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Abstract: The anti-corrosion features of 1-dodecyl-3-phenylquinoxalin-2(1H)-one (QO12) for carbon
steel CS were evaluated in a 1 M HCl solution using potentiodynamic polarization (PDP), electro-
chemical impedance (EIS) and UV-visible spectroscopy, and scanning electron microscopy (SEM), as
well as quantum-chemical methods. The inhibition performance achieves a maximum of 95.33% at
0.001 M. The PDP study revealed that QO12 acts with the character of a mixed-type inhibitor. The
EISs mention that the process of corrosion for CS is essentially predominated by the transfer-of-charge
mechanism. Moreover, quinoxalinone adsorption follows the Langmuir adsorption isotherm. SEM
snapshots show no deterioration after the contribution of QO12 compared to the reference electrolyte.
Theoretical calculations suggest that the envisaged inhibitor presents a perfect arrangement capacity
through the structure of quinoxalinone.

Keywords: quinoxalinone; corrosion inhibition; CS; PDP/EIS; quantum-chemical

1. Introduction

Due to its high resistance, high durability, and fairly low cost, CS remains one of the
most frequently used materials in the manufacturing industries [1–4]. It is well known that
the pickling process is used in the field of metal surface treatment, which involves the need
to use an acid solution to reduce scale and impurities on the steel surface. Indeed, during
the dissolution of the surface layer of the steel, the acidic solution can lead to the production
of iron salts which can be easily oxidized, leading to corrosion [5–7]. Hydrochloric acid
(HCl) belongs to the class of highly aggressive acids and can cause extensive damage to
metallic equipment. This acid causes a corrosion reaction when in contact with metals
such as copper, zinc, aluminum, and CS [8]. The employment of corrosion inhibitors is
a widespread and effective procedure for limiting acid penetration and preventing the
corrosion of metals, especially CS, during pickling operations. They form a protective
layer on the surface of the metal to inhibit the corrosive reaction between the metal and
the acid, resulting in reduced corrosion [9–12]. They are extensively used throughout the
processing industry thanks to their good solubility, low cost and low toxicity. Several types
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of inhibitors can be envisaged, in particular organic compounds. In general, the inhibitor
chosen should be relative to the acid solution of study and the type of metal tested [13].
The degree of anticorrosive efficiency of organic molecules containing heteroatoms (O, N, P,
and S), π-electrons, multiple bonds, and aromatic rings is high, and they are very likely to
adsorb effectively on the substrate surface [14–18].

Quinoxaline derivatives have many applications in the biological, pharmaceutical,
industrial, and other fields [19,20]. In addition to these activities, these compounds also
possess anticorrosion characteristics; recently, our team has published several research
studies to find new inhibitors, derivative of quinoxaline, to improve the inhibitory efficiency
of mild steel in acidic media [19–21].

The inhibitor used in this work, 1-dodecyl-3-phenylquinoxalin-2(1H)-one (QO12), was
synthesized to investigate the relevance of the C12 carbon chain on inhibitory potency
using experimental and theoretical approaches.

This investigation is a study of QO12’s behavior as well as an evaluation of its
corrosion-inhibition efficiency for CS in 1 M HCl solution. The corrosion mitigation of
QO12 was evaluated via electrochemical techniques and surface characterization using
scanning electron microscopy with energy-dispersive as well as UV-visible X-ray spec-
troscopy (SEM/EDX). The new inhibitor is used to comprehend the inhibition mechanism
and to provide clarity for its successful application as a chemical corrosion inhibitor for
carbon steel in HCl.

Further, to further the aim of better knowing the mode of its inhibitory action on metal-
lic surfaces, global quantum descriptor calculations using DFT and molecular dynamics
(MD) simulation were employed to provide more comprehensive understanding of the
experimental results [10,19–21].

