Preparation of Polyurethane-Modified Silicone Rubber Insulating Coating and Its Application in 10 kV Overhead Bare Wire Wrapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods and Test Standards
2.3. Synthesis of Prepolymer (PU-Si)
2.4. Determination of the Free-NCO Content
2.5. Production Processes for Insulating Coatings
3. Results
3.1. Optimal Synthesis Process for Prepolymer
3.2. Mechanical Properties of Samples
3.3. Effect of the Amount of Crosslinker on the Surface Drying Time and Deep Curing Performance of the Coating
3.4. Effect of Coupling Agent KH792 on Interfacial Bonding Properties
3.5. Effect of Catalyst on Surface Drying Time of the Coating
3.6. Influence of the Amount of Flame Retardant Filler on the Flame Retardant Properties of Silicone Rubber
3.6.1. Thermogravimetric Analyses
3.6.2. SEM Analysis
3.6.3. Electrical Properties Testing of Silicone Rubber
3.7. Field Trials and Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Péter, Z.; Farzaneh, M.; Kiss, L.I. Assessment of the current intensity for preventing ice accretion on overhead conductors. IEEE Trans. Power Deliv. 2006, 22, 565–574. [Google Scholar] [CrossRef]
- Cimini, C.A., Jr.; Fonseca, B.Q.A. Temperature profile of progressive damaged overhead electrical conductors. Int. J. Electr. Power Energy Syst. 2013, 49, 280–286. [Google Scholar] [CrossRef]
- Qu, N.; Li, Z.; Zuo, J.; Chen, J. Fault detection on insulated overhead conductors based on DWT-LSTM and partial discharge. IEEE Access 2020, 8, 87060–87070. [Google Scholar] [CrossRef]
- Rao, C.; Song, Y.; Wang, H.; Wang, J.; Jing, F. Robotic Visual Inspection and Positioning Method for Flexible Wire Coating Operation. In Proceedings of the 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Changbai Mountain, China, 27–31 July 2022; IEEE: Piscataway, NJ, USA; pp. 247–252. [Google Scholar]
- Yan, Y.; Xu, X.; Xiao, Z.; Tong, X. Mechanism design of electric robot of distribution network for cut off or connection of leading wire. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 237, p. 062027. [Google Scholar]
- Zhou, F.; Zhu, J.; An, N.; Wang, C.; Liu, J.; Long, L. The anti-icing and deicing robot system for electricity transmission line based on external excitation resonant. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 593–600. [Google Scholar] [CrossRef]
- Catterson, V.; Castellon, J.; Pilgrim, J.; Saha, T.K.; Ma, H.; Vakilian, M.; Moradnouri, A.; Gholami, M.; Sparling, B. The impact of smart grid technology on dielectrics and electrical insulation. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3505–3512. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-S.; Yanagida, M.; Sayama, K.; Sugihara, H. Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime and efficiency. Chem. Mater. 2006, 18, 2912–2916. [Google Scholar] [CrossRef]
- Li, Y.; Sheng, L.; Wu, J.; Li, X.; Zhao, J.; Zhang, M.; Yuan, Y.; Peng, B. Influence of insulating coating on aluminum wire explosions. Phys. Plasmas 2014, 21, 102513. [Google Scholar] [CrossRef]
