Effect of Post-Oxidation Treatment on the Performance and Microstructure of Silicon Carbide Ceramic Membrane
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Raw Materials
2.2. Preparation of SiC Ceramic Membrane
2.3. Post-Oxidation Treatment
2.4. Characterization Techniques
3. Results and Discussion
3.1. Effect of POT on the Properties of SiC Membrane
3.2. Principle of POT
3.3. Optimization of POT
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Sun, W.; Lu, Z.; Ao, X.; Li, S. Ceramic nanocomposite membranes and membrane fouling: A review. Water Res. 2020, 175, 115674. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.M.; Adam, M.R.; Kamal, S.N.E.A.M.; Jaafar, J.; Othman, M.H.D.; Ismail, A.F.; Aziz, F.; Yusof, N.; Bilad, M.R.; Mohamud, R.; et al. A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Sep. Purif. Technol. 2022, 286, 120454. [Google Scholar] [CrossRef] [PubMed]
- Othman, N.H.; Alias, N.H.; Fuzil, N.S.; Marpani, F.; Shahruddin, M.Z.; Chew, C.M.; Ng, K.M.D.; Lau, W.J.; Ismail, A.F. A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes 2021, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Scholes, C.A. Pilot plants of membrane technology in industry: Challenges and key learnings. Front. Chem. Sci. Eng. 2020, 14, 305–316. [Google Scholar] [CrossRef]
- Sinhamahapatra, S.; Dana, K.; Tripathi, H.S. Enhancement of reaction-sintering of alumina-excess magnesium aluminate spinel in presence of titania. Ceram. Int. 2018, 44, 10773–10780. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, Y.; Deng, T. Pressureless sintering of high performance silicon nitride ceramics at 1620 °C. Ceram. Int. 2021, 47, 29371–29378. [Google Scholar] [CrossRef]
- Pang, X.; Xi, C.; Wang, T. Phase stability (at 1000 °C) of hollow t-ZrO2 fibers costabilized by lanthana and yttria. Int. J. Appl. Ceram. Technol. 2020, 17, 1646–1651. [Google Scholar] [CrossRef]
- Li, X.; Yao, D.; Zuo, K.; Xia, Y.; Yin, J.; Liang, H.; Zeng, Y.-P. Fabrication, microstructural characterization and gas permeability behavior of porous silicon nitride ceramics with controllable pore structures. J. Eur. Ceram. Soc. 2019, 39, 2855–2861. [Google Scholar] [CrossRef]
- Cao, J.; Lu, Z.; Miao, K.; Zhao, H.; Xia, Y.; Wang, F.; Lu, B. Fabrication of high-strength porous SiC-based composites with unidirectional channels. J. Am. Ceram. Soc. 2019, 102, 4888–4898. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, Y.; Xie, Y.; Zhou, M.; Gu, Q.; Zhong, Z.; Xing, W. Silicon carbide microfiltration membranes for oil-water separation: Pore structure-dependent wettability matters. Water Res. 2022, 216, 118270. [Google Scholar] [CrossRef]
- Bessa, L.P.; Ferreira, E.D.P.; Cardoso, V.L.; Reis, M.H.M. Air-sintered silicon (Si)-bonded silicon carbide (SiC) hollow fiber membranes for oil/water separation. J. Eur. Ceram. Soc. 2021, 42, 402–411. [Google Scholar] [CrossRef]
- Eray, E.; Boffa, V.; Jørgensen, M.K.; Magnacca, G.; Candelario, V.M. Enhanced fabrication of silicon carbide membranes for wastewater treatment: From laboratory to industrial scale. J. Membrane Sci. 2020, 606, 118080. [Google Scholar] [CrossRef]
- Li, R.; Kadrispahic, H.; Jørgensen, M.K.; Berg, S.B.; Thornberg, D.; Mielczarek, A.T.; Bester, K. Removal of micropollutants in a ceramic membrane bioreactor for the post-treatment of municipal wastewater. Chem. Eng. J. 2022, 427, 131458. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, Y.-W.; Song, I.-H. Processing and properties of glass-bonded silicon carbide membrane supports. J. Eur. Ceram. Soc. 2017, 37, 1225–1232. [Google Scholar] [CrossRef]
