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Abstract: The present work attempted to produce thick zirconia coatings formed by micro-arc
oxidation as a hydrogen permeation barrier on zirconium hydride alloy. A novel multiphase zirconia
coating was achieved, exhibiting superior hydrogen permeation barrier performance. The growth
dynamics, formation mechanism, and phase evolution behavior of thick zirconia coatings were
explored, and the hydrogen permeation barrier performance was evaluated by means of vacuum
dehydrogenation experiment. The hydrogen desorption quantity was monitored by analyzing
pressure changes with a quadruple mass spectrometer (QMS). Experimental results show that the
multiphase coatings were composed of monoclinic ZrO2 (m-ZrO2), tetragonal ZrO2 (t-ZrO2), and a
trace of cubic ZrO2 (c-ZrO2). The coatings were generally divided into a dense and uniform inner,
intermediate layer, and a porous top layer. The quantitative analysis indicates an increased amount
of m-ZrO2 toward the coating surface and an increased amount of t-ZrO2 toward the oxide/metal
interface. This novel multiphase thick zirconia coating can noticeably improve hydrogen permeation
resistance, and the permeation reduction factor (PRF) value is improved by nearly 13 times compared
with bare zirconium hydride. It is demonstrated that hydrogen desorption is retarded to some extent
in the presence of thick zirconia coating. Hydrogen desorption of the sample with ceramic coating
started at 660 ◦C, which was apparently higher than that of the sample without coating.

Keywords: zirconia thick coating; zirconium hydride; micro-arc oxidation; plasma electrolytic;
hydrogen permeation barrier

1. Introduction

Zirconium hydride alloys are considered to be prominent candidate materials as
neutron moderators for application to nuclear reactors, because of their high hydrogen
storage capacity ((H/Zr) at. > 1.5), relatively low thermal neutron absorption cross-section,
and highly negative moderator temperature coefficient (MTC) of reactivity [1–3]. However,
the thermal induced hydrogen loss of zirconium hydride alloys at the service temperature
(~650 ◦C) is one of the major obstacles that hinder their further operating efficiency and
service life [4,5]. Consequently, it is imperative to produce protective coatings on the surface
of zirconium hydride as a hydrogen permeation barrier. Ceramic-based permeation barriers,
such as oxide [4–7], carbide [8], nitride [9,10], etc., have been extensively researched to
suppress tritium or hydrogen permeation in fusion reactor systems due to their economic
advantages and promising barrier effects. Among these materials, zirconia-based ceramics
appear to be the most promising candidates for the application of a hydrogen permeation
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barrier of zirconium hydride alloys, due to their impressive intrinsic properties of low
neutron absorption coefficient [11], high chemical stability [12], low thermal conductivity,
high thermal resistance [13], etc. Moreover, it is well established that the thermal expansion
coefficient of zirconia closely matches that of the zirconium hydride substrate, which
renders it a preferable substance for protective coating applications in harsh environments
including aggressive media, high temperatures, and radiation exposure.

To the best of the authors’ knowledge, previous research on the generation of hydro-
gen permeation barrier of zirconium hydride has focused mainly on the sol-gel method,
slurry coating, and direct oxidation in oxygen and/or carbon dioxide [10,14,15]. How-
ever, it is difficult to generate a compact and intact coating by these methods due to the
volatilization of solvent during drying processes and cracking caused by different ther-
mal expansion between coating materials and substrate metals during subsequent heat
treatments. Therefore, it is essential to explore alternative methods for the fabrication
of hydrogen permeation barriers. Micro-arc oxidation (MAO) has been regarded as an
expeditious process for the fabrication of zirconia coating on the surface of zirconium alloy,
and is characterized by high productivity, cost-effectiveness, room-temperature operation,
environmental friendliness, and high geometric adaptability [16–18]. Furthermore, the
MAO process essentially combines electrochemical oxidation with a high-voltage spark
discharge treatment, and thus it is able to deposit coatings exhibiting superb adhesion and
a wide range of thicknesses [19,20]. In this study, thick zirconia coatings as a hydrogen
permeation barrier were produced by MAO on zirconium hydride alloy. The growth
dynamics, formation mechanisms and phase evolution behavior of thick zirconia coatings
were comprehensively investigated to provide fundamental information for developing
hydrogen barrier coatings with designed properties. Especially, the hydrogen permeation
barrier property was experimentally evaluated and the hydrogen permeation behavior was
detected. This provides a better understanding of thick zirconia coating produced by the
MAO method and its feasibility for application as a hydrogen permeation barrier.

