Effects of Different Admixtures on the Mechanical and Thermal Insulation Properties of Desulfurization Gypsum-Based Composites
Abstract
:1. General Introduction
1.1. Introduction
1.2. Literature Review
2. Experiment
2.1. Raw Materials
2.2. Experimental Design and Method
3. Results and Discussion
3.1. Effects of Silica Fume Dosage on the Performances of DGCs
3.2. Effects of Mineral Powder on the Performances of DGCs
3.3. Effects of Fly Ash on the Performances of DGCs
3.4. Effect Comparisons of Different Admixtures
3.5. Regression Analysis of Compressive Strength and Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.J.; Chen, Q.; Li, Y.; Zhuo, Y.Q.; Xu, L.Z. Research on saline-alkali soil amelioration with FGD gypsum. Resour. Conserv. Recycl. 2017, 121, 82–92. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, L.; Kong, D.; Peng, D.; Zheng, T. Research on optimizing performance of desulfurization-gypsum-based composite cementitious materials based on response surface method. Constr. Build. Mater. 2022, 341, 127874. [Google Scholar] [CrossRef]
- Yuwei, Z.; Wenmin, Q.; Pengxiang, Z.; Yu, L.; Xiaoli, L.; Bin, L.; Ping, N. Research on red mud-limestone modified desulfurization mechanism and engineering application. Sep. Purif. Technol. 2021, 272, 118867. [Google Scholar]
- Zeng, L.-L.; Bian, X.; Zhao, L.; Wang, Y.-J.; Hong, Z.-S. Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China. Geomech. Energy Environ. 2021, 25, 100195. [Google Scholar] [CrossRef]
- Zhou, J.; Ding, B.; Tang, C.; Xie, J.-B.; Wang, B.; Zhang, H.; Ni, H. Utilization of semi-dry sintering flue gas desulfurized ash for SO2 generation during sulfuric acid production using boiling furnace. Chem. Eng. J. 2017, 327, 914–923. [Google Scholar] [CrossRef]
- Liu, S.; Liu, W.; Jiao, F.; Qin, W.; Yang, C. Production and resource utilization of flue gas desulfurized gypsum in China—A review. Environ. Pollut. 2021, 288, 117799. [Google Scholar] [CrossRef]
- Wu, H.; Jia, Y.; Yuan, Z.; Li, Z.; Sun, T.; Zhang, J. Study on the Mechanical Properties, Wear Resistance and Microstructure of Hybrid Fiber-Reinforced Mortar Containing High Volume of Industrial Solid Waste Mineral Admixture. Materials 2022, 15, 3964. [Google Scholar] [CrossRef]
- Xie, L.; Zhou, Y.; Xiao, S.; Miao, X.; Murzataev, A.; Kong, D.; Wang, L. Research on basalt fiber reinforced phosphogypsum-based composites based on single factor test and RSM test. Constr. Build. Mater. 2022, 316, 126084. [Google Scholar] [CrossRef]
- Ai, Y.-P.; Xie, S.-K. Hydration Mechanism of Gypsum-Slag Gel Materials. J. Mater. Civ. Eng. 2020, 32, 04019326. [Google Scholar]
- Yang, L.; Jing, M.; Lu, L.; Zhu, X.; Zhao, P.; Chen, M.; Li, L.; Liu, J. Effects of modified materials prepared from wastes on the performance of flue gas desulfurization gypsum-based composite wall materials. Constr. Build. Mater. 2020, 257, 119519. [Google Scholar] [CrossRef]
- Gu, K.; Chen, B. Research on the incorporation of untreated flue gas desulfurization gypsum into magnesium oxysulfate cement. J. Clean. Prod. 2020, 271, 122497. [Google Scholar] [CrossRef]
