Preparation of SrAl2O4: Eu2+, Dy3+ Powder by Combustion Method and Application in Anticounterfeiting
Abstract
:1. Introduction
2. Materials and Equipment
2.1. Materials and Synthesis
2.2. Instruments
3. Results and Discussion
3.1. Phase Identification and Surface Morphology Analysis
3.2. Optical Characterization
3.3. Luminescence and Morphology of SrAl2O4: Eu2+,Dy3+ in Different Solvents
3.4. Quantum Yield
3.5. Preparation and Morphology of Pdms Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lazău, R.; Ianoș, R.; Păcurariu, C.; Căpraru, A. Comparative study on SrAl2O4 formation using different approaches. Ceram. Int. 2022, 48, 13271–13276. [Google Scholar] [CrossRef]
- Zeng, P.; Wei, X.; Yin, M.; Chen, Y. Investigation of the long afterglow mechanism in SrAl2O4: Eu2+, Dy3+ by optically stimulated luminescence and thermoluminescence. J. Lumin. 2018, 199, 400–406. [Google Scholar] [CrossRef]
- der Heggen, V.; Joos, D.; Feng, J.J.; Fritz, A.; Delgado, V.; Gartmann, T.; Walfort, N.; Rytz, B.; Hagemann, D.; Poelman, D.; et al. Persistent Luminescence in Strontium Aluminate: A Roadmap to a brighter Future. Adv. Funct. Mater. 2022, 32, 2208809. [Google Scholar] [CrossRef]
- Hua, Y.; Yu, J.S. Dual-functional platforms toward field emission displays and novel anti-counterfeiting strategy based on rare-earth activated materials. Ceram. Int. 2021, 47, 18003–18011. [Google Scholar] [CrossRef]
- Son, N.M.; Trac, N.N. Synthesis of SrAl2O4: Eu2+, Dy3+ phosphorescence nanosized powder by combustion method and its optical properties. J. Phys. Conf. Ser. 2009, 187, 012017. [Google Scholar] [CrossRef]
- Alharbi, Y.R.; Abadel, A.A.; Mayhoub, O.A.; Kohail, M. Effect of using available metakaoline and nano materials on the behavior of reactive powder concrete. Constr. Build. Mater. 2021, 269, 121344. [Google Scholar] [CrossRef]
- Palilla, F.C.; Levine, A.K.; Tamkus, M.R. Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium. J. Electrochem. Soc. 1968, 115, 642–644. [Google Scholar] [CrossRef]
- Hölsä, J.; Jungner, H.; Lastusaari, M.; Niittykoski, J. Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+. J. Alloy. Compd. 2001, 323–324, 326–330. [Google Scholar] [CrossRef]
- Jia, W.; Yuan, H.; Lu, L.; Liu, H.; Yen, W.M. Crystal growth and characterization of Eu2+, Dy3+: SrAl2O and Eu2+, Nd3+: CaAl2O4 by the LHPG method. J. Cryst. Growth 1999, 200, 179–184. [Google Scholar] [CrossRef]
- Johari, M.; Rajabi, M.; Mohammadi, V. Production of SrAl2O4: Eu2+, Dy3+ green-emitting phosphor nano-pigment powders via microwave processing route. Pigment. Resin Technol. 2017, 46, 85–91. [Google Scholar] [CrossRef]
- Zhai, B.G.; Huang, Y.M. Green Afterglow of Undoped SrAl2O4. Nanomaterials 2021, 11, 2331. [Google Scholar] [CrossRef] [PubMed]
- Parauha, Y.R.; Sahu, V.; Dhoble, S.J. Prospective of combustion method for preparation of nanomaterials: A challenge. Mater. Sci. Eng. B 2021, 267, 115054. [Google Scholar] [CrossRef]
- Xiao, Q.; Xiao, L.; Liu, Y.; Chen, X.; Li, Y. Synthesis and luminescence properties of needle-like SrAl2O4:Eu, Dy phosphor via a hydrothermal co-precipitation method. J. Phys. Chem. Solids 2010, 71, 1026–1030. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Q.; Zheng, H.; Zhou, S.; Zhang, W. The decay model of Eu2+ and Eu2+, Dy3+ substituted SrAl2O4 prepared by high temperature solid phase method. J. Phys. Chem. Solids 2019, 124, 151–156. [Google Scholar] [CrossRef]
- Luchechko, A.; Zhydachevskyy, Y.; Ubizskii, S.; Kravets, O.; Popov, A.I.; Rogulis, U.; Elsts, E.; Bulur, E.; Suchocki, A. Afterglow, TL and OSL properties of Mn(2+)-doped ZnGa2O4 phosphor. Sci. Rep. 2019, 9, 9544. [Google Scholar] [CrossRef]
