Research on the Influence of Coating Technologies on Adhesion Anti-Corrosion Layers in the Case of Al7175 Aluminum Alloy
Abstract
:1. Introduction
- The anodizing layer is made by electrochemical technologies based on the galvanization principle.
- In the case of the primer layer, deposition is carried out after spraying the solution on the surface of the part on which it is being hardened.
- The paint is sprayed or applied with a brush.
2. Classification of Anodization Types
- The most popular kind of anodization, anodizing sulfuric acid (Type II), creates a porous oxide coating with a thickness of 20–25 μm. The coating is distinguished by its superior corrosion resistance, high hardness, and strong adhesion. According to recent research, Type II anodizing’s qualities can be further improved by using different electrolyte compositions and process circumstances [7].
- Hard anodizing (Form III): This type of anodization creates an oxide layer that is 50–100 μm thick and harder. A high hardness, strong abrasion resistance, and enhanced corrosion resistance define the coating. New process conditions can yield thicker, harder oxide coatings with better adhesion and corrosion resistance thanks to recent improvements in the hard anodizing form [8].
- Chromic acid anodization (Method I): This type of anodization creates an oxide coating that is 5–10 μm thick and dense. The coating stands out for its reduced hardness, enhanced corrosion resistance, and propensity to stick to adhesives and other coatings. Researchers have recently concentrated on creating novel chromic acid anodization techniques that can provide oxide layers with enhanced adhesion and corrosion resistance [9].
- An oxide layer of titanium dioxide is created on the surface of titanium alloys via anodizing titanium. The coating is distinguished by its superior adhesion, strong corrosion resistance, and low toxicity. Recent research has demonstrated that the characteristics of anodizing titanium may be further improved by using novel electrolyte compositions and process conditions [10].
- Colored anodizing: This process of anodization is used to coat aluminum alloys with a colored oxide coating. By adjusting the process variables and incorporating dyes into the electrolyte solution, the color is produced. Aluminum alloys’ external aesthetics are enhanced by colored anodization. New colored anodization techniques have been developed recently that can provide oxide layers with increased color permanence and fade resistance [11,12].
3. Comparison between Thicknesses of Anodized Layers Obtained as a Function of Acid
4. Types of Primer and Paint Used
- SEEVENAX 313-01 water-based primer 1 (manufactured by MANKIEWICZ GEBR. & CO. (GMBH & CO. KG));
- Solvent-based primer 2 10 P4-2NF (manufactured by Akzo, Birmingham, UK);
- SEEVENAX 311-83 water-based topcoat 1 (manufactured by MANKIEWICZ GEBR. & CO. (GMBH & CO. KGMankievicz));
- Solvent-based topcoat 2 446-22-1000 epoxy enamel BAC 702 (manufactured by Akzo, Birmingham, UK).
5. Materials and Methods
5.1. Description of the Experiment
5.2. Aluminum Alloy Al7175 T73511
- Group A1: Sulphuric acid-based alloying—4 plates;
- Group A2: Boric acid-based alloying—8 plates;
- Group A3: Tartaric acid-based alloying—4 plates.
- -
- Primer 1—which is water-based: Seevenax 313-01;
- -
- Primer 2—which is solvent-based: 10P4-2NF.
- -
- Topcoat 1—which is water-based: Seevenax 311-83;
- -
- Topcoat 2—which is solvent-based: 446-22-1000.
- -
- 1 material;
- -
- 3 anodizations;
- -
- 1 primer (2 specimens);
- -
- 1 primer + topcoats (2 specimens).
- -
- 1 material;
- -
- 1 anodization;
- -
- 2 primers (2 specimens);
- -
- 2 primers + topcoats (2 specimens).
5.3. Performing Crosscut Tests
5.4. Measurement of Paint Thickness Layers
- Measurement principle: In addition to measuring surface roughness, the Isoscope FMP30 can also be used to measure coating thickness. The instrument uses a non-destructive eddy current method to measure the thickness of non-conductive coatings on conductive substrates.
- Measurement range: The Isoscope FMP30 can measure coating thicknesses ranging from 0.1 µm to 3 mm, with a resolution of 0.01 µm.
- Measurement modes: The instrument has several measurement modes, including a single-point mode for spot measurements and scan mode for measuring larger areas.
- Calibration: The Isoscope FMP30 requires calibration using a known standard of the same material and thickness as the coating being measured.