2. Materials and Methods

Disc-shaped (2 mm-thick and 10 mm-dia.) zirconium hydride alloy discs were used in
this study. Prior to the MAO process treatment, all samples were ground and polished using
400, 600, 1200, and 1500 grit SiC abrasive papers serially for 120 s under running water,
then cleaned in acetone, agitated ultrasonically, and rinsed in deionized water. The zirconia
coatings were fabricated by employing a pulsed bi-polar electrical source (WHD-30). The
zirconium hydride alloy discs were used as working electrodes and the counter-electrode
was a stainless-steel cube-shaped container. The electric-motor-driven stirring and water-
cooling systems were equipped to maintain the electrolyte temperature below 40 ◦C during
the MAO process. Following up on our previous work [21], based on the optimization of
electrolyte composition, the present work selected a phosphate-based electrolyte composed
of 16 gL−1 Na5P3O10, 1.5 gL−1 NaOH, and 2 gL−1 Na2EDTA, which was prepared from
deionized water and analytical grade reagent. Based on comprehensively optimized
experimental conditions employing an L16(44) orthogonal array described in our earlier
work [22], in the experiments, both electrodes were connected to a pulsed AC power
supply, operating under a constant voltage control function at a frequency of 200 Hz,
25 min treatment time, 150 V negative voltage, and 380 V positive voltage, respectively.
In particular, the duty cycle of the pulse was 40%. I positive and negative output current
pulses are presented as a typical differential wave shape, and the positive and negative
voltage waveforms are rectangular shapes, as shown in Figure 1.
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Figure 1. Typical bipolar voltage and current vs. time waveform diagrams of the MAO power source.
T, TON and TOFF are the pulse period, pulse on time and pulse off time, respectively.

The coating morphology was examined by secondary electron-gun scanning electron
microscopy (SEM) with a 10 µm defocused beam at a current of 5 nA and an accelerating
voltage of 10–15 kV, using a HITACHI-S3400 instrument equipped with energy spectrom-
etry (EDS) analysis facilities. The measurement of coating thickness was approached by
using an HCC-25 eddy current thickness gauge and was further confirmed by SEM imaging
with cross-section analysis. The phase composition was investigated by X-ray diffraction
(XRD) with Cu Kα radiation (λ = 1.5418 Å) for 2θ between 20◦ and 80◦, using APD-10
automatic powder diffraction by PHILIPS (parameters: current: 35 mA, voltage: 40 kV,
step-scan speed: 0.02◦). In order to obtain the phase compositions of the intermediate and
bottom layers of the MAO coating, the surface/top layer was removed layer-by layer using
silicon carbide abrasive paper, and the layer thickness was controlled with the aid of an
optical microscope. The relative volume fractions of t-ZrO2 and m-ZrO2 were calculated
according to the following equation [23]:

Vt =
Xt

1.381(1− Xt) + Xt
× 100% (1)

Xt =
It(101)

Im(111) + Im(111) + It(101)
(2)

where Xt is the integrated intensity ratio for a monoclinic peak given by:

Vt= 1−Vm (3)

where It (101) refers to the integral intensity of the tetragonal diffraction peak, Im (111) and
Im (111) to the integral intensity of monoclinic diffraction peaks. Vm and Vt refer to the
volume fractions of m-ZrO2 and t-ZrO2 phases, respectively.