- Liu, S.; Veysey, S.W.; Fifield, L.S.; Bowler, N. Quantitative analysis of changes in antioxidant in crosslinked polyethylene (XLPE) cable insulation material exposed to heat and gamma radiation. Polym. Degrad. Stab. 2018, 156, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Green, C.; Vaughan, A.; Stevens, G.; Pye, A.; Sutton, S.; Geussens, T.; Fairhurst, M. Thermoplastic cable insulation comprising a blend of isotactic polypropylene and a propylene-ethylene copolymer. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Fang, S.; Gao, H.; Guan, Z.; Wang, L.; Xu, Z. Development of RTV silicone coatings in China: Overview and bibliography. IEEE Electr. Insul. Mag. 2008, 24, 28–41. [Google Scholar]
- Zhang, Z.; Qiao, X.; Xiang, Y.; Jiang, X. Comparison of surface pollution flashover characteristics of RTV (room temperature vulcanizing) coated insulators under different coating damage modes. IEEE Access 2019, 7, 40904–40912. [Google Scholar] [CrossRef]
- Li, Z.; Yin, F.; Cao, B.; Wang, L.; Shao, S.; Farzaneh, M. Pollution flashover performance of RTV coatings with partial damage. Int. J. Electr. Power Energy Syst. 2020, 121, 106102. [Google Scholar] [CrossRef]
- Taghvaei, M.; Sedighizadeh, M.; NayebPashaee, N.; Fini, A.S. Thermal stability of nano RTV vs. RTV coatings in porcelain insulators. Therm. Sci. Eng. Prog. 2020, 20, 100696. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, J.; Wei, M.; Wan, D.; Wang, Y.; Du, Y. The Improvement in Electrical Properties of RTV Silicone Rubber by the Introduction of TiO₂ Nanocomposite. In Proceedings of the 2022 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Denver, CO, USA, 30 October–2 November 2022; pp. 293–296. [Google Scholar]
- Zhi, M.; Yang, X.; Fan, R.; Yue, S.; Zheng, L.; Liu, Q.; He, Y. A comprehensive review of reactive flame-retardant epoxy resin: Fundamentals, recent developments, and perspectives. Polym. Degrad. Stab. 2022, 201, 109976. [Google Scholar] [CrossRef]
- Han, Q.; Sheng, Y.; Liu, X.; Zhang, X.; Chen, X.; Li, B.; Han, Z. Carbon fiber reinforced epoxy composite combining superior electrochemical energy storage and mechanical performance. Chem. Eng. J. 2022, 437, 135228. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Zhu, X.; Liu, F.; Fang, Z. Study on discharge characteristics and improving surface hydrophobicity of epoxy resin by nanosecond pulse excited argon/hexamethyldisiloxane jet array. High Volt. 2022, 7, 771–781. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Raju, K. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 2007, 32, 352–418. [Google Scholar] [CrossRef]
- Hepburn, C. Polyurethane Elastomers; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Akindoyo, J.O.; Beg, M.; Ghazali, S.; Islam, M.; Jeyaratnam, N.; Yuvaraj, A. Polyurethane types, synthesis and applications–a review. Rsc Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef] [Green Version]
- Ronca, S. Polyethylene. In Brydson’s Plastics Materials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 247–278. [Google Scholar]
- Ouyang, Y.; Mauri, M.; Pourrahimi, A.M.; Östergren, I.; Lund, A.; Gkourmpis, T.; Prieto, O.; Xu, X.; Hagstrand, P.-O.; Müller, C. Recyclable polyethylene insulation via reactive compounding with a maleic anhydride-grafted polypropylene. ACS Appl. Polym. Mater. 2020, 2, 2389–2396. [Google Scholar] [CrossRef]