- Coating types: The instrument can measure a wide range of coatings, including paint, anodized coatings on aluminum, and coatings on steel and other metals.
- Statistics: The instrument can calculate statistical values for the measured coating thickness, including minimum, maximum, and average values.
- Display: The instrument features a large, high-resolution color display that shows measurement results, measurement parameters, and instrument settings.
- Data storage: The Isoscope FMP30 can store up to 20,000 measurement results, which can be transferred to a computer for further analysis.
- Accessories: The Isoscope FMP30 comes with several accessories, including a carrying case, calibration standards, a probe stand, and a USB cable for data transfer.
- Additional capabilities: The Isoscope FMP30 also has additional capabilities, including the ability to measure the thickness of anodic coatings on aluminum substrates, as well as the ability to measure the electrical conductivity of materials.
6. Experimental Data Processing
6.1. Study of the Influence of the Nature of the Anode Layer on the Resistance of Paint Coatings
6.2. Study of the Adhesion of Primers and Coatings Depending on Their Type on the Al7075 Surface
7. Results and Discussions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Rui, X.; Wang, Q.J.; Bai, Y.; Du, Z.Z.; Niu, W.J.; Wang, W.; Wang, K.S.; Gao, Y. Bonding and wear behaviors of supersonic plasma sprayed Fe-based coatings on Al-Si alloy substrate. Surf. Coat. Technol. 2019, 367, 288–301. [Google Scholar] [CrossRef]
- Omar, N.i.; Yamada, M.; Yasui, T.; Fukumoto, M. Bonding Mechanism of Cold-Sprayed TiO2 Coatings on Copper and Alu-minum Substrates. Coatings 2021, 11, 1349. [Google Scholar] [CrossRef]
- Veys-Renaux, D.; Chahboun, N.; Rocca, E. Anodizing of multiphase aluminium alloys in sulfuric acid: In-situ electrochemical behaviour and oxide properties. Electrochim. Acta 2016, 211, 1056–1065. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Bikas, H.; Bekiaris, T. Combining Process and Machine Modelling: A Cold Spray Additive Manufacturing Case. Procedia CIRP 2020, 95, 1015–1020. [Google Scholar] [CrossRef]
- Raghavendra, C.; Basavarajappa, S.; Sogalad, I.; Saunshi, V.K. Study on surface roughness parameters of nano composite coatings prepared by electrodeposition process. Mater. Today Proc. 2021, 38, 3110–3115. [Google Scholar] [CrossRef]
- Wang, G.; Liu, H.; Chen, T.; Zhang, X.; Li, H.; Yu, Y.; Yao, H. Comparative investigation on thermal corrosion of alloy coatings in simulated waste incinerator environment. Corros. Sci. 2021, 189, 109592. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kawahara, K.; Kikuchi, T.; Suzuki, R.O.; Natsui, S. Corrosion-Resistant Porous Alumina Formed via Anodizing Aluminum in Etidronic Acid and Its Pore-Sealing Behavior in Boiling Water. J. Electrochem. Soc. 2019, 166, C261–C269. [Google Scholar] [CrossRef]
- Kaseem, M.; Fatimah, S.; Nashrah, N.; Ko, Y.G. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Prog. Mater. Sci. 2021, 117, 100735. [Google Scholar] [CrossRef]
- Lv, J.; Chen, Z.-L.; Tang, J.; Chen, L.; Xie, W.-J.; Sun, M.-X.; Huang, X.-J. Study on the superhydrophilic modification and enhanced corrosion resistance method of aluminum alloy distillation desalination tubes. Surf. Coat. Technol. 2022, 446, 128770. [Google Scholar] [CrossRef]