The hydrogen desorption properties were assessed in a vacuum furnace by means of
vacuum dehydrogenation experiment. The specimens were heated to dehydrogenation
temperature of 600 ◦C under vacuum (1.0 × 10−4 Pa) for 10 h. More details on the
dehydrogenation permeation apparatus and the experimental procedure can be found in
our previous work [24]. The ability of ceramic coatings to reduce hydrogen permeation
was evaluated by the parameter of permeation reduction factor, PRF value, which can be
roughly calculated according to the following equation:

PRFi = Q0/Qi (4)
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where Q0 is the ratio of hydrogen loss of bare zirconium hydride to total hydrogen mass
and Qi is the ratio of hydrogen loss of ZrO2-coated zirconium hydride to total hydrogen
mass of specimens during the vacuum dehydrogenation experiment. The desorption
quantity of hydrogen was monitored by quadruple mass spectrometer (QMS). Electrochem-
ical impedance spectra (EIS) were recorded using an electrochemical workstation (IM6E,
ZAHNER, Kronach, Germany) with a three-electrode system by applying a sinusoidal
potential of 5 mV and frequency range between 100 kHz and 100 mHz.

3. Results and Discussion
3.1. Growth Kinetics of the Thick Zirconia Coating

It is vital to investigate the growth kinetics of thick zirconia coating on zirconium
hydride deposited by the MAO process, and the parabolic regularity of the growth pro-
cess was established with the aim of predicting the growth behavior of the MAO coating.
The experimental data of the real-time response of the coating thickness to the treat-
ing time are presented in Figure 2. From a mathematical point of view, the multi-stage
regression–estimation model is formulated as: (i) Stage I: y = 19.8x + 37.1, (ii) Stage II:
y = −0.19x2 + 9.60x− 34.97, and (iii) Stage III: y = 87.5. Generally, the growth process of
MAO coating can be divided into three stages based on the fitted curve: (Stage I: 0–15 min)
an initial period of relatively rapid linear thickness rise, (Stage II: 15–25 min) followed by
a more extensive region in which the coating thickness increases following a quadratic
parabola trend until (Stage III: 25–30 min) the treatment termination.
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Figure 2. The responses of coating thickness to treating time during the MAO process under the
constant voltage mode in Na5P3O10 electrolyte.

In electrochemical terms, the deposition mechanism of zirconia coating growth can be
described as follows:

ZrH2 − 2e− → Zr2+ + H2 ↑ (Anodic dissolution) (5)

4OH− − 4e− → 2H2O + 2O(O2 ↑) (6)

or 2H2O− 4e− → O2 ↑ +4H+ (7)

Zr4+ + xOH− → [Zr(OH)x]
n−
gel (Coating formation) (8)



Coatings 2023, 13, 884 5 of 15

[Zr(OH)x]
n−
gel → Zr(OH)4 + (x− 4)OH− (9)

Zr(OH)4 → ZrO2+2H2O (10)

During stage I, the coating thickness increases linearly at a constant rate. At the
initial stage, the zirconium hydride alloy substrate dissolves at first and loses its metal
brightness due to the process described in Equation (5). Subsequently, a thin barrier coating
is formed on the alloy surface through the traditional anodizing stage, which is essentially
the prerequisite for MAO being able to proceed in consideration of the electrical aspect [25].
Subsequently, the micro-arcs are induced by the dielectric breakdown of the ZrO2 coating
on the surface of the zirconium hydride alloys. Figure 3 presents the current–time responses
of anodic and cathodic current during the MAO process under the constant voltage mode.
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Figure 3. Current–time responses of anodic and cathodic current during MAO process under the
constant voltage mode.

