Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taghinejad, M.; Cai, W. All-Optical Control of Light in Micro- and Nanophotonics. ACS Photonics 2019, 6, 1082–1093. [Google Scholar] [CrossRef]
- Kurumida, J.; Yoo, S.J.B. Nonlinear Optical Signal Processing in Optical Packet Switching Systems. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 978–987. [Google Scholar] [CrossRef]
- Dvornikov, A.S.; Walker, E.P.; Rentzepis, P.M. Two-Photon Three-Dimensional Optical Storage Memory. J. Phys. Chem. A 2009, 113, 13633–13644. [Google Scholar] [CrossRef]
- Walter, F.; Li, G.; Meier, C.; Zhang, S.; Zentgraf, T. Ultrathin Nonlinear Metasurface for Optical Image Encoding. Nano Lett. 2017, 17, 3171–3175. [Google Scholar] [CrossRef] [PubMed]
- Palomba, S.; Novotny, L. Near-Field Imaging with a Localized Nonlinear Light Source. Nano Lett. 2009, 9, 3801–3804. [Google Scholar] [CrossRef] [PubMed]
- Gadhwal, R.; Devi, A. A review on the development of optical limiters from homogeneous to reflective 1-D photonic crystal structures. Opt. Laser Technol. 2021, 141, 107144. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Tan, D.; Xian, Y.; Liu, X.; Qiu, J. Highly Defective Nanocrystals as Ultrafast Optical Switches: Nonequilibrium Synthesis and Efficient Nonlinear Optical Response. Chem. Mater. 2020, 32, 10025–10034. [Google Scholar] [CrossRef]
- Liu, G.; You, S.; Ma, M.; Huang, H.; Ren, N. Removal of Nitrate by Photocatalytic Denitrification Using Nonlinear Optical Material. Environ. Sci. Technol. 2016, 50, 11218–11225. [Google Scholar] [CrossRef]
- Kulyk, B.; Essaidi, Z.; Kapustianyk, V.; Turko, B.; Rudyk, V.; Partyka, M.; Addou, M.; Sahraoui, B. Second and third order nonlinear optical properties of nanostructured ZnO thin films deposited on a-BBO and LiNbO3. Opt. Commun. 2008, 281, 6107–6111. [Google Scholar] [CrossRef]
- Zhang, Y.-x.; Wang, Y.-h. Nonlinear optical properties of metal nanoparticles: A review. RSC Adv. 2017, 7, 45129–45144. [Google Scholar] [CrossRef]
- You, J.W.; Bongu, S.R.; Bao, Q.; Panoiu, N.C. Nonlinear optical properties and applications of 2D materials: Theoretical and experimental aspects. Nanophotonics 2019, 8, 63–97. [Google Scholar] [CrossRef]
- Lehr, D.; Reinhold, J.; Thiele, I.; Hartung, H.; Dietrich, K.; Menzel, C.; Pertsch, T.; Kley, E.-B.; Tünnermann, A. Enhancing Second Harmonic Generation in Gold Nanoring Resonators Filled with Lithium Niobate. Nano Lett. 2015, 15, 1025–1030. [Google Scholar] [CrossRef]
- Sánchez-Dena, O.; Mota-Santiago, P.; Tamayo-Rivera, L.; García-Ramírez, E.V.; Crespo-Sosa, A.; Oliver, A.; Reyes-Esqueda, J.-A. Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire. Opt. Mater. Express 2014, 4, 92. [Google Scholar] [CrossRef]
- Sato, R.; Ohnuma, M.; Oyoshi, K.; Takeda, Y. Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization. Phys. Rev. B 2014, 90, 125417. [Google Scholar] [CrossRef]
- Che, F.; Grabtchak, S.; Whelan, W.M.; Ponomarenko, S.A.; Cada, M. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide. Results Phys. 2017, 7, 593–595. [Google Scholar] [CrossRef]