- Başalan, E.; Erol, M.; Sancakoğlu, O.; Dikici, T.; Çelik, E. Comparison of processing parameter effects during magnetron sputtering and electrochemical anodization of TiO2 nanotubes on ITO/glass and glass substrates. Mater. Test. 2021, 63, 245–252. [Google Scholar] [CrossRef]
- İzmir, M.; Ercan, B. Anodization of titanium alloys for orthopedic applications. Front. Chem. Sci. Eng. 2019, 13, 28–45. [Google Scholar] [CrossRef]
- Guo, F.; Cao, Y.; Wang, K.; Zhang, P.; Cui, Y.; Hu, Z.; Xie, Z. Effect of the Anodizing Temperature on Microstructure and Tribological Properties of 6061 Aluminum Alloy Anodic Oxide Films. Coatings 2022, 12, 314. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; He, C.; Lu, M.; Sun, L. Studies on the sealing processes of corrosion resistant coatings formed on 2024 aluminum alloy with tartaric-sulfuric anodizing. Surf. Coat. Technol. 2019, 360, 369–375. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Bian, G.; Zhang, Y. Electrochemical behavior and corrosion mechanism of anodized 7B04 aluminum alloy in acid NaCl environments. J. Alloys Compd. 2021, 886, 161231. [Google Scholar] [CrossRef]
- Acar, M.T.; Kovacı, H.; Çelik, A. Improving the wettability and corrosion behavior of Cp-Ti by applying anodization surface treatment with the addition of boric acid, graphene oxide and hydroxyapatite. Mater. Today Commun. 2022, 31, 103683. [Google Scholar] [CrossRef]
- Ramirez, O.M.P.; Tunes, M.A.; Mennucci, M.M.; Starykevich, M.; Neves, C.; Ferreira, M.G.; Pogatscher, S.; De Melo, H.G. Ce post-treatment for increased corrosion resistance of AA2024-T3 anodized in tartaric-sulfuric acid. Corros. Sci. 2022, 204, 110371. [Google Scholar] [CrossRef]
- Quebbou, Z.; Chafi, M.; Omari, L.E.H. Corrosion resistance of 5005 aluminum alloy by anodizing treatment in a mixture of phosphoric and boric acids. Mater. Today Proc. 2021, 37, 3854–3859. [Google Scholar] [CrossRef]
- Musza, A.; Ugi, D.; Vida, Á.; Chinh, N.Q. Study of Anodic Film’s Surface and Hardness on A356 Aluminum Alloys, Using Scanning Electron Microscope and In-Situ Nanoindentation. Coatings 2022, 12, 1528. [Google Scholar] [CrossRef]
- Fiore, V.; Di Franco, F.; Miranda, R.; Santamaria, M.; Badagliacco, D.; Valenza, A. Effects of anodizing surface treatment on the mechanical strength of aluminum alloy 5083 to fibre reinforced composites adhesive joints. Int. J. Adhes. Adhes. 2021, 108, 102868. [Google Scholar] [CrossRef]
- Paz Martínez-Viademonte, M.; Abrahami, S.T.; Hack, T.; Burchardt, M.; Terryn, H. A review on anodizing of aerospace aluminum alloys for corrosion protection. Coatings 2020, 10, 1106. [Google Scholar] [CrossRef]
- Proença, C.S.; Serrano, B.; Correia, J.; Araújo, M.E.M. Evaluation of tannins as potential green corrosion inhibitors of aluminum alloy used in aeronautical industry. Metals 2022, 12, 508. [Google Scholar] [CrossRef]
- Miramontes, J.C.; Tiburcio, C.G.; Mata, E.G.; Alcála, M.E.; Maldonado-Bandala, E.; Lara-Banda, M.; Nieves-Mendoza, D.; Olguín-Coca, J.; Zambrano-Robledo, P.; López-León, L.D.; et al. Corrosion Resistance of Aluminum Alloy AA2024 with Hard Anodizing in Sulfuric Acid-Free Solution. Materials 2022, 15, 6401. [Google Scholar] [CrossRef] [PubMed]