- Shcherban, N.D. Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide. J. Ind. Eng. Chem. 2017, 50, 15–28. [Google Scholar] [CrossRef]
- Bukhari, S.Z.A.; Ha, J.-H.; Lee, J.; Song, I.-H. Fabrication and optimization of a clay-bonded SiC flat tubular membrane support for microfiltration applications. Ceram. Int. 2017, 43, 7736–7742. [Google Scholar] [CrossRef]
- Margiotta, J.C.; Zhang, D.J.; Nagle, D.C. Microstructural evolution during silicon carbide (SiC) formation by liquid silicon infiltration using optical microscopy. Int. J. Refract. Met. Hard Mater. 2010, 28, 191–197. [Google Scholar] [CrossRef]
- Bukhari, S.Z.A.; Ha, J.-H.; Lee, J.; Song, I.-H. Oxidation-bonded SiC membrane for microfiltration. J. Eur. Ceram. Soc. 2018, 38, 1711–1719. [Google Scholar] [CrossRef]
- Guo, W.; Xiao, H.; Yao, X.; Liu, J.; Liang, J.; Gao, P.; Zeng, G. Tuning pore structure of corrosion resistant solid-state-sintered SiC porous ceramics by particle size distribution and phase transformation. Mater. Des. 2016, 100, 1–7. [Google Scholar] [CrossRef]
- Luo, Z.-Y.; Han, W.; Yu, X.-J.; Ao, W.-Q.; Liu, K.-Q. In-situ reaction bonding to obtain porous SiC membrane supports with excellent mechanical and permeable performance. Ceram. Int. 2019, 45, 9007–9016. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Luo, Y.; Xu, C. Fabrication of polycarbosilane and silicon oxycarbide microspheres with hierarchical morphology. Solid State Sci. 2011, 13, 1664–1667. [Google Scholar] [CrossRef]
- Chen, M.; Shang, R.; Sberna, P.M.; Luiten-Olieman, M.W.; Rietveld, L.; Heijman, S.G. Highly permeable silicon carbide-alumina ultrafiltration membranes for oil-in-water filtration produced with low-pressure chemical vapor deposition. Sep. Purif. Technol. 2020, 253, 117496. [Google Scholar] [CrossRef]
- Nagano, T.; Sato, K.; Kawahara, K. Gas Permeation Property of Silicon Carbide Membranes Synthesized by Counter-Diffusion Chemical Vapor Deposition. Membranes 2020, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Dagher, G.; Santos, A.F.; Baldoni-Andrey, P.; Jacob, M.; Batiot-Dupeyrat, C.; Teychené, B. Impact of C-CVD synthesis conditions on the hydraulic and electronic properties of SiC/CNTs nanocomposite microfiltration membranes. Diam. Relat. Mater. 2021, 120, 108611. [Google Scholar] [CrossRef]
- Facciotti, M.; Boffa, V.; Magnacca, G.; Jørgensen, L.B.; Kristensen, P.K.; Farsi, A.; König, K.; Christensen, M.L.; Yue, Y. Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes. Ceram. Int. 2014, 40, 3277–3285. [Google Scholar] [CrossRef]
- Liang, D.; Huang, J.; Zhang, H.; Fu, H.; Zhang, Y.; Chen, H. Influencing factors on the performance of tubular ceramic membrane supports prepared by extrusion. Ceram. Int. 2021, 47, 10464–10477. [Google Scholar] [CrossRef]
- Ojalvo, C.; Jiménez-Fuentes, M.; Zhang, W.; Guiberteau, F.; Candelario, V.M.; Ortiz, A.L. Fabrication of B4C ultrafiltration membranes on SiC supports. J. Eur. Ceram. Soc. 2022, 42, 3118–3126. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, W.; Wang, C.; Chen, C.; Huang, J.; Chen, S.; Hu, P. Recrystallization sintering and characterization of composite powders composed of two types of SiC with dissimilar particle sizes. Int. J. Appl. Ceram. Technol. 2022, 19, 1929–1938. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H.; Liu, X.; Huang, Z.; Jiang, D. Microstructures and properties of solid-state-sintered silicon carbide membrane supports. Ceram. Int. 2019, 45, 19888–19894. [Google Scholar] [CrossRef]