- Alam, M.Z.; de Leon, I.; Boyd, R.W. Large Optical Nonlinearity of Indium Tin Oxide in its Epsilon-Near-Zero Region. Science 2016, 352, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Wickberg, A.; Kieninger, C.; Sürgers, C.; Schlabach, S.; Mu, X.; Koos, C.; Wegener, M. Second-Harmonic Generation from ZnO/Al2O3 Nanolaminate Optical Metamaterials Grown by Atomic-Layer Deposition. Adv. Opt. Mater. 2016, 4, 1203–1208. [Google Scholar] [CrossRef]
- Alloatti, L.; Kieninger, C.; Froelich, A.; Lauermann, M.; Frenzel, T.; Köhnle, K.; Freude, W.; Leuthold, J.; Wegener, M.; Koos, C. Second-order nonlinear optical metamaterials: ABC-type nanolaminates. Appl. Phys. Lett. 2015, 107, 121903. [Google Scholar] [CrossRef]
- Probst, A.-C.; Stollenwerk, M.; Emmerich, F.; Büttner, A.; Zeising, S.; Stadtmüller, J.; Riethmüller, F.; Stehlíková, V.; Wen, M.; Proserpio, L.; et al. Influence of sputtering pressure on the nanostructure and the X-ray reflectivity of iridium coatings. Surf. Coat. Technol. 2018, 343, 101–107. [Google Scholar] [CrossRef]
- Henriksen, P.L.; Ferreira, D.D.M.; Massahi, S.; Civitani, M.C.; Basso, S.; Vogel, J.; Armendariz, J.R.; Knudsen, E.B.; Irastorza, I.G.; Christensen, F.E. Iridium thin-film coatings for the BabyIAXO hybrid X-ray optic. Appl. Opt. 2021, 60, 6671–6681. [Google Scholar] [CrossRef] [PubMed]
- Arblaster, J.W. Crystallographic Properties of Iridium. Platin. Met. Rev. 2010, 54, 93–102. [Google Scholar] [CrossRef]
- Vila-Comamala, J.; Gorelick, S.; Färm, E.; Kewish, C.M.; Diaz, A.; Barrett, R.; Guzenko, V.A.; Ritala, M.; David, C. Ultra-High Resolution Zone-Doubled Diffractive X-ray Optics for the Multi-keV Regime. Opt. Express 2011, 19, 175–184. [Google Scholar] [CrossRef]
- Weber, T.; Käsebier, T.; Szeghalmi, A.; Knez, M.; Kley, E.-B.; Tünnermann, A. Iridium Wire Grid Polarizer Fabricated using Atomic Layer Deposition. Nanoscale Res. Lett. 2011, 6, 558. [Google Scholar] [CrossRef]
- Hemphill, R.; Hurwitz, M.; Pelizzo, M.G. Osmium Atomic-Oxygen Protection by an Iridium Overcoat for Increased Extreme-Ultraviolet Grating Efficiency. Appl. Opt. 2003, 42, 5149–5157. [Google Scholar] [CrossRef]
- Schmitt, P.; Felde, N.; Döhring, T.; Stollenwerk, M.; Uschmann, I.; Hanemann, K.; Siegler, M.; Klemm, G.; Gratzke, N.; Tünnermann, A.; et al. Optical, Structural, and Functional Properties of Highly Reflective and Stable Iridium Mirror Coatings for Infrared Applications. Opt. Mater. Express 2021, 12, 545–559. [Google Scholar] [CrossRef]
- Colombo, A.; Dragonetti, C.; Guerchais, V.; Hierlinger, C.; Zysman-Colman, E.; Roberto, D. A trip in the nonlinear optical properties of iridium complexes. Coord. Chem. Rev. 2020, 414, 213293. [Google Scholar] [CrossRef]
- Yan, L.; Woollam, J.A. Optical constants and roughness study of dc magnetron sputtered iridium films. J. Appl. Phys. 2002, 92, 4386–4392. [Google Scholar] [CrossRef]
- Kohli, S.; Niles, D.; Rithner, C.D.; Dorhout, P.K. Structural and optical properties of Iridium films annealed in air. Adv. X-ray Anal. 2002, 45, 352–358. [Google Scholar]