- Ding, M.; He, W.; Wang, J.; Wang, J. Performance Evaluation of Cross-Linked Polyethylene Insulation of Operating 110 kV Power Cables. Polymers 2022, 14, 2282. [Google Scholar] [CrossRef]
- Gill, Y.Q.; Ehsan, H.; Mehmood, U.; Irfan, M.S.; Saeed, F. A novel two-step melt blending method to prepare nano-silanized-silica reinforced crosslinked polyethylene (XLPE) nanocomposites. Polym. Bull. 2022, 79, 10077–10093. [Google Scholar] [CrossRef]
- Stelescu, M.D.; Sonmez, M.; Georgescu, M.; Alexandrescu, L.; Nituica, M.; Gurau, D. Polymeric compounds based on thermoplastic elastomer styrene-butadiene-styrene block copolymers and siliconic rubber powder. Prog. Rubber Plast. Recycl. Technol. 2022, 38, 311–327. [Google Scholar] [CrossRef]
- Mokhtari Aghdami, R.; Mousavi, S.R.; Estaji, S.; Dermeni, R.K.; Khonakdar, H.A.; Shakeri, A. Evaluating the mechanical, thermal, and antibacterial properties of poly (lactic acid)/silicone rubber blends reinforced with (3-aminopropyl) triethoxysilane-functionalized titanium dioxide nanoparticles. Polym. Compos. 2022, 43, 4165–4178. [Google Scholar] [CrossRef]
- Alikhani, E.; Mohammadi, M.; Sabzi, M. Preparation and study of mechanical and thermal properties of silicone rubber/poly (styrene–ethylene butylene–styrene) triblock copolymer blends. Polym. Bull. 2022, 1–22. [Google Scholar] [CrossRef]
- da Silva, C.R.; Masini, J.C. Ethylene vinyl acetate copolymer is an efficient and alternative passive sampler of hydrophobic organic contaminants. A comparison with silicone rubber. Environ. Pollut. 2023, 323, 121258. [Google Scholar] [CrossRef]
- Abd-Elhady, A.M.; Sleet, A.Y.; Izzularab, M.A.; Ibrahim, M.E. Polystyrene/silicone rubber blends with improved dielectric properties. Electr. Eng. 2023, 1–13. [Google Scholar] [CrossRef]
- Maity, M.; Khatua, B.; Das, C. Polyblend systems of polyurethane rubber and silicone rubber in the presence of silane grafting agent. J. Elastomers Plast. 2001, 33, 211–224. [Google Scholar] [CrossRef]
- Cui, Y.; Yan, T.; Pan, H.; Sun, H.; Bai, X.; Cao, L.; Zong, C. Preparation and Characterization of Intrinsically Compatibilized Thermoplastic Polyurethane and Silicone Rubber. Macromol. Chem. Phys. 2022, 223, 2100420. [Google Scholar] [CrossRef]
- Zhang, H.-F.; Hao, Q.; Tian, H.-C.; Yao, P.-J.; Liu, X.-Y.; Yu, B.; Ning, N.-Y.; Tian, M.; Zhang, L.-Q. Polyurethane-polysiloxane Copolymer Compatibilized SiR/TPU TPV with Comfortable Human Touch Toward Wearable Devices. Chin. J. Polym. Sci. 2023, 41, 258–266. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, K.; Zhu, A.; Meng, Z.; Li, W.; Qin, C. Preparation of Bentonite/Chitosan Composite for Bleaching of Deteriorating Transformer Oil. Polymers 2020, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Meng, Z.; Li, J.; Peng, S.; Huang, C.; Wang, W.; Li, W.; Qin, C. The Preparation and Characterization of a Cyanide-Free Brush-Plating Solution for Application in the Electric Power Industry. Coatings 2022, 12, 194. [Google Scholar] [CrossRef]
- Meng, Z.; Zheng, K.; Huang, C.; Li, W.; Qin, C. A New Type of Coating Brush Plating Solution and Its Application Performance. Coatings 2022, 12, 134. [Google Scholar] [CrossRef]