2. Experimental
2.1. Synthesized Inhibitor

Quantities of 3-Phenylquinoxalin-2-one (4.5 mmol), potassium carbonate (5.85 mmol)
and tetrakis (n-butyl) ammonium bromide (0.5 mmol) in DMF (20 mL) were added to1-
bromododecane (9 mmol). Stirring was maintained at room temperature for 24 h. The
crude residue was filtered and the solvent removed. The residue was extracted with water.
The organic compounds were purified by column chromatography using hexane-ethyl
acetate (v/v, 95/5) (Figure 1).
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Yield: 72%, mp (◦C) = 120–122,
1H RMN (300 MHz, CDCl3) δppm: 0.87 (t, 3H, CH3, J = 6 Hz); 1.27–1.45 (m, 18H, CH2);

1.69–1.78 (quin, 2H, N-CH2-CH2); 4.20 (t, 2H, NCH2, J = 6 Hz); 7.32–8.30 (m, 9H, CH arom).



Coatings 2023, 13, 1109 3 of 21

13C RMN (75 MHz, CDCl3) δ ppm: 13.10 (CH3); 21.26, 21.70, 22.36, 22.40, 27.15, 27.18,
28.12, 28.19, 29.22, 29.70 (CH2); 43.61 (N-CH2); 113.51, 122.10, 128.06, 129.66, 130.24, 130.30,
131.40, (CH arom); 132.58, 132.18, 136.18, 152.51 (Cq); 153.01 (C = O).

Table 1 contains information on the anticorrosive properties of some important quinox-
aline derivatives in 1 M hydrochloric acid for carbon steel.

Table 1. Anticorrosive properties of some important quinoxaline derivatives in 1 M hydrochloric acid
for CS.

Quinoxaline Derivatives Anticorrosive Properties (%) References
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2.2. CS and HCl Prepared

The aggressive 1 M HCl electrolytes were synthesized by diluting analytical grade
37 percent HCl with distillate water. The corrosion assays were carried out in 1 mol/L HCl
electrolyte in the absence and presence of quinoxalinone at concentrations ranging from
10−3 to 10−6 M.

The CS compositions with Mass % are collected in Table 2.
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Table 2. Percentage in mass of the CS compositions.

Alloys C Si S Cu Mn Cr Co Ti Ni Fe

Percentage in mass 0.370 0.230 0.016 0.160 0.680 0.077 0.009 0.011 0.059 Rest

The surface of CS (1 cm2) was subjected to polishing with SiC abrasive papers of
various sizes, between 100 and 2000. This operation helped to remove irregularities and
roughness from the surface, which might affect the accuracy of electrochemical measure-
ments. Once polished, the surface is then degreased to remove any oils and fats that may
be present. This usually requires the use of a solvent such as acetone, which can dissolve
and remove organic contaminants. Lastly, the surface should be rinsed with distilled water
in order to eliminate all traces of contaminants.

2.3. Experimental

All electrochemical experiments were performed operating a PGZ 301 potentiostat
(Radiometer Analytical—Hach Company, Loveland, CO, USA) piloted by a computer using
the Voltamaster 4 program and a thermostatically regulated double-walled cylindrical glass
cell with three electrodes. The latter contains CS as the working electrode, a platinum
record as the counter-electrode, and saturated calomel as the reference electrode (SCE). All
experiments were carried out at 303 K. Prior to starting electrochemical tests, the CS was
dipped in the electrolytes for 30 min to achieve the permanent open circuit voltage (EOCP).
At the EOCP, EIS measurements were measured at the EOCP by applying a frequency from
105 to 10−2 Hz with amplitude of 10 mV. Moreover, PDPs were operated from −0.8 to
−0.1 V with 5 × 10−1 mV/s as the scanning rate.

The ηPDP (%) and ηEIS (%) were determined according to Equations (1) and (2) [25,26].

ηEIS(%) =

(
RP − R0

P
RP

)
× 100 (1)

where R0
P and RP stand for the polarization resistances of an unfettered electrolyte with

and without QO12, respectively.