As soon as the applied voltage exceeded the dielectric breakdown voltage of the oxide
under constant voltage mode, discharge breakdown sequentially occured at the thinner or
weaker spots on the substrate, where the maximum feedback currents of anodic (Ia) and
cathodic (Ic) reached up to 4 A and 6 A, respectively. However, with the increase of coating
thickness, the electric field between anode and cathode became weaker where the Ia and Ic
decreased from maximums of 4 A and 6 A to about 0.5 A and 1.0 A, respectively, and the
process subsequently entered into stage II, as shown in Figure 3. As a result, the occurrence
of dielectric breakdown was hindered, which resulted in the decrease of coating growth
rate (~0.3 µm/min), as observed in stage II (see Figure 2). As the breakdown voltage
asymptotically approached the applied voltage level, the anodic and cathodic feedback
currents approached the zero level, the process entered stage III, and the slope of the curve
δ = f (t) was found to be smaller than in stage II (see Figure 2). In this stage, a coating
growth mode with dynamic equilibrium of oxide dissolution and oxygen evolution was
spontaneously established, causing a characteristic limiting thickness. According to the
above analysis, the discharges have a profound effect on the growth process of ZrO2 coating,
hence they affect the compactness and thickness of the coatings on zirconium hydride
alloys. In Refs. [26,27], it has been proposed that variations in the shape of the bipolar
voltage or current waveform, namely its amplitude and/or frequency, largely govern the
occurrence of discharges. Consequently, coating growth occurs mainly at stages I and
II, and the micro discharge channels are sealed due to the discharge or spark energy of
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stage III. Thus, stage III is the dominant stage for the improvement of coating compactness
favorable for promoting the ability to reduce hydrogen permeation.

3.2. Microstructure of the Thick Zirconia Coating

Figure 4 illustrates the surface and cross-section morphology of the zirconia thick
coating. The micron-sized mic-pores and stripe-shaped granulated molten oxides were
randomly distributed on the surface of coated samples (marked by arrows 1 and 2 in
Figure 4a). As observed in Figure 4b, the coating exhibited a relatively low pore density
and there was almost an absence of flaws such as micro-cracks, coating peel-off, etc.
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Figure 4. Surface and cross-section morphology of the optimized MAO coating formed in the
Na5P3O10 electrolyte on the surface of zirconium hydride: (a) surface morphology; (b) magnified
image of (a); (c) cross-section morphology; (d) magnified image of (c). Cross-sectional element
distributions I (e) O and (f) Zr.

It is worth noting that the MAO coating characteristics depended strongly on the
discharging nature involved in the MAO mechanism [28]. As the strong discharges take
place, the local temperature and pressure inside the discharge channels can reach up to
103–104 K and 102–103 MPa, respectively [29]. In this case, the molten mass produced by
electric avalanches erupted from the discharge channel, then it rapidly solidified around the
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discharge channels, thus contributing to the appearance of stripe-shaped and granulated
features and the randomly arranged discharge pores on the coating surface. Figure 4c,d
shows the cross-section SEM micrographs of the zirconia thick coating. As shown in
Figure 4c, the coating has a homogeneous thickness of approximately 110 µm, and there is
no evidence of any discontinuity at the coating–substrate interface. As shown in Figure 4c,d,
the oxide coating with no local detachment indicates good adherence of the coating to the
substrate. The coating–substrate interface has a wavy-jagged appearance, which may be
due to the dissolution of the substrate during the treatment time. Generally, the coating
is composed of an inner, intermediate layer and a porous top layer. It can be clearly
observed that the inner layer is compact and tightly connected with the substrate, the top
layer is lightly porous, and there is no obvious borderline between the inner, intermediate,
and top layers.

3.3. Phase Evolution Behavior of the Thick Zirconia Coating

Combining the results from XRD of coating synthesized under constant voltage mode
(Figure 5) and EDS on coating cross-sections (Figure 4e,f) afforded a semi-quantitative
evaluation of the coating’s phase constitutions. The curves of (a)–(c) presented in Figure 5
show the XRD patterns of the top layer, intermediate layer, and bottom layer, respectively.
As can be seen, the coating formed on the zirconium hydride alloys consisted of a mixture
of m-ZrO2, t-ZrO2, and a trace of c-ZrO2. The curve (a) in Figure 5 shows the XRD patterns
of the top layer, where the predominant phase is related to m-ZrO2 (69.3 vol%) followed
by t-ZrO2 (30.7 vol%) and a trace of c-ZrO2. In this curve, the strongest (101) peak of
t-ZrO2 is located at 2θ = 30.259. The curves (b) and (c) in Figure 5 present the XRD
patterns of the intermediate and bottom layers, where the relative intensity of the (101)
peak (2θ = 30.248) of t-ZrO2 dramatically decreases compared with the top layer. The curve
(c) in Figure 5 shows the XRD patterns of the bottom layer, where the predominant phase is
m-ZrO2, exhibiting a strong (101) peak (2θ =32.470) corresponding to zirconium hydride
substrate. Note that a larger quantity of m-ZrO2 (~91.0 vol%) and a smaller amount of
t-ZrO2 (~9.0 vol%) are present in the intermediate and bottom layers compared with the
top layer. In addition, the surface of the coating presents a stronger background noise when
compared with the intermediate and bottom layers, due to the reduced crystallinity and
grain-size effects of surface ZrO2 induced by the electrolyte quenching.

