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Abstract: Boiler cinder is a kind of mining waste that may cause environmental pollution. Based on
this reason, a processing method needs to be carried out. In this study, the influence of CO2-cured
boiler cinder on the compressive and flexural strengths of reactive powder cement concrete (RPC)
under NaCl actions is investigated. The mass loss rates (MLR) and the relative dynamic modulus
of elasticity (RDME) are measured to reflect the resistance of NaCl erosion. The thermogravimetric
analysis (TGA), scanning electron microscope (SEM), and X-ray diffraction (XRD) spectrum are
obtained for revealing the mechanism of the macro performance. Results show that the relationship
between the MLR and the mass ratio of CO2-cured boiler cinder fits the quadratic function with
NaCl erosion. Meanwhile, the MLR during NaCl action are decreased by increasing the amount of
CO2-cured boiler cinder. The MLR range from 0% to 5.3% during NaCl action, and the decreasing
rate of MLR by CO2 curing on boiler cinder is 0%–51.3%. The function of RDME and the mass ratio
of CO2-cured boiler cinder accords with the positive correlation quadratic function. The mechanical
strengths decrease when NaCl erosion is encountered. The mechanical strengths’ decreasing rates
of RPC are elevated with the increasing number of NaCl freeze–thaw cycles and the NaCl dry–wet
alternations. The increasing rates of flexural and compressive strengths of RPC by 13.1%–36.3% and
11.2%–50.4% are achieved by adding CO2-cured boiler cinder. As observed from the TGA and SEM’s
results, the addition of CO2-cured boiler cinder can increase the thermogravimetric value and the
compactness of hydration products.

Keywords: boiler cinder; CO2-cured; reactive powder cement concrete; thermogravimetric analysis;
X-ray diffraction spectrum

1. Introduction

Boiler cinder is a solid waste produced by coal combustion. Billions of tons of furnace
ash is produced every year. If boiler cinder has not been disposed of timely, it causes
serious pollution in the environment [1]. The accumulation of boiler cinder can pollute air
and water sources. Currently, stacking and landfill methods are commonly used to treat
furnace ash. However, this method has caused a significant waste of resources. Therefore,
some significant methods should be taken to address the issue of boiler ash treatment.

Boiler cinder can be applied in manufacturing masonry mortar and wall materials [2].
Moreover, some boiler cinder has been used as lightweight concrete aggregate [3]. Some
researchers point out that boiler cinder can be used for making lightweight concrete
aggregates with a density of 1800 kg/m3 [4]. Moreover, some scholars point out that boiler
cinder can be used as aggregates in asphalt concrete [5]. Liu reported that boiler cinder can
be used as roof insulation or indoor foundation material, while coal slag can also be used
as road building materials, sandblasting sand, etc. [6]. Above all, boiler cinder has been
utilized as cementitious material due to the hydration activity [7].
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Cement concrete is still one of the most widely used materials to date [8]. The produc-
tion of cement consumes a large amount of resources and energy [9]. Based on these reasons,
active substances (mineral admixtures, waste fly ash, and furnace ash) are used to replace
cement [10]. As obtained from Cui’s research, the flexural and compressive strengths of
reactive powder cement concrete can be increased by 32.4% and 23.7%, respectively, by
adding waste fly ash (0%–25%) [11]. Moreover, the reinforced RPC’s corrosion resistance
can be improved with waste fly ash [12]. However, as found in Du’s research [13], RPC with
waste fly ash can leach out some toxic heavy metals, which will pollute the environment.
Therefore, it is necessary to provide harmless materials.

RPC is a type of ultra-high-performance concrete invented in the 1990s, which exhibits
a compressive strength higher than 100 MPa and extremely high durability [14,15]. Boiler
cinder is a solid waste produced without any pollution. Boiler cinder performs a certain
content of cement hydration-active substances, which may be effective for the mechanical
strengths and the long-term performance of RPC [16]. However, few journals about this
are reported.

CO2 is the gas that will accelerate the greenhouse effect with excessive emission [17].
Treating solid waste with CO2 can consume excessive CO2 gas, thus improving the corre-
sponding performance [18–21]. CO2-cured bird nest may provide further improvement for
the performance of RPC. So far, few studies on this aspect of research have been reported.