ηPDP(%) =

(
i
◦
corr − icorr

i◦corr

)
× 100 (2)

where i0corr and icorr stand for the corrosion current densities of an unfettered electrolyte
with and without QO12, respectively.

Due to the unavailability of an inhibitor, the findings previously documented by
our group for the PDP and EIS techniques were exploited with respect to the effect of
temperature and concentration, since we worked under the same conditions [27,28].

All measurements were repeated three times for each experimental condition to ensure
the reliability and reproducibility of the results, and the average values were noted.

2.4. SEM/EDX and UV-Visible Analysis

The CS metal supports were stored in the studied electrolyte without and with 10−3 M
of the QO12 for 24 h at 303 K. After cleaning and drying, the CS surface was tested with
a QUARTRO S-FEG (Thermo Fisher, Waltham, MA, USA) as a scientific instrument for
scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX)

The UV-visible spectra of 10−3 M of the QO12 were recorded before and after 24 h
immersion of the CS in the HCl solution using a Jenway UV-visible spectrophotometer
(Thermo Fisher, Waltham, MA, USA).

2.5. DFT and MD Simulation Procedure

The optimization of the QO12 occurs using a DFT-B3LYP [29] with the 6-311++G(d,p)
basis set in aqueous solution using the PCM solvation model. The calculation of frequencies
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was made to ensure that the structure has a minimum of potential energy surfaces without
imaginary (negative) frequencies. All calculations were performed via the Gauusian-09
program package [30,31]. The energies EHO and ELU of the QO12 optimized structure were
used to calculate the energy gap ∆Egap = ELUMO − EHOMO. The most important global
quantum descriptors (GQD) were estimated using the vertical ionization potential (Iv) and
vertical electron affinity (Av) [29].

Molecular dynamics “MD” simulations were used to investigate the interaction of
QO12 with Fe (110) systems. Similarly to our previous work [32,33], the Forcite module in
Materials Studio/8 was used to model the interactions of the QO12/Fe(110)system using
a simulation box (27.30 ∗ 27.30 ∗ 37.13 Å3). The constructed simulation box was emptied
by 33 Å3. This vacuum was filled by 500 H2O, 5 H3O+, 5 Cl−, and QO12. The Andersen
thermostat regulated the temperature of the modelled system to 303 K in the NVT ensemble
with a simulation time of 1000 ps and 1.0 fs, all within the COMPASS force field [34].

3. Results and Discussion
3.1. Potentiodynamic Polarization

Figure 2 clearly highlights that the anodic and cathodic curves shift to lower icorr,
indicating that the addition of QO12 molecules clearly inhibits the corrosion process as a
consequence of its adsorption and that this effect grows stronger with increasing inhibitor
concentration. Furthermore, we can see that the decrease in the anodic arms is much slower
than the downtrend of the cathodic arms. Therefore, it can be shown that the protective
effect of QO12 for the cathodic reaction is significantly greater than that for the anodic
reaction. The parallel cathodic and anodic arms suggest that the quinolin-8-ols did not alter
the corrosion mechanism of the medium under study and that the process fundamentally
proceeded through a charge-transfer mechanism.
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Figure 2. Curves of the PDP of CS surface in 1 M HCl with and without QO12 at various concentra-
tions at 303 K.

Table 3 recapitulates the extrapolated values of PDP parameters, such as Ecorr, icorr,
and anodic (βa) and cathodic (βc) Tafel slopes.

The findings in Table 3 show that the icorr value decreases with increasing QO12
concentrations; the icorr value is sufficiently high for the blank solution (1104.3 µA/cm2)
and is lowered (51.55 µA/cm2) at 10−3 M QO12 as given in Table 3. In addition, the Ecorr of
the uninhibited electrolyte was −456.3 (mV/SCE), and the variation in corrosion potential



Coatings 2023, 13, 1109 6 of 21

is between 20 and 85.00 mV/ECS. This confirms the dual as well as mixed-action character
of the inhibitor [35].