- Petrus, M.; Wozniak, J.; Cygan, T.; Kostecki, M.; Olszyna, A. The effect of the morphology of carbon used as a sintering aid on the mechanical properties of silicon carbide. Ceram. Int. 2019, 45, 1820–1824. [Google Scholar] [CrossRef]
- Li, S.; Luo, X.; Zhao, L.; Wei, C.; Gao, P.; Wang, P. Crack tolerant silicon carbide ceramics prepared by liquid-phase assisted oscillatory pressure sintering. Ceram. Int. 2020, 46, 18965–18969. [Google Scholar] [CrossRef]
- Liu, G.; Dai, P.; Wang, Y.; Yang, J.; Zhang, Y. Fabrication of wood-like porous silicon carbide ceramics without templates. J. Eur. Ceram. Soc. 2011, 31, 847–854. [Google Scholar] [CrossRef]
- Fraga, M.C.; Sanches, S.; Pereira, V.J.; Crespo, J.G.; Yuan, L.; Marcher, J.; de Yuso, M.V.M.; Rodríguez, C.; Benavente, J. Morphological, chemical surface and filtration characterization of a new silicon carbide membrane. J. Eur. Ceram Soc. 2017, 37, 899–905. [Google Scholar] [CrossRef]
- Hotza, D.; Di Luccio, M.; Wilhelm, M.; Iwamoto, Y.; Bernard, S.; da Costa, J.C.D. Silicon carbide filters and porous membranes: A review of processing, properties, performance and application. J. Membr. Sci. 2020, 610, 118193. [Google Scholar] [CrossRef]
- Fan, H.; Xiao, K.; Mu, S.; Zhou, Y.; Ma, J.; Wang, X.; Huang, X. Impact of membrane pore morphology on multi-cycle fouling and cleaning of hydrophobic and hydrophilic membranes during MBR operation. J. Membr. Sci. 2018, 556, 312–320. [Google Scholar] [CrossRef]
- Park, D.J.; Jung, Y.I.; Kim, H.G.; Park, J.Y.; Koo, Y.H. Oxidation behavior of silicon carbide at 1200 °C in both air and water-vapor-rich environments. Corros. Sci. 2014, 88, 416–422. [Google Scholar] [CrossRef]
- Chen, G.; Hong, D.; Xia, H.; Sun, W.; Shao, S.; Gong, B.; Wang, S.; Wu, J.; Wang, X.; Dai, Q. Amorphous and homogeneously Zr-doped MnOx with enhanced acid and redox properties for catalytic oxidation of 1,2-Dichloroethane. Chem. Eng. J. 2022, 428, 131067. [Google Scholar] [CrossRef]
- Wiśniowska, J.; Zych, Ł.; Gubernat, A.; Mastalska-Popławska, J.; Jakubas, K.; Zientara, D.; Nocuń, M. Stabilisation, rheology and application of aqueous suspensions of oxidised vs. non-oxidised SiC powder. Mater. Chem. Phys. 2023, 295, 127153. [Google Scholar] [CrossRef]
- Gao, X.; Wang, R.; Zhao, J.; Huang, J.; Gao, Y.; Liu, H. Influence of surface oxide layer of SiC powder on the rheological properties of its slurry. Int. J. Appl. Ceram. Technol. 2019, 17, 484–490. [Google Scholar] [CrossRef]
- Zhao, L.; Jia, D.; Duan, X.; Yang, Z.; Zhou, Y. Oxidation of ZrC–30vol% SiC composite in air from low to ultrahigh temperature. J. Eur. Ceram. Soc. 2012, 32, 947–954. [Google Scholar] [CrossRef]
- Zhou, C.L.; Liu, D.Z.; Zhi, W.; An, J.D.; Hu, P.; Han, W.B. Oxidation behaviour of C–SiC–ZrC composite. Mater. Res. Innov. 2015, 19, S1–S375. [Google Scholar] [CrossRef]
- Remyamol, T.; Gopi, R.; Ajith, M.; Pant, B. Porous silicon carbide structures with anisotropic open porosity for high-temperature cycling applications. J. Eur. Ceram. Soc. 2020, 41, 1828–1833. [Google Scholar] [CrossRef]
- Zhuang, L.; Fu, Q.; Tan, B.; Guo, Y.; Ren, Q.; Li, H.; Li, B.; Zhang, J. Ablation behaviour of C/C and C/C–ZrC–SiC composites with cone-shaped holes under an oxyacetylene flame. Corros. Sci. 2016, 102, 84–92. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.; Seo, W. Processing and properties of silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity. J. Eur. Ceram Soc. 2020, 40, 2623–2633. [Google Scholar] [CrossRef]