In this study, the influence of CO2-cured boiler cinder on the mechanical strengths of
RPC is studied. The influence of NaCl freeze–thaw cycles (F-C) and dry–wet alternations
(D-A) is considered. The mass loss rates (MLR) and the relative dynamic modulus of
elasticity (RDME) are determined for the characterization of NaCl erosion on reactive
powder cement concrete. The mechanism of the macro performance is revealed by the
thermogravimetric analysis (TGA), X-ray diffraction (XRD) spectrum, and scanning electron
microscope (SEM).

2. Experimental
2.1. Raw Materials

The ordinary Portland cement (OPC) used in this research is provided by Langfang
Hongke Cement Products Co., Ltd., Langfang, China. The cement shows an initial setting
time of 103.5 min and a final setting time of 313.2 min. The compressive strength grade of
this cement is 42.5 MPa. Silica fume (SF) with a density of 281.3 kg/m3, SiO2 content of
95%, and melting point of 1600 ◦C is used as a kind of mineral admixture in this study. The
boiler cinder (BC) is provided by Shanghai Qinwang Environmental Protection Materials
Co., Ltd., Shanghai, China. Tables 1 and 2 show the particle size and compositions of the
binder materials. The quartz sand is used as fine aggregate of RPC, which is provided by
Lingshou County Zechuang Mineral Products Co., Ltd., Lingshou, China. The size ranges
of the quartz sand are 0.67–1.22 mm, 0.31–0.63 mm, and 0.13–0.35 mm. The mass ratios of
these quartz sand are 1:1.5:1. A polycarboxylate superplasticizer with a water reducing rate
of 37.8% is applied for adjusting the fluidity of fresh RPC.

Table 1. The accumulated pass rate of the binder materials (%).

Types
Particle Size/µm

0.3 0.6 1 4 8 64 360

OPC 0.11 0.32 2.4 15.3 28.3 93.4 100
GGBS 0.042 0.13 3.28 19.38 35.17 98.18 100

SF 31.28 58.49 82.38 100 100 100 100
Quartz sand 0 0 0 0 0.039 23 100

BC 0.15 0.41 0.82 1.13 5.96 20.4 100
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Table 2. Chemical composition of the cementitious materials (%).

Types SiO2 Al2O3 FexOy MgO CaO SO3 K2O Na2O Ti2O Loss on
Ignition

OPC 20.8 5.6 3.8 1.8 62.1 2.8 - - - 3.1
GGBS 34 14.9 0.5 9.8 36.9 0.3 3.6 - - -

SF 90.8 0.21 0.62 0.23 0.44 0.2 7.5 - - -
Quartz sand 99.8 - 0.2 - - - - - - -

BC 52.10 18.34 11.99 4.85 6.61 - 1.57 2.43 0.87 -

2.2. The Manufacturing Process of Specimens

All binder materials and the quartz sand are added and mixed in a UJZ-15 mixer and
stirred for 2 min. After that, the mixed solution with water and a water-reducing agent
is added to the materials. Another 3 min is provided for mixing the materials. When the
mixing is finished, fresh RPC is poured to the molds with sizes of 40 × 40 × 160 mm3 and
100 × 100 × 400 mm3. Specimens with a size of 40 × 40 × 160 mm3 are used for flexural
and compressive strengths. Meanwhile, specimens with a size of 100 × 100 × 400 mm3

are applied for measuring the MLR and RDEM. The manufacturing process of RPC is
shown in Figure 1. Table 3 shows the mixing proportions of RPC. In Table 3, silica fume
(SF) is replaced gradually (0%, 25%, 50%, 75%, and 100%) by boiler cinder (BC) in individ-
ual compositions.
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Figure 1. The manufacturing process of RPC specimens.

Table 3. The mixing proportions of RPC (kg/m3).

Water OPC BC SF GGBS Quartz Sand Water Reducer

244.4 740.7 0 370.3 111.1 977.9 16.3
244.4 740.7 92.6 277.7 111.1 977.9 16.3
244.4 740.7 185.2 185.2 111.1 977.9 16.3
244.4 740.7 277.7 92.6 111.1 977.9 16.3
244.4 740.7 370.3 0 111.1 977.9 16.3

2.3. Measurement of Mechanical Strengths

The fully automatic bending and bending integrated testing machine is used for the
measurement of flexural and compressive strengths. The loading speeds of the flexural
experiment and the compressive experiment are 0.01 and 2.4 kN/s, respectively. Three
specimens of each mixture are selected for the flexural strength. When each specimen is bent
to two blocks, six blocks of every group are moved for the determination of the compressive
strength. The average values of the mechanical strengths are considered as the experimental
values of this research. Figure 2 shows the testing process of mechanical strengths. The
mechanical strengths are carried out following the Chinese standard GB/T17671-1999 [22].
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2.4. Experiments of NaCl F-C and D-A