- Ghazaryan, L.; Pfeiffer, K.; Schmitt, P.; Beladiya, V.; Kund, S.; Szeghalmi, A. Atomic Layer Deposition. In Digital Encyclopedia of Applied Physics; Wiley-VCH: Weinheim, Germany, 2020; pp. 1–44. ISBN 9783527600434. [Google Scholar]
- Paul, P.; Hafiz, M.G.; Schmitt, P.; Patzig, C.; Otto, F.; Fritz, T.; Tünnermann, A.; Szeghalmi, A. Optical Bandgap Control in Al2O3/TiO2 Heterostructures by Plasma Enhanced Atomic Layer Deposition: Toward Quantizing Structures and Tailored Binary Oxides. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 252, 119508. [Google Scholar] [CrossRef] [PubMed]
- Kuppadakkath, A.; Najafidehaghani, E.; Gan, Z.; Tuniz, A.; Ngo, G.Q.; Knopf, H.; Löchner, F.J.F.; Abtahi, F.; Bucher, T.; Shradha, S.; et al. Direct growth of monolayer MoS2 on nanostructured silicon waveguides. Nanophotonics 2022, 11, 4397–4408. [Google Scholar] [CrossRef]
- Schmitt, P.; Beladiya, V.; Felde, N.; Paul, P.; Otto, F.; Fritz, T.; Tünnermann, A.; Szeghalmi, A.V. Influence of Substrate Materials on Nucleation and Properties of Iridium Thin Films Grown by ALD. Coatings 2021, 11, 173. [Google Scholar] [CrossRef]
- Daryakar, N.; David, C. Thin Films of Nonlinear Metallic Amorphous Composites. Nanomaterials 2022, 12, 3359. [Google Scholar] [CrossRef] [PubMed]
- Genevée, P.; Ahiavi, E.; Janunts, N.; Pertsch, T.; Oliva, M.; Kley, E.-B.; Szeghalmi, A. Blistering during the atomic layer deposition of iridium. J. Vac. Sci. Technol. A 2016, 34, 01A113. [Google Scholar] [CrossRef]
- ImageJ. Available online: https://imagej.nih.gov/ij/ (accessed on 10 September 2020).
- Schröder, S.; Herffurth, T.; Blaschke, H.; Duparré, A. Angle-resolved scattering: An effective method for characterizing thin-film coatings. Appl. Opt. 2011, 50, C164–C171. [Google Scholar] [CrossRef]
- Markel, V.A. Introduction to the Maxwell Garnett approximation: Tutorial. JOSA A 2016, 33, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Battie, Y.; Resano-Garcia, A.; Chaoui, N.; Zhang, Y.; En Naciri, A. Extended Maxwell-Garnett-Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix. J. Chem. Phys. 2014, 140, 44705. [Google Scholar] [CrossRef]
- Sipe, J.E.; Boyd, R.W. Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model. Phys. Rev. A 1992, 46, 1614–1629. [Google Scholar] [CrossRef] [PubMed]
- Peiponen, K.-E.; Mäkinen, M.O.A.; Saarinen, J.J.; Asakura, T. Dispersion Theory of Liquids Containing Optically Linear and Nonlinear Maxwell Garnett Nanoparticles. Opt. Rev. 2001, 8, 9–17. [Google Scholar] [CrossRef]
- Saarinen, J.J.; Vartiainen, E.M.; Peiponen, K.-E. On Tailoring of Nonlinear Spectral Properties of Nanocomposites Having Maxwell Garnett or Bruggeman Structure. Opt. Rev. 2003, 10, 111–115. [Google Scholar] [CrossRef]
- Boyd, R.W.; Gehr, R.J.; Fischer, G.L.; Sipe, J.E. Nonlinear optical properties of nanocomposite materials. Pure Appl. Opt. J. Eur. Opt. Soc. A 1996, 5, 505–512. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 9780080479750. [Google Scholar]