Table 3. Polarization parameters for CS in 1 M HCl only, containing different concentrations of QO12
at 303 K.

Inhibitor C.
(M)

−Ecorr
(mV/SCE)

icorr
(µA/cm2)

−βc
(mV/dec)

βa
(mV/dec)

IE
(%)

HCl 1 456.3 ± 6 1104.00 ± 4.9 112.8 ± 6 155.4 ± 5 -

QO12

10−3 435.7 ± 5 51.55 ± 4.4 153.8 ± 7 51.8 ± 5 95.33
10−4 452.3 ± 5 72.89 ± 5.1 145.6 ± 6 54.8 ± 6 93.39
105 465.1 ± 4 188.51 ± 4.5 73.4 ± 4 59.6 ± 5 82.92

10−6 463.9 ± 7 483.92 ± 6.2 92.6 ± 4 107.2 ± 7 56.17

The βa values suggest that QO12 adsorbs onto the metal support and blocks the anodic
sites on the CS surface without changing the mechanism of the anodic oxidation [36]. In
addition, the βc values change with QO12, suggesting that the presence of the examined
molecule provokes a modification of the hydrogen reduction. These results are attributable
to the barrier effect on the CS surface [37]. Bockris and Srinivasan report that this process
may be due to the decrease in the cathodic transfer factor and may also be ascribed to the
thickening of the electrical double layer due to the adsorption of inhibitor molecules [38].

3.2. EIS Investigation

EIS measurements were investigated understand the mechanism involved in corrosion
processes, and to characterize films formed on CS substrates. The EIS technique allowed us
to assess the corrosion inhibition by the investigated inhibitor under various concentrations.
Figure 3 shows the Nyquist diagrams of CS in 1 M HCl solution with and without the QO12.
The analysis of curves indicates one capacitive semi-loop in the zone of high frequencies
(HF). This indicates that the process of corrosion for CS is predominated by the charge-
transfer process [39,40]. After addition the studied inhibitor to the corrosive medium, the
dissolution of the metal does not allow for modification of this mechanism since the all
forms of loops are the same [41,42]. Additionally, it can be observed that the size of the
capacitive semicircle increased with the addition of QO12 and they are bigger than that in
the blank solution (1 M HCl only), which confirms the anticorrosive power of QO12 on CS
in 1 M HCl. In addition, the heterogeneity of the CS area leads to semi-circles that are not
perfect [43].
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Figure 3. EIS (a), Phase, and Bode (b) diagrams of CS in the presence of QO12 and without at 303 K.

From the Bode curves, it can be noticed that the magnitude values of impedance
increase progressively as the inhibitor concentration increases in the low-frequency zone.
The impedance result is higher than that obtained with 1 M HCl, indicating the development
of a protective layer on the surface of the CS. At high frequency, the values of log|Z|
tend to 0; this is attributed to the electrolyte resistance [12,39]. However, a single phase
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angle is observed in the plot, meaning one time constant; this indicates that the corrosion
process is mainly controlled by the charge-transfer resistance, which is less than 90◦ for all
frequencies, confirming the non-ideal comportment of the system [41].

The different processes of the CS/electrolyte is illustrated by the equivalent electrical
circuit (EEC) (Figure 4); using this model, we were able to fit the results to derive the EIS
parameters required to comprehend the QO12 under study [44].
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Figure 4. EEC for the CS/electrolyte interface during QO12 adsorption.

The equivalent circuit depicted in Figure 4 was chosen because it gave the chi squared
values χ2 ≈ 0.001 (Table 4).

Table 4. Impedance parameters of CS in 1 M HCl in the presence and in absence of QO12 at 303 K.

