Data-Driven Method for Porosity Measurement of Thermal Barrier Coatings Using Terahertz Time-Domain Spectroscopy
Abstract
:1. Introduction
2. Models and Methods
2.1. Preparation of Thermal Barrier Coating
2.2. FDTD Simulation
2.3. Terahertz Data Processing
2.3.1. Fourier Transform of THz Time Domain Data
2.3.2. Time Domain Data Extraction
2.3.3. Frequency Domain Data Extraction
2.3.4. Phase Spectrum Extraction
2.4. A Data-Driven Porosity Detection Model
2.4.1. Sparrow Search Algorithm
2.4.2. Extreme Learning Machine
2.4.3. Extreme Learning Machine Optimized by Sparrow Search Algorithm
2.4.4. Cross-Validation Performance Evaluation
- Randomly divide the dataset into 6 equally sized subsets;
- For each iteration of cross-validation, choose one of the subsets as the validation set and utilize the remaining 5 subsets as the training set;
- Train the SSA-ELM model using the training set and then make predictions on the validation set to obtain the results;
- Calculate the errors using various evaluation metrics, such as root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)
- Repeat steps 2 to 4;
- Upon completing the 6-fold cross-validation, calculate the overall average as the final performance metric.
3. Results and Discussion
3.1. Terahertz Data Processing Results
3.2. Porosity Measurement Results Based on the Data-Driven Model
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, P.; Yue, W.; Li, J.; Bin, G.; Li, C. Review of damage mechanism and protection of aero-engine blades based on impact properties. Eng. Fail. Anal. 2022, 140, 106570. [Google Scholar] [CrossRef]
- Wang, K.; Peng, H.; Guo, H.; Gong, S. Effect of sintering on thermal conductivity and thermal barrier effects of thermal barrier coatings. Chin. J. Aeronaut. 2012, 25, 811–816. [Google Scholar] [CrossRef] [Green Version]
- Praveen, K.; Shanmugavelayutham, G.; Rao, D.; Sivakumar, G. Thermal cycling performance assessment of double-layered lanthanum titanium aluminate thermal barrier coatings developed using plasma spheroidized powders. Surf. Coat. Technol. 2023, 465, 129588. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Zhang, T.; Guo, W.; Dai, H.; Ding, K. Reliability evaluation of thermal barrier coatings for engine combustion chambers based on Monte-Carlo simulation. Surf. Coat. Technol. 2022, 448, 128923. [Google Scholar] [CrossRef]
- Pushpak, B.; Avinava, R.; Soumyadeep, S.; Arkajit, G.; Gourab, S.; Asiful, S.; Ibrahim, A.; Manojit, G. Service life assessment of yttria stabilized zirconia (YSZ) based thermal barrier coating through wear behaviour. Heliyon 2023, 9, e16107. [Google Scholar]
- Hu, T.; Shen, S. Effects of TGO roughness on indentation response of thermal barrier coatings. CMC Comput. Mater. Con. 2010, 17, 41–57. [Google Scholar]
- Lee, D.; Lee, K.; Kim, T.; Kim, C. Hertzian stress analysis and characterization of thermal barrier coatings containing unidirectional vertical cracks. Ceram. Int. 2019, 45, 21348–21358. [Google Scholar] [CrossRef]
- Thakare, J.; Pandey, C.; Mahapatra, M.; Mulik, R. Thermal barrier coatings—A state of the art review. Met. Mater. Int. 2020, 27, 1947–1968. [Google Scholar] [CrossRef]
- Jana, J.; Ashutosh, T.; Steffen, B.; Frank, K.; Olivier, G.; Robert, V. Evaluation of major factors influencing the TBC topcoat formation in axial suspension plasma spraying (SPS). Int. J. Appl. Ceram. Technol. 2022, 20, 884–895. [Google Scholar]