The specimens standard-cured for 24 days are immersed in solution with a concen-
tration of 3% for 4 days. When the immersion is finished, the specimens are moved to the
TDR-1-type rapid freeze–thaw test box for concrete made by Hebei Tianjian Engineering
Instrument Co., Ltd., Cangzhou, China, and the Tingyi Salt Dry Wet Cyclic Corrosion
Test Chamber, Shanghai Tingyi Instrument Equipment Factory, Shanghai, China, for the
measurement of NaCl F-C and NaCl D-A, respectively. The temperature of F-C is −15–8 ◦C.
During the freeze–thaw experiment, the specimens are immersed in tubes filled with
3% NaCl. The experiment of NaCl D-A is described as follows.

All specimens are dried at a temperature of 80 ◦C for 15 h; after that, the dried spec-
imens are cooled in the natural environment for 1 h. After cooling, all the specimens
are immersed in NaCl solution for 8 h. After all these steps, a NaCl dry–wet alterna-
tion is finished. The MLR, the RDEM, and the loss rates of mechanical strengths are
applied in reflecting the degree of performance degradation of NaCl F-C and D-A. The
DT-W18A concrete dynamometer offered by Changzhou Dedu Precision Instrument Co.,
Ltd., Changzhou, China, is applied in the measurement of the relative dynamic modulus
of elasticity. The measuring process is shown in Figure 3. The Chinese standard GB/T
50082-2009 [23] is used for the determination of NaCl F-C and D-A.
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2.5. Microscopic Analysis Experiment

The powdered samples with a maximum particle size of 0.08 mm are applied to the
determination of thermogravimetric analysis and the X-ray diffraction curves. A TGA-1150
thermogravimetric analyzer provided by Shanghai Junzhun Instrument Equipment Co.,
Ltd., Shanghai, China, is used for obtaining the TG curves. The temperature of the ther-
mogravimetric analyzer ranges from 25 to 950 ◦C. A real-spectrum X-ray diffractometer
offered by Suzhou Shipu Instrument Co., Ltd., Suzhou, China, is used for the XRD exper-
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iment. Bean-shaped samples with a maximum particle size of 2.1 mm are used for the
measurement of the SEM by a Zeiss scanning electron microscope (Guangdong Yuelian
Instrument Co., Ltd., Guangzhou, China). The samples are dried in a vacuum drying
oven at a temperature of 60 ◦C for 4 days. After drying, the samples are moved to a Zeiss
scanning electron microscope for acquiring the SEM photos.

3. Results and Discussions
3.1. The MLR and RDEM of RPC during NaCl F-C

The MLR of RPC with CO2-cured boiler cinder are shown in Figure 4. The MLR
decrease in the form of quadratic function. The fitting degrees of all curves are higher
than or equal to 0.98, indicating the accuracy of fitting results. This is attributed to the fact
that the increasing dosages of CO2-cured boiler cinder can reduce the pores in the boiler
cinder [24]. Therefore, the freeze–thaw cracks are decreased by adding the CO2-cured boiler
cinder. The MLR are increased by the increasing number of F-C. This is mainly attributed to
the fact that the inner cracks are accelerated and enlarged with the aggravated freeze–thaw
effect [25]. Hence, some spalling on the surface of the specimens occurs, leading eventually
to the increase in MLR. The maximum MLR of RPC during F-C ranges from 0% to 5.3%.
The CO2 curing on the boiler cinder can decrease the MLR by a maximum value of 51.3%.
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The relative dynamic modulus of elasticity of RPC with different dosages of CO2-cured
boiler cinder is shown in Figure 5. The RDME shows an increasing trend with the dosages
of CO2-cured boiler cinder due to the improved compactness of RPC by adding CO2-cured
boiler cinder [26]. Therefore, the increase in sound propagation speed leads to an increase
in dynamic elastic modulus. However, the increased number of freeze–thaw cycles causes
a decrease in RDME, which is attributed to the aggravated freeze–thaw damage by the
increased number freeze–thaw cycles [27]. The relationship between the mass ratio of
CO2-cured boiler cinder and the RDME conforms to the relation of quadratic function. The
fitting degrees are higher than or equal to 0.96, which shows the accuracy of the fitting
equations. The RDME during F-C ranges from 100% to 83.2%. Meanwhile, CO2 curing on
boiler cinder can increase the RDME from 83.1% to 90.3%.
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0% to 5.78% during NaCl D-A. Meanwhile, the CO2 curing can decrease the MLR from 

Figure 5. The RDEM of RPC during NaCl F-C.