1 

 

 
Figure 5. XRD patterns of different layers of the optimized MAO coating formed in the Na5P3O10

electrolyte on the surface of zirconium hydride: (a) top layer; (b) intermediate layer; (c) bottom layer.
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The patterns reveal that no other element was detected other than O and Zr, which
supports the conclusion that the coating consisted of a zirconia mixture. The EDS analysis
indicates that the Zr and O elements almost exhibited a graded distribution within the
coating. The concentration of O content decreased from the surface to the substrate.
However, the Zr element distribution displayed an opposite trend compared with the O
element, as presented in Figure 4e,f. Here, note that no P-containing phases were detected
in the XRD patterns and EDS analysis. The possible underlying reasons for the absence of
P-containing phases can be ascribed to the following aspects: (1) the triphosphate P3O10

5−

can hardly enter into the dense layer though micro-arc discharge channels, (2) the zirconium
phosphate is formed as an intermediate product that is unstable and easy to decompose at
high temperatures during the micro-arc discharge process. These results are similar to those
found in previous studies by Durdu [30] and Ji [31]. Nevertheless, we have demonstrated
in previous work that the coating fabricated in phosphate electrolyte is more compact and
has smaller pore size than that of silicate electrolyte [21]. The average nano-grain size (D)
and lattice strain (ε) of zirconia crystal formed by MAO were estimated by employing the
Williamson–Hall (W-H) equation [32]:

β cos θ = kλ/D + 4ε sin θ (11)

where k = 1.0, λ is the X-ray wavelength, and λ(CuKα2) = 1.541 Å, β is the full width half
maximum of the diffracted peaks, and θ is the diffraction angle. As a result, by plotting
the βcosθ versus 4sinθ and obtaining the optimal line equation, accordingly, the slope and
y-intersect of the fitted line represent strain and particle size, respectively, as presented
in Figure 6. For comparI, the average grain size was calculated from the full-width at
half-maximum (FWHM) of the diffraction peaks using the Debye–Scherrer’s formula [32]:

D = kλ/(β cos θ) (12)

Table 1 summarizes the grain size (D) and lattice strain (ε) of zirconia crystal from
the top, intermediate, and bottom layers of the MAO coating. In general, the grain size
parameters calculated using the Debye–Scherrer method were in agreement with the results
obtained by the W-H method. In regard to Figure 6c,d, the deviation was mainly due to the
limited data obtained from the XRD patterns with stronger background noise, as shown
in Figure 5a. The data in Table 1 indicate that both the top and near-bottom layers appear
to possess a smaller grain size (~20 nm) compared with the intermediate layer (~30 nm).
In addition, the slopes of the fitted trendlines in Figure 2c,d are negative, indicating the
existence of compressive strain in the lattice of the top layer of MAO coating. Instead,
tensile stresses were present in both the bottom and intermediate layers. Especially, the
bottom layer had the lowest lattice strain, implying a low-stress interface between the MAO
coating and the zirconium hydride. The compressive strain in the lattice of the top layer is
mainly ascribed to the volumetric expansion effect induced by the porous structure and
t→m phase transformation of zirconia in the top layer.

Table 1. The grain size (D) and lattice strain (ε) of zirconia crystal of MAO coatings.