- Del Coso, R.; Solis, J. Relation between nonlinear refractive index and third-order susceptibility in absorbing media. J. Opt. Soc. Am. B 2004, 21, 640. [Google Scholar] [CrossRef]
- Maniyara, R.A.; Rodrigo, D.; Yu, R.; Canet-Ferrer, J.; Ghosh, D.S.; Yongsunthon, R.; Baker, D.E.; Rezikyan, A.; García de Abajo, F.J.; Pruneri, V. Tunable Plasmons in Ultrathin Metal Films. Nat. Photon. 2019, 13, 328–333. [Google Scholar] [CrossRef]
- Formica, N.; Ghosh, D.S.; Carrilero, A.; Chen, T.L.; Simpson, R.E.; Pruneri, V. Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer. ACS Appl. Mater. Interfaces 2013, 5, 3048–3053. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, Y.; Chen, R.; Cheng, X.; Xu, Z.; Jiang, T. Z-scan measurement of the nonlinear refractive index of monolayer WS(2). Opt. Express 2015, 23, 15616–15623. [Google Scholar] [CrossRef]
- Milam, D. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Appl. Opt. 1998, 37, 546–550. [Google Scholar] [CrossRef]
- Schaffer, C.B.; Brodeur, A.; Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 2001, 12, 1784–1794. [Google Scholar] [CrossRef]
- Guillet, Y.; Rashidi-Huyeh, M.; Palpant, B. Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles. Phys. Rev. B 2009, 79, 45410. [Google Scholar] [CrossRef]
- Moradi, A. Maxwell-Garnett effective medium theory: Quantum nonlocal effects. Phys. Plasmas 2015, 22, 42105. [Google Scholar] [CrossRef]
- Boyd, R.W.; Shi, Z.; de Leon, I. The third-order nonlinear optical susceptibility of gold. Opt. Commun. 2014, 326, 74–79. [Google Scholar] [CrossRef]
- Castro, H.P.S.; Wender, H.; Alencar, M.A.R.C.; Teixeira, S.R.; Dupont, J.; Hickmann, J.M. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition. J. Appl. Phys. 2013, 114, 183104. [Google Scholar] [CrossRef]
- Hache, F.; Ricard, D.; Flytzanis, C.; Kreibig, U. The optical kerr effect in small metal particles and metal colloids: The case of gold. Appl. Phys. A 1988, 47, 347–357. [Google Scholar] [CrossRef]
- Stepanov, A.L. Nonlinear Optical Properties of Metal Nanoparticles in Silicate Glass. In Glass Nanocomposites: Synthesis, Properties and Applications; Karmakar, B., Rademann, K., Stepanov, A.L., Eds.; William Andrew: Norwich, UK, 2016; pp. 165–179. ISBN 9780323393096. [Google Scholar]
- Shen, H.; Cheng, B.; Lu, G.; Ning, T.; Guan, D.; Zhou, Y.; Chen, Z. Enhancement of optical nonlinearity in periodic gold nanoparticle arrays. Nanotechnology 2006, 17, 4274–4277. [Google Scholar] [CrossRef]
- Bai, S.; Li, Q.; Zhang, H.; Chen, X.; Luo, S.; Gong, H.; Yang, Y.; Zhao, D.; Qiu, M. Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Appl. Phys. Lett. 2015, 107, 141111. [Google Scholar] [CrossRef]
- Stenzel, O.; Wilbrandt, S.; Mühlig, C.; Schröder, S. Linear and Nonlinear Absorption of Titanium Dioxide Films Produced by Plasma Ion-Assisted Electron Beam Evaporation: Modeling and Experiments. Coatings 2020, 10, 59. [Google Scholar] [CrossRef]