3.2. The Mechanical Strengths of RPC NaCl F-C

The flexural and compressive strengths of RPC are exhibited in Figure 6. The mechani-
cal strengths of RPC exhibit an increasing trend with the increasing dosages of CO2-cured
boiler cinder. However, when the number of F-C is increased, the mechanical strengths of
RPC decrease. This is ascribed to the increased inner cracks by the freeze–thaw action [28].
The mechanical strengths’ increasing rates of RPC with CO2-cured boiler cinder increase
with the increasing dosages of CO2-cured boiler cinder due to the improved compactness
of boiler cinder by the formed CaCO3 of Ca(OH)2 and CO2 [29]. Moreover, the mechani-
cal strengths’ increasing rates by adding CO2-cured boiler cinder are decreased with the
increased number of NaCl freeze–thaw cycles. Comparing the flexural strength with the
compressive strength, the increasing rate of the compressive strength is higher than that of
the flexural strength’s increasing rate. The increasing rates of the flexural and compressive
strengths of RPC by 13.1%–36.3% and 11.2%–50.4% are achieved by adding CO2-cured
boiler cinder.
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Figure 6. The mechanical strength of RPC during NaCl F-C. (a) The flexural strength; (b) the
compressive strength.

3.3. The MLR and RDEM of RPC during NaCl D-A

The MLR of RPC during NaCl D-A are illustrated in Figure 7. The MLR decrease in the
form of quadratic function with the mass ratio of CO2-cured boiler cinder. The increased
number of NaCl D-A has an increasing effect on the MLR. The MLR range from 0% to
5.78% during NaCl D-A. Meanwhile, the CO2 curing can decrease the MLR from 5.78% to
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3.72% after 30 NaCl D-A. This is attributed to the decreased internal defects in the sample
and the increase in hydration products [30,31].
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The flexural and compressive strengths of RPC with CO2-cured boiler cinder are il-
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addition of CO2-cured boiler cinder and decreases with the NaCl dry–wet action. CO2-
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Figure 7. The MLR of RPC during NaCl D-A.

The RDEM of RPC with the increasing mass ratio of CO2-cured boiler cinder is
illustrated in Figure 8. As can be observed, the RDEM of RPC increases with the increasing
content of CO2-cured boiler cinder. Moreover, the increased number of NaCl D-A has
an increasing effect on the RDEM of RPC. As can be found in Figure 8, the relationship
between RDEM and m fits the quadratic function.
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Figure 8. The RDEM of RPC during NaCl D-A.

The flexural and compressive strengths of RPC with CO2-cured boiler cinder are
illustrated in Figure 9a,b. As shown in Figure 9, the mechanical strengths increase with
the addition of CO2-cured boiler cinder and decreases with the NaCl dry–wet action. CO2-
cured boiler cinder can effectively improve the compactness of RPC, thus increasing the
resistance to the NaCl dry–wet effect [32]. The NaCl dry–wet action increases internal
damage of RPC with CO2-cured boiler cinder, which leads to decreasing the mechani-
cal strengths.



Coatings 2023, 13, 1021 8 of 12Coatings 2023, 13, x FOR PEER REVIEW 8 of 12 
 

 

0 25 50 75 100
0

10

20

30

40

50
 0 Dry-wet alternation
 10 Dry-wet alternations
 20 Dry-wet alternations
 30 Dry-wet alternations

Mass ratio of CO2 cured boiler cinder(%)

Fl
ex

ur
al

 s
tr

en
gt

h（
M

Pa
）

0

10

20

30

40

 The increasing rate of 0 Dry-wet alternation
 The increasing rate of 10 Dry-wet alternations
 The increasing rate of 20 Dry-wet alternations
 The increasing rate of 30 Dry-wet alternations

Th
e 

in
cr

ea
si

ng
 ra

te
(%

)
 

0 25 50 75 100
0

40

80

120

160

200

240
 0 Dry-wet alternation
 10 Dry-wet alternations
 20 Dry-wet alternations
 30 Dry-wet alternations

Mass ratio of CO2 cured boiler cinder(%)

C
om

pr
es

si
ve

 s
tr

en
gt

h（
M

Pa
）

0

10

20

30

40

50

 The increasing rate of 0 Dry-wet alternation
 The increasing rate of 10 Dry-wet alternations
 The increasing rate of 20 Dry-wet alternations
 The increasing rate of 30 Dry-wet alternations

Th
e 

in
cr

ea
si

ng
 ra

te
(%

)

 
(a) (b) 
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pressive strength. 