- Peltier, F.; Thierry, D. Review of Cr-Free Coatings for the Corrosion Protection of Aluminum Aerospace Alloys. Coatings 2022, 12, 518. [Google Scholar] [CrossRef]
- Del Olmo, R.; Tiringer, U.; Milošev, I.; Visser, P.; Arrabal, R.; Matykina, E.; Mol, J. Hybrid sol-gel coatings applied on anodized AA2024-T3 for active corrosion protection. Surf. Coat. Technol. 2021, 419, 127251. [Google Scholar] [CrossRef]
- Dervishi, E.; McBride, M.; Edwards, R.; Gutierrez, M.; Li, N.; Buntyn, R.; Hooks, D.E. Mechanical and tribological properties of anodic Al coatings as a function of anodizing conditions. Surf. Coat. Technol. 2022, 444, 128652. [Google Scholar] [CrossRef]
- Machado, T.V.; Dick, P.A.; Knörnschild, G.H.; Dick, L.F. The effect of different carboxylic acids on the sulfuric acid anodizing of AA2024. Surf. Coat. Technol. 2020, 383, 125283. [Google Scholar] [CrossRef]
- Domagalski, J.T.; Xifre-Perez, E.; Marsal, L.F. Recent Advances in Nanoporous Anodic Alumina: Principles, Engineering, and Applications. Nanomaterials 2021, 11, 430. [Google Scholar] [CrossRef]
- Usman, B.J. Green and Effective Anodizing of AA 2024-T3 in Methionine-Sulfuric Acid Electrolyte. J. Electrochem. Soc. 2022, 169, 031503. [Google Scholar] [CrossRef]
- Sano, T.; Wakabayashi, Y.; Asoh, H. Formation of hard anodic films on the 7075-T6 aluminum alloy by anodization in sulfuric acid and ethylene glycol. Surf. Coat. Technol. 2023, 459, 129399. [Google Scholar] [CrossRef]
- Lv, X.; Jin, X.; Zhang, Z.; Bai, Y.; Guo, T.; Zhang, L.; Zhang, H.; Zhu, J.; Shao, Y.; Zhang, H.; et al. Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer. Coatings 2022, 12, 1473. [Google Scholar] [CrossRef]
- Zareanshahraki, F.; Asemani, H.; Skuza, J.; Mannari, V. Synthesis of non-isocyanate polyurethanes and their application in radiation-curable aerospace coatings. Prog. Org. Coat. 2020, 138, 105394. [Google Scholar] [CrossRef]
- Hamdi, M.; Saleh, M.N.; Poulis, J.A. Improving the adhesion strength of polymers: Effect of surface treatments. J. Adhes. Sci. Technol. 2020, 34, 1853–1870. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, X.; Vokhidova, N.R.; Sun, Q.; Li, Y.; Lu, Y. Aircraft coating for electromagnetic interference shielding with flame retardancy and Joule heating capability. Mater. Chem. Phys. 2023, 299, 127539. [Google Scholar] [CrossRef]
- Pickren, D.B.E. Effects of Weathering Cycles on the Mechanical Properties of Thermoplastic Polyurethane. Ph.D. Thesis, Mercer University, Atlanta, GA, USA, 2021. [Google Scholar]
- Anderson, K.; Kaufman, J.G.; Weritz, J. (Eds.) ASM Handbook: Volume 2B Properties and Selection of Aluminum Alloys; ASM International: Almere, The Netherlands, 2019. [Google Scholar]
- Vu, C.; Wern, C.; Kim, B.H.; Kim, S.K.; Choi, H.J.; Yi, S. Fatigue Behaviour of New Eco-7175 Extruded Aluminum Alloy. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July 2019; pp. 1–4. [Google Scholar]
- Won, B.; Kim, M.O.; Park, S.; Yi, J.-H. Effects of Water Exposure on the Interfacial Bond between an Epoxy Resin Coating and a Concrete Substrate. Materials 2019, 12, 3715. [Google Scholar] [CrossRef] [Green Version]