- Esmaeil, P.; Amin, A.; Javad, R.; Sigaroodi, J.; Rasoul, M. Cooling channel blockage effect on TBC and substrate behavior in a gas turbine blade failure. Eng. Failure Anal. 2022, 141, 106682. [Google Scholar]
- Curry, N.; Markocsan, N.; Östergren, L.; Li, X.; Dorfman, M. Evaluation of the lifetime and thermal conductivity of dysprosia-stabilized thermal barrier coating systems. J. Therm. Spray Technol. 2013, 22, 864–872. [Google Scholar] [CrossRef]
- Nayebpashaee, N.; Seyedein, S.; Aboutalebi, M.; Sarpoolaky, H.; Hadavi, S. Finite element simulation of residual stress and failure mechanism in plasma sprayed thermal barrier coatings using actual microstructure as the representative volume. Surf. Coat. Technol. 2016, 291, 103–114. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Wu, B. Non-destructive microwave evaluation of plasma sprayed TBCs porosity. NDT E Int. 2013, 59, 34–39. [Google Scholar] [CrossRef]
- Akbar, M.; Jawad, G.; Duff, C.; Sloan, R. Porosity evaluation of in-service thermal barrier coated turbine blades using a microwave nondestructive technique. NDT E Int. 2018, 93, 64–77. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, W.; Luo, Z.; Sun, X.; Li, Z.; Lin, L. Ultrasonic characterization of thermal barrier coatings porosity through BP neural network optimizing Gaussian process regression algorithm. Ultrasonics 2020, 100, 105981. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhao, Y.; Luo, Z.; Lin, L. Ultrasonic characterization of thermally grown oxide in thermal barrier coating by reflection coefficient amplitude spectrum. Ultrasonics 2014, 54, 1005–1009. [Google Scholar] [CrossRef]
- Reisemberger, D.; Frieda, S.; Gustavo, B.; Sebastião, R.; Carlos, D.; Larissa, R.; Watena, F.; Felipe, B. Characterization of a coating for radioprotection, by X-ray diffraction, scanning electron microscopy, and dispersive energy spectroscopy. Constr. Build. Mater. 2022, 321, 126326. [Google Scholar]
- Zhu, W.; Cai, X.; Yang, L.; Xia, J.; Zhou, Y.; Pi, Z. The evolution of pores in thermal barrier coatings under volcanic ash corrosion using X-ray computed tomography. Surf. Coat. Technol. 2018, 357, 372–378. [Google Scholar] [CrossRef]
- Bu, C.; Tang, Q.; Liu, Y.; Yu, F.; Mei, C.; Zhao, Y. Quantitative detection of thermal barrier coating thickness based on simulated annealing algorithm using pulsed infrared thermography technology. Appl. Therm. Eng. 2016, 99, 751–755. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, G.; Du, Y.; Zhang, Y. Thermal barrier coating debonding defects detection based on infrared thermal wave testing technology under linear frequency modulation heat excitation. Therm. Sci. 2019, 23, 1607–1613. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Gao, S.; Liu, Y.; Lu, Y.; Xu, P. Experimental research on YSZ TBC structure debonding defect detection using long-pulsed excitation of infrared thermal wave non-destructive testing. Therm. Sci. 2019, 23, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Xu, K.; Luo, S.; Cui, Y.; Zhang, L.; Cui, J. A high Q-factor dual-band terahertz metamaterial absorber and its sensing characteristics. Nanoscale 2023, 15, 3398–3407. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Sun, L.; Cao, H.; Chen, L.; Zhou, M.; Shen, S.; Zhu, Y.; Zhuang, S. Qualitative and quantitative recognition of volatile organic compounds in their liquid phase based on terahertz microfluidic EIT meta-sensors. IEEE Sens. J. 2023, 3268167. [Google Scholar] [CrossRef]