- Smith, D.D.; Yoon, Y.; Boyd, R.W.; Campbell, J.K.; Baker, L.A.; Crooks, R.M.; George, M. z-scan measurement of the nonlinear absorption of a thin gold film. J. Appl. Phys. 1999, 86, 6200–6205. [Google Scholar] [CrossRef]
- Jia, L.; Cui, D.; Wu, J.; Feng, H.; Yang, Y.; Yang, T.; Qu, Y.; Du, Y.; Hao, W.; Jia, B.; et al. Highly nonlinear BiOBr nanoflakes for hybrid integrated photonics. APL Photonics 2019, 4, 90802. [Google Scholar] [CrossRef]
Sample ID | Number of ALD Cycles | Ir Thickness XRR (nm) | Ir Density XRR (g/cm3) | Ir Surface Roughness (nm) | Optical Losses @ 405 nm (%) | Total Scattering @ 405 nm (ppm) | |
---|---|---|---|---|---|---|---|
XRR | WLI | ||||||
1 | 30 | 1.6 ± 1.0 | 8.5 ± 2.0 | 0.4 ± 0.2 | 0.5 ± 0.1 | 3.1 ± 0.5 | 174 ± 17 |
2 | 45 | 2.0 ± 1.0 | 4.1 ± 2.0 | 0.8 ± 0.2 | - | 2.7 ± 0.5 | 40 ± 4 |
3 | 60 | 3.0 ± 1.0 | 11.8 ± 1.0 | 1.0 ± 0.2 | 0.5 ± 0.1 | 14.5 ± 0.5 | 252 ± 25 |
4 | 75 | 4.0 ± 1.0 | 18.0 ± 1.0 | 1.2 ± 0.2 | - | 24.2 ± 0.5 | - |
5 | 100 | 5.7 ± 1.0 | 20.1 ± 0.5 | 0.9 ± 0.2 | 0.6 ± 0.1 | 37.5 ± 0.5 | 711 ± 71 |
6 | 150 | 8.7 ± 1.0 | 22.5 ± 0.5 | 1.4 ± 0.2 | 0.9 ± 0.1 | 37.8 ± 0.5 | 79 ± 8 |
7 | 200 | 11.7 ± 1.0 | 22.3 ± 0.2 | 1.2 ± 0.2 | 0.9 ± 0.1 | 36 0 ± 0.3 | 236 ± 24 |
8 | 250 | 14.3 ± 1.0 | 22.3 ± 0.2 | 1.1 ± 0.2 | 0.4 ± 0.1 | 34.8 ± 0.3 | 217 ± 22 |
9 | 400 | 24.7 ± 1.0 | 22.4 ± 0.1 | 0.9 ± 0.2 | 0.4 ± 0.1 | 31.5 ± 0.3 | 87 ± 9 |
Number of ALD Cycles | n2 (10−15 m2/W) (exp) | n2 (10−15 m2/W) (sim) | β (10−8 m/W) (exp) | β (10−8 m/W) (sim) | Ir Susceptibility (10−17 m2/V2) (exp) | Ir Susceptibility (10−17 m2/V2) (sim) | ||
---|---|---|---|---|---|---|---|---|
Re(χ(3)) | Im(χ(3)) | Re(χ(3)) | Im(χ(3)) | |||||
30 | 1.77 ± 0.11 | 4.22 | −4.01 ± 0.33 | −7.44 | 3.24 ± 0.21 | −3.17 ± 0.27 | 3.52 | −3.41 |
45 | 1.86 ± 0.10 | 2.15 | −3.35 ± 0.27 | −3.52 | 2.44 ± 0.14 | −2.08± 0.17 | 2.66 | −2.24 |
60 | 1.69 ± 0.13 | 2.95 | −2.88 ± 0.12 | −3.54 | 6.53 ± 0.35 | −3.53± 0.32 | 7.28 | −3.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitt, P.; Paul, P.; Li, W.; Wang, Z.; David, C.; Daryakar, N.; Hanemann, K.; Felde, N.; Munser, A.-S.; Kling, M.F.; et al. Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition. Coatings 2023, 13, 787. https://doi.org/10.3390/coatings13040787
Schmitt P, Paul P, Li W, Wang Z, David C, Daryakar N, Hanemann K, Felde N, Munser A-S, Kling MF, et al. Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition. Coatings. 2023; 13(4):787. https://doi.org/10.3390/coatings13040787
Chicago/Turabian StyleSchmitt, Paul, Pallabi Paul, Weiwei Li, Zilong Wang, Christin David, Navid Daryakar, Kevin Hanemann, Nadja Felde, Anne-Sophie Munser, Matthias F. Kling, and et al. 2023. "Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition" Coatings 13, no. 4: 787. https://doi.org/10.3390/coatings13040787
APA StyleSchmitt, P., Paul, P., Li, W., Wang, Z., David, C., Daryakar, N., Hanemann, K., Felde, N., Munser, A. -S., Kling, M. F., Schröder, S., Tünnermann, A., & Szeghalmi, A. (2023). Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition. Coatings, 13(4), 787. https://doi.org/10.3390/coatings13040787