- Asmatulu, R.; Erukala, K.S.; Shinde, M.; Alarifi, I.M.; Gorji, M.R. Investigating the effects of surface treatments on adhesion properties of protective coatings on carbon fiber-reinforced composite laminates. Surf. Coat. Technol. 2019, 380, 125006. [Google Scholar] [CrossRef]
- Xin, L.; Li, H.; Gao, J.; Wang, Z.; Zhou, K.; Yu, S. Large-scale fabrication of decoupling coatings with promising robustness and superhydrophobicity for antifouling, drag reduction, and organic photodegradation. Friction 2023, 11, 716–736. [Google Scholar] [CrossRef]
- Asif, A.H.; Mahajan, M.S.; Sreeharsha, N.; Gite, V.V.; Al-Dhubiab, B.E.; Kaliyadan, F.; Nanjappa, S.H.; Meravanige, G.; Aleyadhy, D.M. Enhancement of Anticorrosive Performance of Cardanol Based Polyurethane Coatings by Incorporating Magnetic Hydroxyapatite Nanoparticles. Materials 2022, 15, 2308. [Google Scholar] [CrossRef]
- Chen, B.; Xi, X.; Gu, T.; Tan, C.; Song, X. Influence of heat treatment on microstructure evolution and mechanical properties of TiB2/Al 2024 composites fabricated by directed energy deposition. J. Mater. Res. Technol. 2020, 9, 14223–14236. [Google Scholar] [CrossRef]
- Kwolek, P.; Drapała, D.; Krupa, K.; Obłój, A.; Tokarski, T.; Sieniawski, J. Mechanical properties of a pulsed anodised 5005 aluminum alloy. Surf. Coat. Technol. 2020, 383, 125233. [Google Scholar] [CrossRef]
- Zych, P.; Żywica, G. Fatigue analysis of the microturbine rotor disc made of 7075 aluminum alloy using a new hybrid calculation method. Materials 2022, 15, 834. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Bikulčius, G.; Jankauskas, S.; Selskienė, A.; Staišiūnas, L.; Matijošius, T.; Asadauskas, S.J. New Insight into Adherence of Ni-P Electroless Deposited Coatings on AA6061 Alloy through Al2O3 Ceramic. Coatings 2022, 12, 594. [Google Scholar] [CrossRef]
- Carneiro JTedim, J.; Ferreira, M.G.S. Chitosan as a smart coating for corrosion protection of aluminum alloy 2024: A review. Prog. Org. Coat. 2015, 89, 348–356. [Google Scholar] [CrossRef]
No. | Anodizing Material | Coating | Coating Type | Crosscut Test/Quality | Coating Thickness of the Anode Topcoat(CTA + TC) (nm) | Coating Thickness of the Anode (CTA) (nm) | Topcoat Thickness (TCT) (nm) | Average Forces (kN) | Average Resistance (N/mm2) |
---|---|---|---|---|---|---|---|---|---|
1 | TSA | Primer | Water | 0 | 27.51 | 3.73 | 23.78 | 1.013 | 3.22 |
2 | TSA | Primer | Water | 0 | 21.7 | 3.19 | 18.51 | 3.22 | |
3 | TSA | Primer + topcoat | Water | 0 | 37.5 | 3.38 | 34.12 | 1.104 | 3.51 |
4 | TSA | Primer + topcoat | Water | 0 | 42.48 | 3.36 | 39.12 | 1.104 | 3.51 |
5 | SAA | Primer | Water | 0 | 36.3 | 12.86 | 23.44 | 1.004 | 3.2 |
6 | SAA | Primer | Water | 0 | 32.85 | 12.95 | 19.9 | 1.004 | 3.2 |
7 | SAA | Primer + topcoat | Water | 0 | 56.05 | 12.85 | 43.2 | 1.093 | 3.48 |
8 | SAA | Primer + topcoat | Water | 1 | 57.51 | 12.69 | 44.82 | 1.093 | 3.48 |
9 | BSA | Primer | Water | 0 | 26.75 | 5.45 | 21.3 | 1.037 | 3.3 |
10 | BSA | Primer | Water | 0 | 28.4 | 5.39 | 23.01 | 1.037 | 3.3 |
11 | BSA | Primer + topcoat | Water | 0 | 47.45 | 5.4 | 42.05 | 1.25 | 3.98 |
12 | BSA | Primer + topcoat | Water | 1 | 57.45 | 5.43 | 52.02 | 1.25 | 3.98 |
13 | BSA | Primer | Solvent | 0 | 18.68 | 5.33 | 13.35 | 1.011 | 3.22 |
14 | BSA | Primer | Solvent | 0 | 21.6 | 5.45 | 16.15 | 1.011 | 3.22 |