- Shao, J.; Yu, C.; Bian, F.; Zeng, Y.; Zhang, F. Preparation and properties of hydrophilic rosin-based aromatic polyurethane microspheres. ACS Omega 2019, 4, 2493–2499. [Google Scholar] [CrossRef] [Green Version]
- Christenson, E.M.; Dadsetan, M.; Anderson, J.M.; Hiltner, A. Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes. J. Biomed. Mater. Res. Part A 2005, 74, 141–155. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, Z.; Sun, Z.; Sun, Y.; Song, J.; Zhang, X.; Huan, S.; Bai, L.; Gu, J. Engineering liquid pMDI into water-processable powder: Manufacture and application as waterborne additive. J. Clean. Prod. 2022, 372, 133767. [Google Scholar] [CrossRef]
- Yang, X.; Li, Q.; Li, Z.; Xu, X.; Liu, H.; Shang, S.; Song, Z. Preparation and characterization of room-temperature-vulcanized silicone rubber using acrylpimaric acid-modified aminopropyltriethoxysilane as a cross-linking agent. ACS Sustain. Chem. Eng. 2019, 7, 4964–4974. [Google Scholar] [CrossRef]
- Burel, F.; Feldman, A.; Bunel, C. Hydrogenated hydroxy-functionalized polyisoprene (H-HTPI) and isocyanurate of isophorone diisocyanates (I-IPDI): Reaction kinetics study using FTIR spectroscopy. Polymer 2005, 46, 15–25. [Google Scholar] [CrossRef]
- Mata, A.; Fleischman, A.J.; Roy, S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 2005, 7, 281–293. [Google Scholar] [CrossRef]
- Sun, N.; Wang, Z.; Xu, Y.; Cong, J.; Li, J.; Bai, L.; Huo, P.; Li, Z.; Liu, Y. Synthesis of cellulose nanofiber/polysiloxane-polyurea composite materials with self-healing and reprocessing properties. Int. J. Biol. Macromol. 2023, 227, 203–213. [Google Scholar] [CrossRef]
- Choi, T.; Weksler, J.; Padsalgikar, A.; Runt, J. Microstructural organization of polydimethylsiloxane soft segment polyurethanes derived from a single macrodiol. Polymer 2010, 51, 4375–4382. [Google Scholar] [CrossRef]
- Speckhard, T.A.; Cooper, S.L. Ultimate tensile properties of segmented polyurethane elastomers: Factors leading to reduced properties for polyurethanes based on nonpolar soft segments. Rubber Chem. Technol. 1986, 59, 405–431. [Google Scholar] [CrossRef]
- Huang, H.; Tian, M.; Liu, L.; Liang, W.; Zhang, L. Effect of particle size on flame retardancy of Mg(OH)2-filled ethylene vinyl acetate copolymer composites. J. Appl. Polym. Sci. 2006, 100, 4461–4469. [Google Scholar] [CrossRef]
- Brostow, W.; Lohse, S.; Lu, X.; Osmanson, A.T. Nano-Al(OH)3 and Mg(OH)2 as flame retardants for polypropylene used on wires and cables. Emergent Mater. 2019, 2, 23–34. [Google Scholar] [CrossRef]
- Gui, H.; Zhang, X.; Dong, W.; Wang, Q.; Gao, J.; Song, Z.; Lai, J.; Liu, Y.; Huang, F.; Qiao, J. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites. Polymer 2007, 48, 2537–2541. [Google Scholar] [CrossRef]
Entry | PDMS (g) | PU-Si (g) | SiO2 (g) | CaCO3 (g) | Dimethyl Silicone Oil (g) | MOS (g) | KH792 (g) | Dibutyltin Laurate (g) | Mg(OH)2 (g) |
---|---|---|---|---|---|---|---|---|---|
1 | 100 | 0 | 10 | 90 | 10 | 5 | 5 | 0.3 | 10 |
2 | 90 | 10 | 10 | 90 | 10 | 5 | 5 | 0.3 | 10 |
3 | 80 | 20 | 10 | 90 | 10 | 5 | 5 | 0.3 | 10 |
4 | 70 | 30 | 10 | 90 | 10 | 5 | 5 | 0.3 | 10 |
