.L.; Han, Z.W.; Li, X.; Zhang, W.Q.; Li, Y.; Zhang, X. Metallic Sb nanoparticles embedded into a yolk-shell Sb2O3@TiO(2)composite as anode materials for lithium ion batteries. New J. Chem. 2020, 44, 13430–13438. [Google Scholar] [CrossRef]
- Pan, Q.C.; Wu, Y.A.; Zhong, W.T.; Zheng, F.H.; Li, Y.P.; Liu, Y.Z.; Hu, J.H.; Yang, C.H. Carbon Nanosheets Encapsulated NiSb Nanoparticles as Advanced Anode Materials for Lithium-Ion Batteries. Energy Environ. Mater. 2020, 3, 186–191. [Google Scholar] [CrossRef]
- Wang, C.; Chen, G.Y.; Kou, J.R.; Zhang, X.J.; Xu, X.X.; Bao, J.C.; Shen, Z.H.; Jin, X.; Zhang, H.G.; Liu, L.; et al. Sb@S-N-C nanocomposite as long-cycle stable anode material for lithium ion batteries. J. Alloys Compd. 2020, 814, 152161. [Google Scholar] [CrossRef]
- Li, H.; Shi, L.H.; Wang, Q.; Chen, L.Q.; Huang, X.J. Nano-alloy anode for lithium ion batteries. Solid State Ion. 2002, 148, 247–258. [Google Scholar] [CrossRef]
- Park, M.G.; Lee, D.H.; Jung, H.; Choi, J.H.; Park, C.M. Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility. ACS Nano 2018, 12, 2955–2967. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.S.; Yair Cohen, A.; Aurbach, D. Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104, 12282–12291. [Google Scholar] [CrossRef]
- Lucas, I.T.; Pollak, E.; Kostecki, R. In situ AFM studies of SEI formation at a Sn electrode. Electrochem. Commun. 2009, 11, 2157–2160. [Google Scholar] [CrossRef]
- Walter, M.; Doswald, S.; Krumeich, F.; He, M.; Widmer, R.; Stadie, N.P.; Kovalenko, M.V. Oxidized Co-Sn nanoparticles as long-lasting anode materials for lithium-ion batteries. Nanoscale 2018, 10, 3777–3783. [Google Scholar] [CrossRef] [PubMed]
- Lamiel, C.; Hussain, I.; Ma, X.; Zhang, K. Properties, functions, and challenges: Current collectors. Mater. Today Chem. 2022, 26, 101152. [Google Scholar] [CrossRef]
- Kim, Y.-L.; Sun, Y.-K.; Lee, S.-M. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochimica Acta 2008, 53, 4500–4504. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, P.; Gao, L.T.; Guo, Z.-S. Modeling Contact Behavior of Multiparticles and Particle–Current Collector Contact in Porous Electrode. Energy Technol. 2022, 10, 2200786. [Google Scholar] [CrossRef]
- Zhang, J.; Zuo, D.; Pei, X.; Mu, C.; Chen, K.; Chen, Q.; Hou, G.; Tang, Y. Effects of Electrolytic Copper Foil Roughness on Lithium-Ion Battery Performance. Metals 2022, 12, 2110. [Google Scholar] [CrossRef]
- Shin, D.-Y.; Park, D.-H.; Ahn, H.-J. Interface modification of an Al current collector for ultrafast lithium-ion batteries. Appl. Surf. Sci. 2019, 475, 519–523. [Google Scholar] [CrossRef]
- Sung, K.; Kim, K.; Ahn, H. Carbon quantum dot-laminated stepped porous Al current collector for stable and ultrafast lithium-ion batteries. Int. J. Energy Res. 2022, 46, 8989–8999. [Google Scholar] [CrossRef]
- Reyter, D.; Rousselot, S.; Mazouzi, D.; Gauthier, M.; Moreau, P.; Lestriez, B.; Guyomard, D.; Roue, L. An electro-chemically roughened Cu current collector for Si-based electrode in Li-ion batteries. J. Power Sources 2013, 239, 308–314. [Google Scholar] [CrossRef]
- Wu, M.; Kim, J.Y.; Chae, O.B.; Jung, W.B.; Choi, S.; Kim, D.Y.; Suk, J.; Gereige, I.; Kang, Y.; Jung, H.T. Na-noscale Wrinkled Cu as a Current Collector for High-Loading Graphite Anode in Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2021, 13, 2576–2583. [Google Scholar] [CrossRef]
- Guo, M.; Meng, W.; Zhang, X.; Bai, Z.; Wang, G.; Wang, Z.; Yang, F. Structural Degradation of Cu Current Collector During Electrochemical Cycling of Sn-Based Lithium-Ion Batteries. J. Electron. Mater. 2019, 48, 7543–7550. [Google Scholar] [CrossRef]
- Hyams, T.C.; Go, J.; Devine, T.M. Corrosion of Aluminum Current Collectors in High-Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles. J. Electrochem. Soc. 2007, 154, C390–C396. [Google Scholar] [CrossRef]