Inh. C (M) Rs
(Ω cm2)

Rp

(Ω cm2)
Cdl

(µF cm−2)
Q

(µF sn−1 cm−2) ndl
ηEIS
(%) χ2 × 10−3

HCl 1 0.83 ± 1.01 21.57 ± 0.56 120.4 293.90 ± 2.35 0.845 ± 0.003 - 2.0

QO12

10−3 1.26 ± 1.00 380.60 ± 0.52 43.9 83.31 ± 2.12 0.836 ± 0.002 94.3 1.1

10−4 0.95 ± 1.19 281.90 ± 0.50 57.9 127.06 ± 2.32 0.809 ± 0.001 92.3 1.3

10−5 1.14 ± 1.09 128.20 ± 0.53 87.1 206.06 ± 2.28 0.808 ± 0.003 83.1 0.3

10−6 1.94 ± 1.29 60.42 ± 0.58 89.3 263.34 ± 2.37 0.793 ± 0.004 64.2 0.3

The Cdl value was calculated using Equation (3) below [5]:

Cdl =
n
√

Q · Rp
1−n (3)

where Q stands for the CPE modulus; n (ndl) is the deviation index (−1 ≤ n ≤ 1), which is
related to the heterogeneity of the electrode surface.

The electrochemical parameters (Rs, Rp, Cdl, Q, and ndl) are listed in Table 4.
Based on Table 4, it can be seen that the Rp values rise with rising QO12 concentration.

The highest Rp value (380.6 Ω cm2) has been obtained at 10−3 M, indicating the adsorption
of QO12 and the development of a protective layer at the CS/solution interface [45].

Whilst the Cdl value decreases with the addition of QO12, it changes from 120.4 µF
cm−2 for 1 M HCl medium only to 43.91 µF cm−2 for 10−3 M of QO12. This diminution of
Cdl values with the addition of the molecule can be explained by the rises of the dielectric
constant and/or an increasing of the thickness of the electrical double layer. This suggests
that the inhibitor examined is capable of adsorbing onto the surface of the CS [46]. Further,
the CPE constant values decrease, indicating that the organic compound interacted with
the CS surface by occupying the exposed active centers of the metallic substrates [47].
Additionally, it can be noticed from the obtained results that the value of ndl with QO12
in the solution was higher than that of the blank; this is interpreted as a reduction in
the roughness of the surface [39]. The values of inhibition power show that the highest
inhibitory performance is observed at the optimum concentration (10−3 M) and reach a
maximum 94.30%, indicating that the investigated inhibitor is very powerful in corrosion
inhibition for metallic substrates in the medium studied.
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3.3. Temperature Impact and Thermodynamic Indices

According to the literature, corrosion rates generally decrease as temperature increases.
With the aim of better apprehending the functioning of the studied inhibitor and its
effectiveness at high temperature, the polarization curves were investigated at diverse
temperatures (303 to 333 K) in a 1 M HCl solution, uninhibited and inhibited with 10−3 M
of QO12 inhibitor. Figure 5 displays the polarization curves uninhibited and inhibited
with 10−3 M of QO12 at temperatures studied in the 1 M HCl medium. The PDP analysis
indicates the increases in icorr with increasing temperature (Table 5). These results are due
to the desorption of the QO12 from the surface of the CS [20]. The PDP parameters as
well as the values of the inhibitory efficiency of temperatures studied in 1 M HCl medium,
uninhibited and inhibited with at 10−3 M of QO12, are listed in Table 5.
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Figure 5. PDP curves of CS in the temperature range in 1 M HCl without (a) and with (b) the 10−3 M
of QO12.

Table 5. PDP parameters for metallic substrate in the medium, uninhibited and inhibited with 10−3 M
of QO12 at 303, 313, 323, and 333 K.