MAO Coatings Scherrer’s Method, D (nm)
W-H Method (UDM)

D (nm) ε (10−4)

Bottom layer 24.0 21.5 3.3
Intermediate layer 31.6 33.4 12.6
Top layer 22.8 12.0 −42.3
Post-vacuum
dehydrogenation 20.6 14.1 −29.9
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In the foregoing results, we have clearly established that the almost 100-µm-thick dense
ceramic coating consists of a zirconia mixture and exhibits a variable phase composition
and grain size in the through-thickness direction. As discussed above, the trends suggest
an increased amount of m-ZrO2 toward the coating surface and an increased amount of
t-ZrO2 toward the inner parts of the relatively thick coating. A similar phase distribution
has been proposed for an MAO-coated zircaloy-4 alloy [33]. It is well known that m-ZrO2
is a stable phase of zirconia, and t-ZrO2 is one of the metastable phases. During the MAO
process, the temperature inside the pores elevates to ~104 K due to the high-energy electron
avalanches, and this temperature is high enough to sinter the growing coating, which
results in the formation of molten zirconia. The distribution of temperature field in the
coating plays a key role in the transformation of phases. As described in Ref. [34], the
transition temperature of tetragonal zirconia is affected by the electrolyte cooling rate. The
obtained results in Ref. [35] indicate that inward growth plays a predominant role in the
growth of the coatings. Thus, a continuously increasing negative temperature gradient
is formed from the oxide/metal interface to the aqueous electrolyte due to the intrinsic
low thermal conductivity of zirconia (~8.2 W/mK) [36] and the effect of the high cooling
rate (~108 K/s) [37] of aqueous electrolyte. As a result, an increasing amount of t-ZrO2 is
formed from the inner- to the top-oriented coating owing to the quenching effect. Here,
we elucidate the formation mechanism of the parabolically distributed grain size of the
zirconia coating, based on classical nucleation and growth restriction, and the steady-state
equation of the nucleation rate is given as [38]:

I = I0 exp[−(∆G∗ + Q)/kT ] (13)

where I0 is the pre-exponential factor, k is the Boltzmann constant, ∆G* is critical activation
energy, and Q is the activation energy of diffusion. Apparently, the overall nucleation rate is
governed by both the rate of cluster formation and the rate of atom transport to the nucleus.
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Due to the quenching effect of the MAO process, the energy barrier for nucleus formation
is very low and the nucleation rate is high. After nucleation, noting that the grain growth
rate (V) is strongly dependent on undercooling (∆T), it can be expressed as [38]:

∆T/
√

V = 2
√

Kr · Kc (14)

where Kr and Kc are Jackson–Hunt constants. Obviously, increasing the ∆T has the effect
of markedly increasing the growth rate V ∝ ∆T2, which is the essential formation mech-
anism of the finer grain sizes of the top layer surface. For the grains of the inner layer
surface, however, the substrate plays a crucial role in grain refinement due to the growth
restriction effect.

3.4. Hydrogen Permeation Barrier Property of the Thick Zirconia Coating

The hydrogen desorption rate curves of the bare zirconium hydride and multiphase
ZrO2-coated zirconium hydride at different temperatures are shown in Figure 7. The
initial dehydrogenation temperature of zirconium hydride with ceramic coating obviously
lagged behind that of the sample without ceramic coating. Hydrogen desorption of the
ZrO2-coated zirconium hydride started at 660 ◦C while for the bare zirconium hydride
it started at 500 ◦C. The hydrogen desorption rate rose as the temperature increased, but
the slope of the curve is small, indicating that the ceramic coating played a certain role in
hindering the hydrogen desorption. When the temperature increased to nearly 900 ◦C, the
curves showed inflection points and the partial pressure of the hydrogen increased sharply.
This demonstrates that the ceramic coating was invalid at this temperature, resulting in
a sharp increase in the amount of dehydrogenation. It is feasible to evaluate hydrogen
permeation resisting the effect of ZrO2 coating by analyzing hydrogen reduction after the
dehydrogenation experiment.
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hydride at various temperatures.