15 | BSA | Primer + topcoat | Solvent | 0 | 41.96 | 5.37 | 36.59 | 1.313 | 4.18 |
16 | BSA | Primer + topcoat | Solvent | 0 | 41.65 | 5.39 | 36.26 | 1.313 | 4.18 |
Type | Count | Average | Standard Deviation | Coefficient of Variation | Minimum |
---|---|---|---|---|---|
CTA + TC (nm) | 12 | 39.3292 | 12.7815 | 32.4988% | 21.7 |
CTA (nm) | 12 | 7.22333 | 4.2354 | 58.635% | 3.19 |
TCT (nm) | 12 | 32.1058 | 11.721 | 36.5073% | 18.51 |
Total | 36 | 26.2194 | 17.1664 | 65.4719% | 3.19 |
Type | Maximum | Range | Standard Skewness | Standard Kurtosis | |
CTA + TC (nm) | 57.51 | 35.81 | 0.478018 | −0.944209 | |
CTA (nm) | 12.95 | 9.76 | 0.938441 | −1.16315 | |
TCT (nm) | 52.02 | 33.51 | 0.486809 | −1.09239 | |
Total | 57.51 | 54.32 | 0.664417 | −1.28016 |
Source | Sum of Squares | Df | Mean Square | F Ratio | p-Value |
---|---|---|---|---|---|
Between groups | 6808.4 | 2 | 3404.2 | 32.05 | 0.0000 |
Within groups | 3505.55 | 33 | 106.229 | - | - |
Total (Corrected) | 10,313.9 | 35 | - | - | - |
Standard Error | |||||
---|---|---|---|---|---|
Count | Mean | (Pooled s) | Lower Limit | Upper Limit | |
CTA + TC (nm) | 12 | 39.3292 | 2.9753 | 35.0488 | 43.6095 |
CTA (nm) | 12 | 7.22333 | 2.9753 | 2.943 | 11.5037 |
TCT (nm) | 12 | 32.1058 | 2.9753 | 27.8255 | 36.3862 |
Total | 36 | 26.2194 | - | - | - |
Count | Mean | Homogeneous Groups | ||
---|---|---|---|---|
CTA (nm) | 12 | 7.22333 | X | |
TCT (nm) | 12 | 32.1058 | X | |
CTA + TC (nm) | 12 | 39.3292 | X | |
Contrast | Significance | Difference | +/− Limits | |
CTA + TC (nm) − CTA (nm) | * | 32.1058 | 8.56066 | |
CTA + TC (nm) − TCT (nm) | - | 7.22333 | 8.56066 | |
CTA (nm) − TCT (nm) | * | −24.8825 | 8.56066 |
Levene’s | Test 9.52097 | p-Value 0.0005 | |||
---|---|---|---|---|---|
Comparison | Sigma1 | Sigma2 | F Ratio | p-Value | |
CTA + TC (nm)/CTA (nm) | 12.7815 | 4.2354 | 9.10699 | 0.0010 | |
CTA + TC (nm)/TCT (nm) | 12.7815 | 11.721 | 1.18915 | 0.7790 | |
CTA (nm)/TCT (nm) | 4.2354 | 11.721 | 0.130576 | 0.0021 |
Sample Size | Average Rank | ||
---|---|---|---|
CTA + TC (nm) | 12 | 26.5833 | |
CTA (nm) | 12 | 6.5 | |
TCT (nm) | 12 | 22.4167 | |
Test statistic = 24.2898 p-Value = 0.00000531544 | |||
95% Bonferroni Intervals | |||
Contrast | Significance | Difference | +/− Limits |
CTA + TC (nm) − CTA (nm) | * | 20.0833 | 10.2969 |
CTA + TC (nm) − TCT (nm) | - | 4.16667 | 10.2969 |
CTA (nm) − TCT (nm) | * | −15.9167 | 10.2969 |
Sample | Sample Size | n≤ | n> | Median | 95% Lower CL | 95% Upper CL |
---|---|---|---|---|---|---|
CTA + TC (nm) | 12 | 1 | 11 | 36.9 | 26.8308 | 57.3011 |
CTA (nm) | 12 | 12 | 0 | 5.415 | 3.36213 | 12.8589 |
TCT (nm) | 12 | 5 | 7 | 28.95 | 20.0489 | 44.6477 |
Source | Sum of Squares | Df | Mean Square | F Ratio | p-Value |
---|---|---|---|---|---|
MAIN EFFECTS | |||||
A: Anodizing | 0.0218 | 2 | 0.0109 | 8.64 | 0.0100 |
B: Coating | 0.051483 | 1 | 0.051483 | 40.83 | 0.0002 |
RESIDUAL | 0.010088 | 8 | 0.001261 | - | - |
TOTAL (CORRECTED) | 0.083371 | 11 | - | - | - |
Level | Count | Mean | Standard Error | Lower Limit | Upper Limit |
---|---|---|---|---|---|
GRAND MEAN | 12 | 1.0835 | - | - | - |
Anodizing | |||||
BSA | 4 | 1.1435 | 0.0177553 | 1.10256 | 1.18444 |
SAA | 4 | 1.0485 | 0.0177553 | 1.00756 | 1.08944 |