- Unnikrishnakurup, S.; Dash, J.; Ray, S.; Pesala, B.; Balasubramaniam, K. Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed IR thermography and THz-TDS measurements: A comparative study. NDT E Int. 2020, 116, 102367. [Google Scholar] [CrossRef]
- Siv, S.; Vijayan, V.; Kini, R. Non-destructive evaluation of coatings using terahertz reflection spectroscopy. J. Opt. 2022, 24, AC54EA. [Google Scholar]
- Fukuchi, T.; Fuse, N.; Okada, M.; Fujii, T.; Mizuno, M.; Fukunaga, K. Measurement of refractive index and thickness of topcoat of thermal barrier coating by reflection measurement of terahertz waves. Electron. Commun. Jpn. 2013, 96, 37–45. [Google Scholar] [CrossRef]
- Davit, H.; Maher, H.; Olivier, R.; Anthony, B.; Alexis, M.; Laurence, B.; Olivier, D.; Emmanuel, A. Non-destructive evaluation of ceramic porosity using terahertz time-domain spectroscopy. J. Eur. Ceram. Soc. 2022, 42, 525–533. [Google Scholar]
- Watanabe, M.; Kuroda, S.; Yamawaki, H.; Shiwa, H. Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings. Surf. Coat. Technol. 2011, 205, 4620–4626. [Google Scholar] [CrossRef]
- Li, R.; Ye, D.; Xu, Z.; Yin, C.; Xu, H.; Zhou, H.; Yi, J.; Chen, Y.; Pan, J. Nondestructive evaluation of thermal barrier coatings thickness using terahertz Time-Domain spectroscopy combined with hybrid machine learning approaches. Coatings 2022, 12, 1875. [Google Scholar] [CrossRef]
- Sun, F.; Fan, M.; Cao, B.; Liu, L. THzResNet: A physics-inspired two-stream residual network for thermal barrier coating thickness measurement. IEEE Trans. Ind. Inform. 2022, 1–11. [Google Scholar] [CrossRef]
- Gong, B.; Cao, B.; Zhang, H.; Sun, F.; Fan, M. Terahertz based thickness measurement of thermal barrier coatings using hybrid machine learning. Nondestr. Test. Eval. 2023, 1–17. [Google Scholar] [CrossRef]
- Deng, Y.; Zhong, S.; Lin, J.; Zhang, Q.; Nsengiyumva, W.; Cheng, S.; Huang, Y.; Chen, Z. Thickness measurement of self-lubricating fabric liner of inner ring of sliding bearings using spectral-domain optical coherence tomography. Coatings 2023, 13, 708. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.; Zhong, S.; Zhuang, C.; Shi, T.; Zhang, Z.; Chen, Z.; Liu, X. Evaluation for crack defects of self-lubricating sliding bearings coating based on terahertz non-destructive testing. Coatings 2023, 13, 513. [Google Scholar] [CrossRef]
- Xu, Y.; Lian, G.; Zhou, H.; Hou, Y.; Zhang, L.; Yan, R.; Chen, X. Terahertz transfer characterization for composite delamination under variable conditions based on deep adversarial domain adaptation. Compos. Sci. Technol. 2023, 232, 109853. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, J.; Li, L.; Gu, J.; Zhang, D.; Qi, C.; Xue, J. The elimination of the F-P effect in terahertz signals from a parameter-optimized decomposition. Infrared Phys. Technol. 2023, 128, 104459. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Zhou, H.; Huang, J.; Wu, W.; Gong, H.; Li, Z. In-situ evaluation of porosity in thermal barrier coatings based on the broadening of terahertz time-domain pulses: Simulation and experimental investigations. Opt. Express. 2019, 27, 28150–28165. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Zhou, H.; Li, Y.; Fang, H.; Huang, J.; Gong, H.; Li, Z. Quantitative determination of porosity in thermal barrier coatings using terahertz reflectance spectrum: Case study of atmospheric-plasma-sprayed YSZ coatings. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 383–390. [Google Scholar] [CrossRef]