- Wan, Y.; Hui, X.; He, X.; Li, J.; Xue, J.; Feng, D.; Liu, X.; Wang, S. Performance of green binder developed from flue gas desulfurization gypsum incorporating Portland cement and large-volume fly ash. Constr. Build. Mater. 2022, 348, 128679. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, K.; He, X.; Wei, Z.; Zhang, J. Study on proportioning experiment and performance of solid waste for underground backfilling. Mater. Today Commun. 2022, 32, 103863. [Google Scholar] [CrossRef]
- He, T.S.; Kang, Z.Q.; Chen, C. Influence of sodium methyl silicate on waterproof property of desulfurized gypsum block. J. Build. Mater. 2021, 24, 247–253+259. (In Chinese) [Google Scholar]
- Duan, D.; Liao, H.; Wei, F.; Wang, J.; Wu, J.; Cheng, F. Solid waste-based dry-mix mortar using fly ash, carbide slag, and flue gas desulfurization gypsum. J. Mater. Res. Technol. 2022, 21, 3636–3649. [Google Scholar] [CrossRef]
- Fu, Q.; Lian, F.; Lu, L.; Hu, S.; Zhao, Y.; Qin, J.; Wang, J. Recycling of ternary industrial by-products as cement replacement material and its influence on the durability of restored pavement potholes. Road Mater. Pavement Des. 2023, 24, 367–387. [Google Scholar] [CrossRef]
- Li, J.; Cao, J.; Ren, Q.; Ding, Y.; Zhu, H.; Xiong, C.; Chen, R. Effect of nano-silica and silicone oil paraffin emulsion composite waterproofing agent on the water resistance of flue gas desulfurization gypsum. Constr. Build. Mater. 2021, 287, 123055. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.X. Experimental Study on Composite Phase Change Thermal Insulation Mortar. Key Eng. Mater. 2020, 6037, 60–169. [Google Scholar] [CrossRef]
- Lin, L.L.; Zhong, L.G. The Preparation of Modified Fiber Reinforced Desulfurization Gypsum Insulation Board. Appl. Mech. Mater. 2014, 711, 177–180. [Google Scholar]
- Lei, D.Y.; Guo, L.P.; Sun, W. Preparation and performance of undisturbed FGD gypsum-based polystyrene lightweight thermal insulation material. J. Southeast Univ. 2017, 47, 384–391. (In Chinese) [Google Scholar] [CrossRef]
- Shi, G.; Liu, T.; Li, G.; Wang, Z. A novel thermal insulation composite fabricated with industrial solid wastes and expanded polystyrene beads by compression method. J. Clean. Prod. 2021, 279, 123420. [Google Scholar] [CrossRef]
- Bakshi, P.; Pappu, A.; Gupta, M.K.; Srivastava, A.K. Thermal Power Plant Flue Gas Desulfurization (FGD) Gypsum Waste Particulates Reinforced Injection Molded Flexible Composites. J. Sci. Ind. Res. 2021, 80, 612–616. [Google Scholar]
- Liu, J.; Xie, H.; Wang, C.; Han, Y. Preparation of multifunctional gypsum composite with compound foaming process. Powder Technol. 2023, 418, 118289. [Google Scholar] [CrossRef]
- Dolezelova, M.; Scheinherrova, L.; Krejsova, J.; Keppert, M.; Cerny, R.; Vimmrova, A. Investigation of gypsum composites with different lightweight fillers. Constr. Build. Mater. 2021, 297, 123791. [Google Scholar] [CrossRef]
- Lou, Y.; Khan, K.; Amin, M.N.; Ahmad, W.; Deifalla, A.F.; Ahmad, A. Performance characteristics of cementitious composites modified with silica fume: A systematic review. Case Stud. Constr. Mater. 2023, 18, e01753. [Google Scholar] [CrossRef]
- Senff, L.; Hotza, D.; Lucas, S.; Ferreira, V.M.; Labrincha, J.A. Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Mater. Sci. Eng. A 2011, 532, 354–361. [Google Scholar] [CrossRef]