5 | 60 | 40 | 10 | 90 | 10 | 5 | 5 | 0.3 | 10 |
6 | 50 | 50 | 10 | 90 | 10 | 5 | 5 | 0.3 | 10 |
7 | 70 | 30 | 5 | 95 | 10 | 5 | 5 | 0.3 | 10 |
8 | 70 | 30 | 15 | 85 | 10 | 5 | 5 | 0.3 | 10 |
9 | 70 | 30 | 10 | 90 | 10 | 6 | 5 | 0.3 | 10 |
10 | 70 | 30 | 10 | 90 | 10 | 7 | 5 | 0.3 | 10 |
11 | 70 | 30 | 10 | 90 | 10 | 8 | 5 | 0.3 | 10 |
12 | 70 | 30 | 10 | 90 | 10 | 9 | 5 | 0.3 | 10 |
13 | 70 | 30 | 10 | 90 | 10 | 10 | 5 | 0.3 | 10 |
14 | 70 | 30 | 10 | 90 | 10 | 7 | 1 | 0.3 | 10 |
15 | 70 | 30 | 10 | 90 | 10 | 7 | 3 | 0.3 | 10 |
16 | 70 | 30 | 10 | 90 | 10 | 7 | 7 | 0.3 | 10 |
17 | 70 | 30 | 10 | 90 | 10 | 7 | 9 | 0.3 | 10 |
18 | 70 | 30 | 10 | 90 | 10 | 7 | 5 | 0.1 | 10 |
19 | 70 | 30 | 10 | 90 | 10 | 7 | 5 | 0.2 | 10 |
20 | 70 | 30 | 10 | 90 | 10 | 7 | 5 | 0.4 | 10 |
21 | 70 | 30 | 10 | 90 | 10 | 7 | 5 | 0.3 | 0 |
22 | 70 | 30 | 10 | 90 | 10 | 7 | 5 | 0.3 | 20 |
23 | 70 | 30 | 10 | 90 | 10 | 7 | 5 | 0.3 | 30 |
24 | 70 | 30 | 10 | 90 | 10 | 7 | 5 | 0.3 | 40 |
Entry | Molar Ratio of PDMS/IPDI | Reaction Temperature (°C) | Reaction Time (h) | Content of Residual NCO in the Product (%) |
---|---|---|---|---|
1 | 2:1 | 70 | 3 | 6.5 |
2 | 2.3:1 | 70 | 3 | 2.1 |
3 | 2.5:1 | 70 | 3 | 1.7 |
4 | 3:1 | 70 | 3 | 1.1 |
5 | 4:1 | 70 | 3 | 1.0 |
6 | 2.5:1 | 60 | 3 | 5.6 |
7 | 2.5:1 | 80 | 3 | 1.8 |
8 | 2.5:1 | 90 | 3 | 1.6 |
9 | 2.5:1 | 70 | 2 | 4.6 |
10 | 2.5:1 | 70 | 4 | 1.0 |
Entry | 10 (10 g) | 21 (0 g) | 22 (20 g) | 23 (30 g) | 24 (40 g) |
---|---|---|---|---|---|
Sample extinction time (s) | 53 Burn | >60 Burn | 45 Extinguish | 31 Extinguish | 17 Extinguish |
tensile strength (MPa) | 3.37 ± 0.31 | 3.45 ± 0.24 | 3.31 ± 0.28 | 3.23 ± 0.26 | 3.14 ± 0.27 |
elongation at break (%) | 259 ± 22 | 268 ± 14 | 251 ± 19 | 238 ± 33 | 223 ± 21 |
Volumetric resistivity (Ω·cm) | 7.15 × 1014 | 9.88 × 1014 | 5.55 × 1014 | 4.36 × 1014 | 2.06 × 1014 |
Breakdown voltage (kV/mm) | 22.3 | 23.5 | 22.1 | 21.7 | 20.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yang, F.; Zhang, P.; Luo, Z.; Li, F.; Jiang, J.; Zhang, J.; Li, W.; Liu, A.; Qin, C. Preparation of Polyurethane-Modified Silicone Rubber Insulating Coating and Its Application in 10 kV Overhead Bare Wire Wrapping. Coatings 2023, 13, 837. https://doi.org/10.3390/coatings13050837
Wang W, Yang F, Zhang P, Luo Z, Li F, Jiang J, Zhang J, Li W, Liu A, Qin C. Preparation of Polyurethane-Modified Silicone Rubber Insulating Coating and Its Application in 10 kV Overhead Bare Wire Wrapping. Coatings. 2023; 13(5):837. https://doi.org/10.3390/coatings13050837
Chicago/Turabian StyleWang, Wei, Fan Yang, Pan Zhang, Zhi Luo, Fangya Li, Jingjing Jiang, Jianbing Zhang, Wei Li, Aimei Liu, and Caiqin Qin. 2023. "Preparation of Polyurethane-Modified Silicone Rubber Insulating Coating and Its Application in 10 kV Overhead Bare Wire Wrapping" Coatings 13, no. 5: 837. https://doi.org/10.3390/coatings13050837
APA StyleWang, W., Yang, F., Zhang, P., Luo, Z., Li, F., Jiang, J., Zhang, J., Li, W., Liu, A., & Qin, C. (2023). Preparation of Polyurethane-Modified Silicone Rubber Insulating Coating and Its Application in 10 kV Overhead Bare Wire Wrapping. Coatings, 13(5), 837. https://doi.org/10.3390/coatings13050837