The PRF values of MAO coatings produced under constant voltage mode are shown
in Figure 8. The hydrogen permeation resisting the effect of the MAO coating was about
13 times higher than that of the substrate, which was nearly 4–8 times higher than the oxide
coatings fabricated by in situ reaction or sol-gel processes, and is comparable to nitride
coating, as summarized in Table 2. In addition, the hydrogen permeation resisting the effect
of the MAO coating was further ascertained by the XRD technique. The XRD analysis of the
samples subjected to the pre-and-post vacuum dehydrogenation experiment was conducted
in order to determine the phase structure changes, as shown in Figure 9. Comparing the
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phase structure of pre-and-post vacuum dehydrogenation treatment, it can be seen that the
main phase structure did not change obviously, and it exhibited excellent high-temperature
performance. In addition, the grain size (D) and lattice strain (ε) of zirconia crystal of the
top layers of MAO coatings before and after hydrogen desorption were generally the same,
as shown in Table 1 and Figure 6c,d. Figure 10 depicts the Nyquist plots obtained for
ZrO2-coated zirconium hydride before and after vacuum dehydrogenation. It is clear that
the impedance spectra behavior of the post-vacuum dehydrogenated sample was nearly
consistent with the pre-vacuum dehydrogenated sample, and both of the impedance spectra
were composed of a semicircle at high frequencies and a linear tail at low frequency range.
These results indicate the significant performance of zirconia thick coatings fabricated by
MAO in terms of hindering hydrogen permeation and improving coating integrity as well
as achieving longer lifetime.
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Table 2. PRF values of zirconium hydride samples with different films.

Barrier System Coating Techniques Hydrogen Desorption PRF Values Ref.

ZrO2 MAO 650 ◦C × 10 h 13.30 Present work
ZrO2 In situ reaction 600 ◦C × 10 h 3.48 [39]
ZrN In situ reaction 600 ◦C × 10 h 9.40 [39]
ZrO2 In situ reaction 630 ◦C × 10 h 2.17 [24]
ZrO2 In situ reaction 650 ◦C × 10 h 1.59 [24]

SiO2–P2O5 Sol-gel 600 ◦C × 6 h 3.08 [40]
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From a microscopic point of view, hydrogen atoms decomposed by molecules are
chemically absorbed by oxygen ions in the oxide film lattice, hence the O-H bonds are
formed and the hydrogen atoms are subsequently reserved in the oxide film [24]. In this
regard, the pre-existing oxygen vacancies trapped in tetragonal ZrO2 possess an intrinsic
potential for hindering hydrogen permeation. Previous related research has also reported
dense oxide coating composed of a mixture of monoclinic ZrO2 and tetragonal ZrO2, which
exhibited excellent hydrogen permeation resistance effects [41,42]. From a mesoscopic
point of view, the transfer of hydrogen atoms is more likely to occur with the cracking
or local delamination of coatings, hence both the integrity and the lower permeability of
hydrogen in the oxide film are in favor of the oxide layer as the hydrogen permeation
barrier. Apparently, the zirconia thick coatings directly formed by MAO consisted of a
mixture of monoclinic and tetragonal ZrO2 and exhibited a dense inner layer. From the
obtained results, it can be concluded that it is indeed a pioneering effort to grow in situ
a multiphase zirconia thick coating on zirconium hydride, providing superior hydrogen
permeation barrier properties.

4. Conclusions

In the present work, we have provided a novel paradigm for in situ formation of
multiphase zirconia coatings as a novel hydrogen permeation barrier on zirconium hydride.
The MAO process is divided into three stages according to the coating’s thickness–time
relationship. The surface of the ZrO2 coating with few flaws exhibited a relatively low
pore density. The coating thickness was approximately 110 µm and the inner layer was
compact and tightly connected with the substrate. The XRD results show that the ZrO2
coating consisted of a mixture of m-ZrO2, t-ZrO2, and a trace of c-ZrO2, among which
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the predominant phase was m-ZrO2. The quantitative analysis indicated an increased
amount of m-ZrO2 toward the coating surface and an increased amount of t-ZrO2 toward
the oxide/metal interface. Hydrogen desorption of the sample with ceramic coating started
at 660 ◦C, which was much higher than the bare sample. The ZrO2 coating significantly
improved the hydrogen permeation resistance effects, and the PRF value was enhanced by
approximately 13 times compared with bare zirconium hydride. The main phase structure
did not change obviously after vacuum dehydrogenation treatment and exhibited excellent
high-temperature (600–650 ◦C) performance.
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