- Long, G.C.; Wang, X.Y.; Xiao, R.M. Research of filling role of mineral blends in C3S cementitious system. J. Build. Mater. 2002, 5, 215–219. (In Chinese) [Google Scholar] [CrossRef]
- Yazıcı, H.; Yiğiter, H.; Karabulut, A.Ş.; Baradan, B. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete. Fuel 2008, 87, 2401–2407. [Google Scholar] [CrossRef]
- Yalcinkaya, C.; Copuroglu, O. Hydration heat, strength and microstructure characteristics of UHPC containing blast furnace slag. J. Build. Eng. 2021, 34, 101915. [Google Scholar] [CrossRef]
- Li, W.; Yi, Y.; Puppala, A.J. Effects of curing environment and period on performance of lime-GGBS-treated gypseous soil. Transp. Geotech. 2022, 37, 100848. [Google Scholar] [CrossRef]
- MYin, G.; Wang, H.; Shi, F.T. Mechanical strength and pore structure analysis of modified phosphogypsum. Mater. Rep. 2018, 32, 526–529. (In Chinese) [Google Scholar]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Xi, Y.G.; Peng, T.J. Preparation and characterization of expanded vermiculite/gypsum thermal insulation composites. Acta Mater. Compos. Sin. 2011, 28, 156–161. (In Chinese) [Google Scholar] [CrossRef]
- Duan, S.; Wu, H.; Zhang, K.; Liao, H.; Ma, Z.; Cheng, F. Effect of curing temperature on the reaction kinetics of cementitious steel slag-fly ash-desulfurized gypsum composites system. J. Build. Eng. 2022, 62, 105368. [Google Scholar] [CrossRef]
- Dutta, R.K.; Khatri, V.N.; Panwar, V. Strength characteristics of fly ash stabilized with lime and modified with phosphogypsum. J. Build. Eng. 2017, 14, 32–40. [Google Scholar] [CrossRef]
- Chen, M.; Liu, P.; Kong, D.; Wang, Y.; Wang, J.; Huang, Y.; Yu, K.; Wu, N. Influencing factors of mechanical and thermal conductivity of foamed phosphogypsum-based composite cementitious materials. Constr. Build. Mater. 2022, 346, 128462. [Google Scholar] [CrossRef]
- Yao, W.; Wu, M.X.; Wei, Y.Q. Determination of reaction degree of silica fume and fly ash in a cement—Silica fume—Fly ash ternary cementitious system. Chin. J. Mater. Res. 2014, 28, 197–203. (In Chinese) [Google Scholar]
- Huo, J.-H.; Peng, Z.-G.; Feng, Q.; Zheng, Y.; Liu, X. Controlling the heat evaluation of cement slurry system used in natural gas hydrate layer by micro-encapsulated phase change materials. Sol. Energy 2018, 169, 84–93. [Google Scholar] [CrossRef]
- Wang, T.; Gao, X.-J.; Wang, J. Preparation of Foamed Phosphogypsum Lightweight Materials by Incorporating Cementitious Additives. Mater. Sci.-Medzg. 2019, 25, 340–347. [Google Scholar] [CrossRef] [Green Version]
- CQuan, Q.; Jiao, C.J.; Yang, Y.Y.; Li, X.B.; Zhang, L. Orthogonal experimental study on mechanical properties of hybrid fiber reinforced concrete. J. Build. Mater. 2019, 22, 363–370. (In Chinese) [Google Scholar] [CrossRef]
- Subasi, A.; Sahin, B.; Kaymaz, I. Multi-objective optimization of a honeycomb heat sink using Response Surface Method. Int. J. Heat Mass Transf. 2016, 101, 295–302. [Google Scholar] [CrossRef]
Raw Materials | SO3 | CaO | SiO2 | Al2O3 | Fe2O3 | K2O | P2O5 | F | MgO |
---|---|---|---|---|---|---|---|---|---|
Undisturbed desulfurization gypsum | 53.416 | 40.21 | 3.31 | 1.324 | 0.538 | 0.241 | 0.03 | 0.862 | - |