3.4. The SEM of RPC with CO2-Cured Boiler Cinder 
SEM photos of RPC with CO2-cured boiler cinder (BC) are shown in Figure 10. As 

observed in Figure 10, the tightly packed hydration products are found in the microscopic 
images. As depicted in Figure 10, the flocculent hydration products decrease and the com-
pact hydration products increase with increasing CO2-cured boiler cinder. When CO2-
cured boiler cinder is added, the inner cracks in RPC are decreased. As discovered in Fig-
ure 10, the compactness of the hydration products are improved by the addition of CO2-
cured boiler cinder. 

  
(a) (b) 

  
(c) (d) 

Figure 9. The mechanical strengths of RPC during NaCl D-A. (a) The flexural strength; (b) the
compressive strength.

3.4. The SEM of RPC with CO2-Cured Boiler Cinder

SEM photos of RPC with CO2-cured boiler cinder (BC) are shown in Figure 10. As
observed in Figure 10, the tightly packed hydration products are found in the microscopic
images. As depicted in Figure 10, the flocculent hydration products decrease and the
compact hydration products increase with increasing CO2-cured boiler cinder. When
CO2-cured boiler cinder is added, the inner cracks in RPC are decreased. As discovered
in Figure 10, the compactness of the hydration products are improved by the addition of
CO2-cured boiler cinder.
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pressive strength. 

3.4. The SEM of RPC with CO2-Cured Boiler Cinder 
SEM photos of RPC with CO2-cured boiler cinder (BC) are shown in Figure 10. As 

observed in Figure 10, the tightly packed hydration products are found in the microscopic 
images. As depicted in Figure 10, the flocculent hydration products decrease and the com-
pact hydration products increase with increasing CO2-cured boiler cinder. When CO2-
cured boiler cinder is added, the inner cracks in RPC are decreased. As discovered in Fig-
ure 10, the compactness of the hydration products are improved by the addition of CO2-
cured boiler cinder. 
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Figure 10. Cont.
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Figure 11. The thermal analysis curve of RPC with CO2-cured BC. (a) TG curves of RPC; (b) DTA 
curves of RPC. 

3.6. The XRD Curves of RPC with CO2-Cured Stove Ash 
The XRD curves of RPC with CO2-cured boiler cinder are shown in Figure 10. As 

found in Figure 12, the diffraction peaks of 3CaO·SiO2(C3S), 2CaO·SiO2 (C2S), cristobalite 
(SiO2), and calcium hydroxide (CH) are observed in Figure 12. As exhibited in Figure 10, 
the diffraction peaks of C3S and CH are decreased with the increasing curing age and the 

Figure 10. SEM photos of RPC with CO2-cured BC. (a) RPC with 0% CO2-cured BC, (b) RPC with
25% CO2-cured BC, (c) RPC with 50% CO2-cured BC, (d) RPC with 75% CO2-cured BC, (e) RPC with
100% CO2-cured BC.

3.5. The Thermal Analysis of RPC with CO2-Cured Boiler Cinder

The TG curves of RPC with CO2-cured boiler cinder are shown in Figure 11. As
depicted in Figure 11, the TG decreases in the form of power function with the increasing
temperature. The variation of TG curves can be divided into three steps. In the first step,
the temperature varies from 31.2 to 150.2 ◦C. In this stage, the TG decreases due to the loss
of free water during temperature rise. In the second step (temperature ranges from 150.2 to
474.1 ◦C), the value of the TG decreases with the increasing temperature. This is attributed
to the disintegration of calcium hydroxide. During the third step, the temperature varies
from 474.1 to 753.2 ◦C, and the TG decreases with the increasing temperature, which is
ascribed to calcium carbonate. Additionally, the TG values are decreased by adding CO2-
cured boiler cinder, which is attributed to the fact that silicon oxide can play a nucleation
role and participate in hydration, leading eventually to improving the hydration degree [33].
Moreover, the CO2 curing on boiler cinder can result in reducing the corresponding particles’
size and increasing the specific surface area, which can be capable of adsorbing cement
ions and inducing nucleation and growth.
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3.6. The XRD Curves of RPC with CO2-Cured Stove Ash