- Liu, L.; Yu, H.; Zheng, C.; Ye, D.; He, W.; Wang, S.; Li, J.; Wu, L.; Zhang, Y.; Xie, J.; et al. Nondestructive thickness measurement of thermal barrier coatings for turbine blades by terahertz time domain spectroscopy. Photonics 2023, 10, 105. [Google Scholar] [CrossRef]
- Wang, C.; Tian, H.; Guo, M.; Gao, J.; Cui, Y.; Liang, Y.; Tong, H.; Fang, Y.; Wen, X.; Wang, H. Microstructure and thermal shock resistance of AlBOw- and BNw-whisker-modified thermal barrier coatings. Ceram. Int. 2020, 46, 16372–16379. [Google Scholar]
- Blanchard, F.; Kadi, M.; Bousser, E.; Baloukas, B.; Azzi, M.; Klemberg-Sapieha, J.; Martinu, L. Effect of CMAS infiltration on the optical properties of thermal barrier coatings: Study of the mechanisms supported by FDTD simulations and ALD. Acta Mater. 2023, 249, 118830. [Google Scholar] [CrossRef]
- Bandla, A.; Hager, N., III; Tofighi, M.R. Ultra-broadband material spectroscopy from scattering parameters obtained from time domain measurements. J. Franklin Inst. 2016, 354, 8747–8757. [Google Scholar] [CrossRef]
- Burnett, A.; Fan, W.; Upadhya, P.; Cunningham, J.; Hargreaves, M.; Munshi, T.; Edwards, H.; Linfield, E.; Davies, A. Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis. Analyst 2009, 134, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, X.; Zhang, T. Robust phase unwrapping algorithm based on least squares. Opt. Lasers. Eng. 2014, 63, 25–29. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, Y.; Guo, B.; Luo, X.; Peng, Q.; Jin, Z. A hybrid sparrow search algorithm of the hyperparameter optimization in deep learning. Mathematics 2022, 10, 3019. [Google Scholar] [CrossRef]
- Zhang, N.; Ding, S. Unsupervised and semi-supervised extreme learning machine with wavelet kernel for high dimensional data. Memet. Comput. 2017, 9, 129–139. [Google Scholar] [CrossRef]
- Jia, Y.; Su, Y.; Zhang, R.; Zhang, Z.; Lu, Y.; Shi, D.; Xu, C.; Huang, D. Optimization of an extreme learning machine model with the sparrow search algorithm to estimate spring maize evapotranspiration with film mulching in the semiarid regions of China. Comput. Electron. Agr. 2022, 201, 107298. [Google Scholar] [CrossRef]
- Wong, T.; Yeh, P. Reliable accuracy estimates from k-fold cross validation. IEEE Trans. Knowl. Data Eng. 2019, 32, 1586–1594. [Google Scholar] [CrossRef]
Parameter | Setting |
---|---|
Refractive index | 3.6528–4.8108 |
Extinction coefficient | 0.1152–0.23676 |
Mesh accuracy | 1 |
Model | RMSE | MAE | MAPE | R2 |
---|---|---|---|---|
ELM | 9.8923 | 3.0159 | 13.8746 | 0.83 |
SSA-ELM | 1.1462 | 0.1499 | 7.0379 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, D.; Li, R.; Xu, J.; Pan, J. Data-Driven Method for Porosity Measurement of Thermal Barrier Coatings Using Terahertz Time-Domain Spectroscopy. Coatings 2023, 13, 1060. https://doi.org/10.3390/coatings13061060
Ye D, Li R, Xu J, Pan J. Data-Driven Method for Porosity Measurement of Thermal Barrier Coatings Using Terahertz Time-Domain Spectroscopy. Coatings. 2023; 13(6):1060. https://doi.org/10.3390/coatings13061060
Chicago/Turabian StyleYe, Dongdong, Rui Li, Jianfei Xu, and Jiabao Pan. 2023. "Data-Driven Method for Porosity Measurement of Thermal Barrier Coatings Using Terahertz Time-Domain Spectroscopy" Coatings 13, no. 6: 1060. https://doi.org/10.3390/coatings13061060
APA StyleYe, D., Li, R., Xu, J., & Pan, J. (2023). Data-Driven Method for Porosity Measurement of Thermal Barrier Coatings Using Terahertz Time-Domain Spectroscopy. Coatings, 13(6), 1060. https://doi.org/10.3390/coatings13061060