Semi-hydrated desulfurization gypsum | 54.851 | 38.506 | 2.859 | 1.108 | 0.470 | 0.232 | 0.027 | 0.744 | - |
Cement | 3.962 | 61.713 | 19.897 | 5.155 | 4.456 | 1.196 | 0.169 | - | 1.725 |
Silica fume | 0.455 | 0.484 | 97.598 | 0.809 | 0.070 | 0.221 | 0.041 | - | 0.207 |
Quick lime | 0.292 | 96.775 | 0.520 | 0.154 | 0.115 | 0.011 | 0.003 | - | 2.051 |
Mineral powder | 2.609 | 35.179 | 34.985 | 15.703 | 0.842 | 7.582 | 0.025 | - | - |
Fly ash | 5.220 | 98.290 | 49.100 | 36.870 | 3.130 | 0.980 | 0.400 | - | 0.680 |
Undisturbed/Semi-Hydrated Desulfurization Gypsum | Silica Fume (%) | Mineral Powder (%) | Fly Ash (%) | Cement (%) | Quicklime (%) | Water Reducer (%) | Retarder (%) |
---|---|---|---|---|---|---|---|
70:30 | 15, 20, 25, 30, 35 | 0 | 0 | 10 | 3 | 1 | 0.2 |
70:30 | 0 | 10, 15, 20, 25, 30 | 0 | 10 | 3 | 1 | 0.2 |
70:30 | 0 | 0 | 8, 13, 18, 23, 28 | 10 | 3 | 1 | 0.2 |
Dosage of Silica Fume (%) | 15 | 20 | 25 | 30 | 35 |
---|---|---|---|---|---|
Porosity (%) | 13.42 | 12.67 | 12.51 | 12.26 | 11.78 |
Dosage of mineral powder (%) | 10 | 15 | 20 | 25 | 30 |
Porosity (%) | 18.96 | 18.31 | 17.23 | 16.39 | 14.59 |
Dosage of fly ash (%) | 8 | 13 | 18 | 23 | 28 |
Porosity (%) | 20.77 | 19.31 | 19.54 | 18.61 | 17.36 |
Coefficient | y1 | y2 | y3 |
---|---|---|---|
k1 | −0.005 | −0.005 | −0.058 |
k2 | 0.414 | 0.390 | 0.841 |
Model | R | R2 | Adjusted R2 | Errors in Standard Estimation |
---|---|---|---|---|
1 | 0.964 | 0.928 | 0.905 | 0.0116912 |
2 | 0.966 | 0.934 | 0.912 | 0.0066251 |
3 | 0.931 | 0.867 | 0.822 | 0.0222666 |
Model | - | Quadratic Sum | Degree of Freedom | Mean Square | F Value | Significance |
---|---|---|---|---|---|---|
1 | Regression | 0.005 | 1 | 0.005 | 38.934 | 0.008 |
Residual error | 0 | 3 | 0 | - | - | |
Grand total | 0.006 | 4 | - | - | - | |
2 | Regression | 0.002 | 1 | 0.002 | 42.436 | 0.007 |
Residual error | 0 | 3 | 0 | - | - | |
Grand total | 0.002 | 4 | - | - | - | |
3 | Regression | 0.01 | 1 | 0.01 | 19.518 | 0.022 |
Residual error | 0.001 | 3 | 0 | - | - | |
Grand total | 0.011 | 4 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, G.; Kong, D.; Huang, Y.; Qiu, W.; Cheng, L.; Wang, L. Effects of Different Admixtures on the Mechanical and Thermal Insulation Properties of Desulfurization Gypsum-Based Composites. Coatings 2023, 13, 1089. https://doi.org/10.3390/coatings13061089
Cui G, Kong D, Huang Y, Qiu W, Cheng L, Wang L. Effects of Different Admixtures on the Mechanical and Thermal Insulation Properties of Desulfurization Gypsum-Based Composites. Coatings. 2023; 13(6):1089. https://doi.org/10.3390/coatings13061089
Chicago/Turabian StyleCui, Gengyin, Dewen Kong, Yingying Huang, Wei Qiu, Lili Cheng, and Lingling Wang. 2023. "Effects of Different Admixtures on the Mechanical and Thermal Insulation Properties of Desulfurization Gypsum-Based Composites" Coatings 13, no. 6: 1089. https://doi.org/10.3390/coatings13061089
APA StyleCui, G., Kong, D., Huang, Y., Qiu, W., Cheng, L., & Wang, L. (2023). Effects of Different Admixtures on the Mechanical and Thermal Insulation Properties of Desulfurization Gypsum-Based Composites. Coatings, 13(6), 1089. https://doi.org/10.3390/coatings13061089