- Klym, H.; Karbovnyk, I.; Piskunov, S.; Popov, A.I. Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics. Nanomaterials 2021, 11, 3373. [Google Scholar] [CrossRef] [PubMed]
- Andreici Etimie, E.L.; Avram, N.M.; Brik, M.G. The d-d transitions and ligand field parameters for Cr3+/ Co2+ doped (Mg, Zn)Al2O4: Multi-reference Ab initio investigations. Opt. Mater. X 2022, 16, 100188. [Google Scholar] [CrossRef]
- Delgado, T.; Afshani, J.; Hagemann, H. Spectroscopic Study of a Single Crystal of SrAl2O4: Eu2+, Dy3+. J. Phys. Chem. C 2019, 123, 8607–8613. [Google Scholar] [CrossRef]
- Dołęga, A.; Juszyńska-Gałązka, E.; Deptuch, A.; Jaworska-Gołąb, T.; Zieliński, P.M. Vibrational Dynamics of Carbamazepine: Studies Based on Two-Dimensional Correlation Spectroscopy and X-ray Diffraction. Appl. Spectrosc 2020, 74, 473–484. [Google Scholar] [CrossRef]
- Hansford, G.M. Phase-targeted X-ray diffraction. J. Appl. Crystallogr. 2016, 49 Pt 5, 1561–1571. [Google Scholar] [CrossRef]
- Joy, D.C. The Resolution of the SEM. Microsc. Microanal. 2020, 3, 1173–1174. [Google Scholar] [CrossRef]
- Aroz, R.; Lennikov, V.; Cases, R.; Sanjuán, M.L.; de la Fuente, G.F.; Munoz, E. Laser synthesis and luminescence properties of SrAl2O4: Eu2+, Dy3+ phosphors. J. Eur. Ceram. Soc. 2012, 32, 4363–4369. [Google Scholar] [CrossRef]
- Yan, Y.; Ge, M.; Li, Y.; Kumar, D.N.T. Morphology and spectral characteristics of a luminous fiber containing a rare earth strontium aluminate. Text. Res. J. 2012, 82, 1819–1826. [Google Scholar] [CrossRef]
- Clabau, F.; Rocquefelte, X.; Jobic, S.; Deniard, P.; Whangbo, M.-H.; Garcia, A.; Le Mercier, T. Mechanism of Phosphorescence Appropriate for the Long-Lasting Phosphors Eu2+-Doped SrAl2O4 with Codopants Dy3+ and B3+. Chem. Mater. 2005, 17, 3904–3912. [Google Scholar] [CrossRef]
- Vitola, V.; Millers, D.; Bite, I.; Smits, K.; Spustaka, A. Recent progress in understanding the persistent luminescence in SrAl2O4: Eu, Dy. Mater. Sci. Technol. 2019, 35, 1661–1677. [Google Scholar] [CrossRef]
- Lü, X.; Shu, W.; Yu, Q.; Fang, Q.; Xiong, X. Roles of doping ions in persistent luminescence of SrAl2O4: Eu2+, RE3+ phosphors. Glass Phys. Chem. 2007, 33, 62–67. [Google Scholar] [CrossRef]
- Brik, M.G.; Ma, C.G.; Yamamoto, T.; Piasecki, M.; Popov, A.I. First-Principles Methods as a Powerful Tool for Fundamental and Applied Research in the Field of Optical Materials. In Phosphor Handbook: Experimental Methods for Phosphor Evaluation and Characterization; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–26. [Google Scholar]
- Seeman, V.; Feldbach, E.; Kärner, T.; Maaroos, A.; Mironova-Ulmane, N.; Popov, A.I.; Shablonin, E.; Vasil’chenko, E.; Lushchik, A. Fast-neutron-induced and as-grown structural defects in magnesium aluminate spinel crystals with different stoichiometry. Opt. Mater. 2019, 91, 42–49. [Google Scholar] [CrossRef]
- Endla, P. Synthesis and evaluation of ZnAl2O4 and Mn, Dy doped ZnAl2O4 powders by sol–gel and ball milling method. Chem. Pap. 2022, 76, 7327–7331. [Google Scholar] [CrossRef]
- Jia, W.; Yuan, H.; Lu, L.; Liu, H.; Yen, W.M. Phosphorescent dynamics in SrAl2O4:Eu2+,Dy3+ single crystal fibers. J. Lumin. 1998, 76–77, 424–428. [Google Scholar] [CrossRef]
- Katsumata, T.; Nabae, T.; Sasajima, K.; Matsuzawa, T. Growth and characteristics of long persistent SrAl2O4- and CaAl2O4- based phosphor crystals by a floating zone technique. J. Cryst. Growth 1998, 183, 361–365. [Google Scholar] [CrossRef]
- Das, S.; Manam, J.; Sharma, S.K. Composites of BaAl2O4: Eu2+,Dy3+/organic dye encapsulated in mesoporous silica as multicolor long persistent phosphors based on radiative energy transfer. New J. Chem. 2017, 41, 5934–5941. [Google Scholar] [CrossRef]