The XRD curves of RPC with CO2-cured boiler cinder are shown in Figure 10. As
found in Figure 12, the diffraction peaks of 3CaO·SiO2(C3S), 2CaO·SiO2 (C2S), cristobalite
(SiO2), and calcium hydroxide (CH) are observed in Figure 12. As exhibited in Figure 10,
the diffraction peaks of C3S and CH are decreased with the increasing curing age and the
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addition of CO2-cured boiler cinder. This can be ascribed to the fact that the addition of
boiler cinder can promote the hydration of cement, thus decreasing the amount of C3S.
Moreover, the increasing amount of boiler cinder can increase the secondary hydration of
cement. Furthermore, the CO2 curing on boiler cinder can further decrease C3S and CH
due to the effect of CO2-cured boiler cinder on the cement hydration.
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4. Conclusions 
This study aims to investigate the influence of CO2-cured boiler cinder on the me-

chanical strength of RPC during NaCl action. This study can provide new ideas for han-
dling boiler cinder and can also prove whether RPC with boiler cinder is suitable for ma-
rine concrete. The research conclusions can be summarized as follows. 

During NaCl erosion, the relationship between the mass loss rate and the mass ratio 
of CO2-cured boiler cinder fits the quadratic equation. Meanwhile, CO2-cured boiler cin-
der can decrease the mass loss rate of RPC. After NaCl action, the mass loss rates are 0%–
5.3%, and the mass loss rates’ decreasing rate by CO2-cured boiler cinder is 0%–51.3%. 
Meanwhile, the relationship between the RDEM and the mass ratio of CO2-cured boiler 
cinder fits the quadratic equation, and CO2-cured boiler cinder can increase the RDEM of 
RPC. 

The addition of CO2-cured stove ash can improve the flexural and compressive 
strengths with the corresponding increasing rates of RPC by 13.1%–36.3% and 11.2%–
50.4% after encountering NaCl erosion. 

The SEM, thermogravimetric analysis results, and XRD results confirm that the ad-
dition of CO2-cured boiler cinder can improve the compactness of RPC and decrease the 
inner cracks. Moreover, as obtained from the thermogravimetric analysis results, CO2-
cured boiler cinder can decrease the values of the TG. 

It can be obtained from the research results that CO2-cured boiler cinder can be ap-
plied to manufacturing RPC. The CO2 curing on boiler cinder can help improve RPC’s 
resistance to NaCl erosion. Therefore, RPC with CO2-cured boiler cinder suits the appli-
cation of marine engineering. 
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Figure 12. The XRD curves of RPC with CO2-cured BC. (a) The XRD curves of RPC with BC; (b) the
XRD curves of RPC with CO2-cured BC.

4. Conclusions

This study aims to investigate the influence of CO2-cured boiler cinder on the mechan-
ical strength of RPC during NaCl action. This study can provide new ideas for handling
boiler cinder and can also prove whether RPC with boiler cinder is suitable for marine
concrete. The research conclusions can be summarized as follows.

During NaCl erosion, the relationship between the mass loss rate and the mass ratio
of CO2-cured boiler cinder fits the quadratic equation. Meanwhile, CO2-cured boiler
cinder can decrease the mass loss rate of RPC. After NaCl action, the mass loss rates are
0%–5.3%, and the mass loss rates’ decreasing rate by CO2-cured boiler cinder is 0%–51.3%.
Meanwhile, the relationship between the RDEM and the mass ratio of CO2-cured boiler
cinder fits the quadratic equation, and CO2-cured boiler cinder can increase the RDEM
of RPC.

The addition of CO2-cured stove ash can improve the flexural and compressive
strengths with the corresponding increasing rates of RPC by 13.1%–36.3% and 11.2%–50.4%
after encountering NaCl erosion.

The SEM, thermogravimetric analysis results, and XRD results confirm that the addi-
tion of CO2-cured boiler cinder can improve the compactness of RPC and decrease the inner
cracks. Moreover, as obtained from the thermogravimetric analysis results, CO2-cured
boiler cinder can decrease the values of the TG.

It can be obtained from the research results that CO2-cured boiler cinder can be applied
to manufacturing RPC. The CO2 curing on boiler cinder can help improve RPC’s resistance
to NaCl erosion. Therefore, RPC with CO2-cured boiler cinder suits the application of
marine engineering.
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