- Abadikhah, H.; Wang, J.-W.; Xu, X.; Agathopoulos, S. SiO2 nanoparticles modified Si3N4 hollow fiber membrane for efficient oily wastewater microfiltration. J. Water Process. Eng. 2019, 29, 100799. [Google Scholar] [CrossRef]
- Li, S.; Wei, C.; Wang, P.; Gao, P.; Zhou, L.; Wen, G. Zirconia ultrafiltration membranes on silicon carbide substrate: Microstructure and water flux. J. Eur. Ceram. Soc. 2020, 40, 4290–4298. [Google Scholar] [CrossRef]
- Gao, Y.; Hao, W.; Xu, G.; Wang, C.; Gu, X.; Zhao, P. Enhancement of super-hydrophilic/underwater super-oleophobic performance of ceramic membrane with TiO2 nanowire array prepared via low temperature oxidation. Ceram. Int. 2022, 48, 9426–9433. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, Y.; Xu, N. Modified dip-coating method for preparation of pinhole-free ceramic membranes. J. Membr. Sci. 2011, 367, 14–20. [Google Scholar] [CrossRef]
SiC Membranes | Unoxidized | Post-Oxidized at 500 °C | Post-Oxidized at 900 °C |
---|---|---|---|
WCA/° | 116.0 ± 7.9 | 64.6 ± 6.2 | 9.0 ± 1.5 |
Permeate flux/(L·m−2·h−1·bar−1) | 1074 ± 22 | 1175 ± 51 | 4330 ± 297 |
Bending strength/MPa | 26 ± 3 | 28 ± 2 | 35 ± 8 |
Weight loss rate (0.1 mol/L H2SO4)/% | −0.30 | −0.26 | −0.36 |
Weight loss rate (0.1 mol/L NaOH)/% | 0.08 | 0.05 | 0.25 |
Temperature/°C | 500 | 600 | 700 | 800 | 900 | 1000 |
---|---|---|---|---|---|---|
Weight loss ratio/% | −0.06 | 0.03 | 1.17 | 1.09 | 1.11 | 0.03 |
Temperature/°C | 500 | 700 | 800 | 900 | 1000 |
---|---|---|---|---|---|
WCA/° | 64.6 ± 6.2 | 11.2 ± 3.2 | 10.1 ± 1.7 | 9.0 ± 1.5 | 12.4 ± 1.7 |
Underwater OCA/° | 146.6 ± 5.3 | 160.6 ± 1.0 | 162.4 ± 3.3 | 162.2 ± 1.5 | 156.3 ± 1.9 |
Permeate flux/L·m−2·h−1·bar−1 | 1175 ± 51 | 4134 ± 278 | 4326± 251 | 4330± 297 | 4400± 275 |
Bending strength/MPa | 28 ± 2 | 28 ± 3 | 38 ± 3 | 35 ± 8 | 35 ± 4 |
Zeta potential/mV | −24.6 ± 0.5 | −22.8 ± 0.9 | −25.0 ± 0.1 | −24.4 ± 0.6 | −22.0 ± 0.7 |
SiC Membrane | Oxidized at 900 °C in a Muffle Furnace | ||
---|---|---|---|
Time/min | 15 | 30 | 60 |
WCA/° | 11.0 ± 0.5 | 9.0 ± 1.5 | 10.3 ± 1.6 |
Permeate flux/L·m−2·h−1·bar−1 | 4072 ± 193 | 4330 ± 297 | 3685 ± 174 |
Rejection rates (300 nm)/% | 61.08% ± 0.01 | 61.71% ± 0.00 | 77.83% ± 0.04 |
Rejection rates (500 nm)/% | 98.62% ± 0.00 | 98.90% ± 0.00 | 99.04% ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Hu, Y.; Zhu, J.; Li, J.; Rao, P.; Guo, J.; Li, G.; Wang, J. Effect of Post-Oxidation Treatment on the Performance and Microstructure of Silicon Carbide Ceramic Membrane. Coatings 2023, 13, 957. https://doi.org/10.3390/coatings13050957
Hu L, Hu Y, Zhu J, Li J, Rao P, Guo J, Li G, Wang J. Effect of Post-Oxidation Treatment on the Performance and Microstructure of Silicon Carbide Ceramic Membrane. Coatings. 2023; 13(5):957. https://doi.org/10.3390/coatings13050957
Chicago/Turabian StyleHu, Liqun, Yue Hu, Jiaying Zhu, Jin Li, Pinhua Rao, Jian Guo, Guanghui Li, and Jinjie Wang. 2023. "Effect of Post-Oxidation Treatment on the Performance and Microstructure of Silicon Carbide Ceramic Membrane" Coatings 13, no. 5: 957. https://doi.org/10.3390/coatings13050957
APA StyleHu, L., Hu, Y., Zhu, J., Li, J., Rao, P., Guo, J., Li, G., & Wang, J. (2023). Effect of Post-Oxidation Treatment on the Performance and Microstructure of Silicon Carbide Ceramic Membrane. Coatings, 13(5), 957. https://doi.org/10.3390/coatings13050957