- Han, S.D.; Singh, K.C.; Cho, T.Y.; Lee, H.S.; Jakhar, D.; Hulme, J.P.; Han, C.H.; Kim, J.D.; Chun, I.S.; Gwak, J. Preparation and characterization of long persistence strontium aluminate phosphor. J. Lumin. 2008, 128, 301–305. [Google Scholar] [CrossRef]
- Pei, P.; Wei, R.; Wang, B.; Su, J.; Zhang, Z.; Liu, W. An Advanced Tunable Multimodal Luminescent La4GeO8: Eu2+, Er3+ Phosphor for Multicolor Anticounterfeiting. Adv. Funct. Mater. 2021, 31, 2102479. [Google Scholar] [CrossRef]
- Wang, S.; Wu, H.; Wen, X.; Luo, Y.; Tan, T.; Jiao, S.; Pang, R.; Jiang, L.; Zhang, S.; Li, D.; et al. Single-phase white-emitting and tunable color phosphor Na3Sc2(PO4)3: Eu2+, Dy3+: Synthesis, luminescence and energy transfer. J. Rare Earths 2022, 40, 551–558. [Google Scholar] [CrossRef]
- Li, K.; Shang, M.; Lian, H.; Lin, J. Recent development in phosphors with different emitting colors via energy transfer. J. Mater. Chem. C 2016, 4, 5507–5530. [Google Scholar] [CrossRef]
- Liu, B.; Gu, M.; Liu, X.; Huang, S.; Ni, C. Theoretical study of structural, electronic, lattice dynamical and dielectric properties of SrAl2O4. J. Alloy. Compd. 2011, 509, 4300–4303. [Google Scholar] [CrossRef]
- Nazarov, M.; Brik, M.G.; Spassky, D.; Tsukerblat, B.; Nazida, A.N.; Ahmad-Fauzi, M.N. Structural and electronic properties of SrAl2O4: Eu2+ from density functional theory calculations. J. Alloy. Compd. 2013, 573, 6–10. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, A.; Bai, H.; Bao, J.; Li, W.; Liu, Y. Synthesis of LaPO4:Eu nanofibers with enhanced photoluminescence quantum yield. J. Alloy. Compd. 2021, 879, 160477. [Google Scholar] [CrossRef]
- Yang, S.; Dai, Y.; Shen, Y.; Duan, C.; Rao, Q.; Peng, H.; Yang, F.; Shan, Y.; Zhao, Q. Blue emission from Sr0.98Ga2B2O7: 0.01Bi3+, 0.01Dy3+ phosphor with high quantum yield. J. Alloy. Compd. 2019, 810, 151849. [Google Scholar] [CrossRef]
Sample | Decay Lifetimes (ns) | ||||
---|---|---|---|---|---|
SrAl2O4 | 0.088 | 0.002 | 0.2946 | 4.0140 | 1.174 |
SrAl2O4: Eu2+, 0%Dy3+ | 822.640 | 747.737 | 117.708 | 812.838 | 717.311 |
SrAl2O4: Eu2+, 0.1%Dy3+ | 1924.719 | 1110.173 | 180.771 | 907.019 | 720.518 |
SrAl2O4: Eu2+, 1%Dy3+ | 1021.863 | 753.378 | 97.536 | 813.502 | 713.355 |
SrAl2O4: Eu2+, 4%Dy3+ | 820.139 | 640.820 | 106.750 | 828.777 | 726.596 |
SrAl2O4: Eu2+, 6%Dy3+ | 890.813 | 628.545 | 88.892 | 798.896 | 702.182 |
SrAl2O4: Eu2+, 8%Dy3+ | 877.156 | 633.436 | 94.751 | 818.088 | 718.112 |
SrAl2O4: Eu2+, 10%Dy3+ | 1147.305 | 648.023 | 110.980 | 852.331 | 713.445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Wang, J.; Wu, J.; Xu, Q.; Yang, L.; Liu, Q.; Qi, Y.; Li, Z. Preparation of SrAl2O4: Eu2+, Dy3+ Powder by Combustion Method and Application in Anticounterfeiting. Coatings 2023, 13, 808. https://doi.org/10.3390/coatings13040808
Gao P, Wang J, Wu J, Xu Q, Yang L, Liu Q, Qi Y, Li Z. Preparation of SrAl2O4: Eu2+, Dy3+ Powder by Combustion Method and Application in Anticounterfeiting. Coatings. 2023; 13(4):808. https://doi.org/10.3390/coatings13040808
Chicago/Turabian StyleGao, Peng, Jigang Wang, Jiao Wu, Qingqing Xu, Lixue Yang, Quanxiao Liu, Yuansheng Qi, and Zhenjun Li. 2023. "Preparation of SrAl2O4: Eu2+, Dy3+ Powder by Combustion Method and Application in Anticounterfeiting" Coatings 13, no. 4: 808. https://doi.org/10.3390/coatings13040808
APA StyleGao, P., Wang, J., Wu, J., Xu, Q., Yang, L., Liu, Q., Qi, Y., & Li, Z. (2023). Preparation of SrAl2O4: Eu2+, Dy3+ Powder by Combustion Method and Application in Anticounterfeiting. Coatings, 13(4), 808. https://doi.org/10.3390/coatings13040808