TSA | 4 | 1.0585 | 0.0177553 | 1.01756 | 1.09944 |
Coating | |||||
Primer | 6 | 1.018 | 0.0144971 | 0.984569 | 1.05143 |
Primer + topcoat | 6 | 1.149 | 0.0144971 | 1.11557 | 1.18243 |
Anodization Method | Count | LS Mean | LS Sigma | Homogeneous Groups |
---|---|---|---|---|
SAA | 4 | 1.0485 | 0.0177553 | X |
TSA | 4 | 1.0585 | 0.0177553 | X |
BSA | 4 | 1.1435 | 0.0177553 | X |
Contrast | Significance | Difference | +/− Limits | |
BSA − SAA | * | 0.095 | 0.0579033 | |
BSA − TSA | * | 0.085 | 0.0579033 | |
SAA − TSA | - | –0.01 | 0.0579033 |
Source | Sum of Squares | Df | Mean Square | F Ratio | p-Value |
---|---|---|---|---|---|
MAIN EFFECTS | |||||
A: Anodizing | 0.221667 | 2 | 0.110833 | 8.52 | 0.0104 |
B: Coating | 0.520833 | 1 | 0.520833 | 40.04 | 0.0002 |
RESIDUAL | 0.104067 | 8 | 0.0130083 | - | - |
TOTAL (CORRECTED) | 0.846567 | 11 | - | - | - |
Level | Count | Mean | Standard Error | Lower Limit | Upper Limit |
---|---|---|---|---|---|
GRAND MEAN | 12 | 3.44833 | - | - | - |
Anodizing | |||||
BSA | 4 | 3.64 | 0.057027 | 3.5085 | 3.7715 |
SAA | 4 | 3.34 | 0.057027 | 3.2085 | 3.4715 |
TSA | 4 | 3.365 | 0.057027 | 3.2335 | 3.4965 |
Coating | |||||
Primer | 6 | 3.24 | 0.0465624 | 3.13263 | 3.34737 |
Primer + topcoat | 6 | 3.65667 | 0.0465624 | 3.54929 | 3.76404 |
Anodization Method | Count | LS Mean | LS Sigma | Homogeneous Groups |
---|---|---|---|---|
SAA | 4 | 3.34 | 0.057027 | X |
TSA | 4 | 3.365 | 0.057027 | X |
BSA | 4 | 3.64 | 0.057027 | X |
Contrast | Significance | Difference | +/− Limits | |
BSA − SAA | * | 0.3 | 0.185976 | |
BSA − TSA | * | 0.275 | 0.185976 | |
SAA − TSA | - | −0.025 | 0.185976 |
Coating Type | Members | Percent Correctly Classified |
---|---|---|
Solvent | 4 | 100.0 |
Water | 4 | 100.0 |
Total | 8 | 100.0 |
Coating Type | Members | Percent Correctly Classified |
---|---|---|
Solvent | 0 | - |
Water | 0 | - |
Total | 0 | - |
Actual Coating Type | Group Size | Predicted Solvent | Water | ||
---|---|---|---|---|---|
Solvent | 4 | 4 | 0 | ||
(100.00%) | (0.00%) | ||||
Water | 4 | 0 | 4 | ||
(0.00%) | (100.00%) | ||||
Percent of training cases correctly classified: 100.00% | |||||
Coating Type | Prior Probability | Error Cost | |||
Solvent | 0.5000 | 1.0 | |||
Water | 0.5000 | 1.0 | |||
Actual | Nearest | Nearest | 2nd Nearest | 2nd Nearest | |
Row | Group | Neighbor | Distance | Neighbor | Distance |
Coating | Members | Percent Correctly Classified |
---|---|---|
Primer | 4 | 100.0 |
Primer + topcoat | 4 | 100.0 |
Total | 8 | 100.0 |
Coating Type | Members | Percent Correctly Classified |
---|---|---|
Primer | 0 | - |
Primer + topcoat | 0 | - |
Total | 0 | - |
Actual Coating | Group Size | Predicted Solvent | Water | |||
---|---|---|---|---|---|---|
Primer | 4 | 4 | 0 | |||
(100.00%) | (0.00%) | |||||
Primer + topcoat | 4 | 0 | 4 | |||
(0.00%) | (100.00%) | |||||
Percent of training cases correctly classified: 100.00% | ||||||
Coating | Prior Probability | Error Cost | ||||
Primer | 0.5000 | 1.0 | ||||
Primer + topcoat | 0.5000 | 1.0 | ||||
Actual | Nearest | Nearest | 2nd Nearest | 2nd Nearest | ||
Row | Group | Neighbor | Distance | Neighbor | Distance |
Specimen No. | Anodizing Nature of Coating | Crosscut Test | Quality According to Crosscut Test |
---|---|---|---|
1 | TSA Water Primer: Seevenax 313-01 | 0 | |