- Guo, M.; Chen, J.; Meng, W.; Cheng, L.; Bai, Z.; Wang, Z.; Yang, F. Sb nanocrystal-anchored hollow carbon microspheres for high-capacity and high-cycling performance lithium-ion batteries. Nanotechnology 2019, 31, 135404. [Google Scholar] [CrossRef]
- Jin, K.; Kobayashi, K. Anodic polarization behavior of copper in propylene carbonate. J. Power Sources 2001, 101, 47–52. [Google Scholar] [CrossRef]
- Cheng, F.-L.; Yang, W.-K.; Luo, X.-M.; Zhang, G.-P. Geometrical size effect on tensile properties of ultrathin current collector foils for lithium-ion batteries. J. Mater. Res. 2022, 37, 3708–3719. [Google Scholar] [CrossRef]
- Zhu, J.; Feng, J.; Guo, Z. Mechanical properties of commercial copper current-collector foils. RSC Adv. 2014, 4, 57671–57678. [Google Scholar] [CrossRef]
- Chen, L.; Ahadi, A.; Zhou, J.M.; Stahl, J.E. Modeling effect of surface roughness on nanoindentation tests. In Proceedings of the 14th CIRP Conference on Modeling of Machining Operations (CIRP CMMO), Torino, Italy, 13–14 June 2013; pp. 334–339. [Google Scholar]
- Shi, X.; Polycarpou, A.A. Measurement and Modeling of Normal Contact Stiffness and Contact Damping at the Meso Scale. J. Vib. Acoust. 2005, 127, 52–60. [Google Scholar] [CrossRef]
- Peng, C.; Yang, L.; Zhang, Z.; Tachibana, K.; Yang, Y.; Zhao, S. Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes. Electrochimica Acta 2008, 53, 4764–4772. [Google Scholar] [CrossRef]
- Kramer, E.; Passerini, S.; Winter, M. Dependency of Aluminum Collector Corrosion in Lithium Ion Batteries on the Elec-trolyte Solvent. ECS Electrochem. Lett. 2012, 1, C9–C11. [Google Scholar] [CrossRef]
- Ma, D.; Song, Z.H.; Zhang, H.Z.; Hussain, A.; Feng, K.; Zhang, H.M.; Li, X.F. An all-weather Li/LiV2(PO4)(3)primary battery with improved shelf-life based on thein situmodification of the cathode/electrolyte interface. J. Mater. Chem. A 2020, 8, 16951–16959. [Google Scholar] [CrossRef]
- Chen, L.; Chen, G.; Lin, X.; Zheng, Z.; Wen, Z.; Wu, D.; Weng, Z.; Zhang, N.; Liu, X.; Ma, R. Lithiophilic and Anticorrosive Cu Current Collector via Dual-Bonded Porous Polymer Coating for Stable Lithium-Metal Batteries. ACS Appl. Mater. Interfaces 2023, 15, 10273–10282. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; An, Y.; Shen, H.; Man, Q.; Feng, J. Flexible and ultralight MXene paper as a current collector for microsized porous silicon anode in high-energy lithium-ion batteries. 2D Mater. 2023, 10, 014010. [Google Scholar] [CrossRef]
- Chun, J.; Wang, X.; Zhang, Y.; Wei, C.; Wang, Z.; Feng, J. Ti3C2Tx film current collectors for high-performance sodium-ion batteries. Vacuum 2023, 207, 111476. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Meng, W.; Wang, G.; Guo, C.; Ma, S.; Lei, Z.; Li, Y.; Guo, M.; Song, H. The Effect of Structure and Mechanical Properties Change of Current Collector during Cycling on Sb-Based Lithium-Ion Batteries’ Performance. Coatings 2023, 13, 780. https://doi.org/10.3390/coatings13040780
Zhao S, Meng W, Wang G, Guo C, Ma S, Lei Z, Li Y, Guo M, Song H. The Effect of Structure and Mechanical Properties Change of Current Collector during Cycling on Sb-Based Lithium-Ion Batteries’ Performance. Coatings. 2023; 13(4):780. https://doi.org/10.3390/coatings13040780
Chicago/Turabian StyleZhao, Songnan, Weijia Meng, Genwei Wang, Chunli Guo, Shengguo Ma, Zhipeng Lei, Yuanyuan Li, Meiqing Guo, and Hui Song. 2023. "The Effect of Structure and Mechanical Properties Change of Current Collector during Cycling on Sb-Based Lithium-Ion Batteries’ Performance" Coatings 13, no. 4: 780. https://doi.org/10.3390/coatings13040780
APA StyleZhao, S., Meng, W., Wang, G., Guo, C., Ma, S., Lei, Z., Li, Y., Guo, M., & Song, H. (2023). The Effect of Structure and Mechanical Properties Change of Current Collector during Cycling on Sb-Based Lithium-Ion Batteries’ Performance. Coatings, 13(4), 780. https://doi.org/10.3390/coatings13040780