2 | TSA Water Primer: Seevenax 313-01 | 0 | |
3 | TSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 0 | |
4 | TSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 0 | |
5 | SSA Water Primer: Seevenax 313-01 | 0 | |
6 | SSA Water Primer: Seevenax 313-01 | 0 | |
7 | SSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 0 | |
8 | SSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 1 | |
9 | BSA Water Primer: Seevenax 313-01 | 0 | |
10 | BSA Water Primer: Seevenax 313-01 | 0 | |
11 | BSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 0 | |
12 | BSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 1 | |
13 | BSA Solvent Primer: 10P4-2NF | 0 | |
14 | BSA Solvent Primer: 10P4-2NF | 0 | |
15 | BSA Solvent Primer: 10P4-2NF + Topcoat: 446-22-1000 | 0 | |
16 | BSA Solvent Primer: 10P4-2NF + Topcoat: 446-22-1000 | 0 |
Specimen No. | Anodizing Paint Nature Primer Type Topcoat Type | Example of Breakage According to Anodizing and Coating with Respective Primer + Topcoat | Pull-off Force for the Test in the Picture | Average Strength of All Trials | |
---|---|---|---|---|---|
Painted Plate | Dolly with the Paint Layer Torn Off | (kN) | (kN) | ||
1 | TSA Water Primer: Seevenax 313-01 | 0.956 | 0.941 | ||
2 | TSA Water Primer: Seevenax 313-01 | 1.08 | |||
3 | TSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 1.246 | 1.104 | ||
4 | TSA Water Primer: Seevenax 313-01+ Topcoat: Seevenax 311-83 | 1.168 | |||
5 | SSA Water Primer: Seevenax 313-01 | 1.002 | 1.004 | ||
6 | SSA Water Primer: Seevenax 313-01 | 1.018 | |||
7 | SSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 1.084 | 1.093 | ||
8 | SSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 1.162 | |||
9 | BSA Water Primer: Seevenax 313-01 | 1.986 | 1.037 | ||
10 | BSA Water Primer: Seevenax 313-01 | 1.174 | |||
11 | BSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 1.124 | 1.250 | ||
12 | BSA Water Primer: Seevenax 313-01 + Topcoat: Seevenax 311-83 | 1.342 | |||
13 | BSA Solvent Primer: 10P4-2NF | 0.986 | 1.011 | ||
14 | BSA Solvent Primer: 10P4-2NF | 1.054 | |||
15 | BSA Solvent Primer: 10P4-2NF + Topcoat: 446-22-1000 | 1.086 | 1.313 | ||
16 | BSA Solvent Primer: 10P4-2NF + Topcoat: 446-22-1000 | 1.516 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titu, A.M.; Ravai-Nagy, S.; Pop, A.B. Research on the Influence of Coating Technologies on Adhesion Anti-Corrosion Layers in the Case of Al7175 Aluminum Alloy. Coatings 2023, 13, 1054. https://doi.org/10.3390/coatings13061054
Titu AM, Ravai-Nagy S, Pop AB. Research on the Influence of Coating Technologies on Adhesion Anti-Corrosion Layers in the Case of Al7175 Aluminum Alloy. Coatings. 2023; 13(6):1054. https://doi.org/10.3390/coatings13061054
Chicago/Turabian StyleTitu, Aurel Mihail, Sandor Ravai-Nagy, and Alina Bianca Pop. 2023. "Research on the Influence of Coating Technologies on Adhesion Anti-Corrosion Layers in the Case of Al7175 Aluminum Alloy" Coatings 13, no. 6: 1054. https://doi.org/10.3390/coatings13061054
APA StyleTitu, A. M., Ravai-Nagy, S., & Pop, A. B. (2023). Research on the Influence of Coating Technologies on Adhesion Anti-Corrosion Layers in the Case of Al7175 Aluminum Alloy. Coatings, 13(6), 1054. https://doi.org/10.3390/coatings13061054