Inhibitor Temp.
(K)

−Ecorr
(mV vs. SCE)

icorr
(µA/cm2) EPDP (%)

Blank

303 456.3 ± 6 1104.1 ± 4.9 -

313 423.5 ± 9 1477.4 ± 7.8 -

323 436.3 ± 7 2254.0 ± 10.2 -

333 433.3 ± 5 3944.9 ± 12.2 -

QO12

303 435.7 ± 5.0 51.5 ± 4.4 95.3

313 455.7 ± 5.4 107.4 ± 5.6 92.7

323 454.0 ± 5.3 198.8 ± 5.9 91.1

333 447.7 ± 5.6 382.8 ± 5.1 90.2

As evidenced by the results in Table 5, the increases in temperature induce increases
in icorr values. Further, the inhibitory efficiencies values for 10−3 M of QO12 are highly
decreased with increasing temperature from 95.3% (303 K) to 90.2% (333 K). This results
can be explained by desorption of the QO12 inhibitor at the CS surface. In addition, for
all temperature range (from 303 to 333 K) the inhibitory efficiency is higher than 90.2%
indicating the effectiveness of QO12 in high temperature [46,48].

The temperature effect provides the ability to calculate the thermodynamic parameters,
such as activation energy (E*a), activation enthalpy variation (∆H∗a ), and activation entropy
variation (∆S∗a ), according to the following [49]:

icorr Aexp
(
−E∗a
RT

)
(4)
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icorr =
RT
Nh

exp
(

∆S∗a
R

)
exp
(
−∆H∗a

RT

)
(5)

Apprehending the processes that drive the corrosion action, the ∆H∗a and ∆S∗a control
the temperature and the disorder difference of this effect, respectively. Figures 6 and 7
illustrate the use of these equations and Table 6 groups all the results.
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Table 6. Activation parameter of the QO12.

Elements E*a (kJ/mol) ∆H*a (kJ/mol) ∆S*a (J/mol K)

Blank 35.41 32.77 −81.11

QO12 55.63 52.99 −37.30

As data displayed in Table 6, the E*a value of the inhibited solution (55.63 kJ/mol) is
superior than that of the blank (35.42 kJ/mol); this can be accounted for by the increase
in the energy barrier with the presence of the organic compound and the electrostatic
adsorption action of the inhibitor on the metallic substrate [50]. Therefore, the corrosion
rate is reduced. ∆H*a positive value conveys the endothermic reaction type of the corrosion
process, while the increasing value of ∆H*a upon the addition of QO12 indicates a reduc-
tion in the degradation of CS. Additionally, the ∆S*a value for quinoxalinone is clearly
higher than those found in the reference medium, implying a decrease in the disorder
during the transformation of the activated reaction into an iron-compound complex in the
electrolyte [51].
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3.4. Isotherm of Adsorption

The isotherm of adsorption can supply additional information, helping to understand
the mode of adsorption of the organic compound on the CS; for this reason, many trials
used common isotherm models, such as the Langmuir, Temkin, Frumkin, and Freundlich, to
establish which one fit the experimental data best [21]. The recovery rate θ was investigated
from the derived EIS measurements. According to the adsorption isotherms, θ was related
to the inhibitor concentration by the following Equations [52,53]:

Temkin isotherm:exp( f · θ) = Kads · C (6)

Langmuir isotherm:
θ

1− θ
= Kads · C (7)

Frumkin isotherm:
θ

1− θ
exp(−2 f θ) = Kads · C (8)

Freundlich isotherm:θ = Kads · C (9)

where Kads, C, and f are the adsorption-desorption constant, concentration, and index of
energetic inhomogeneity, respectively.

Figure 8 shows the various graphs of the Langmuir, Frumkin, Temkin, and Freundlich
isotherm data. As observed in this figure, the fit of the data points for the Temkin, Frumkin,
and Freundlich isotherms do not align; this is confirmed by the R2 values. On the other
hand, the function is linear and the correlation coefficient (R2) is equal 1 for the Langmuir
isotherm (Figure 8a); this shows that the adsorption of QO12 onto CS follows this isotherm.
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Figure 8. Isotherm curves for CS in 1 M HCl containing QO12 (Langmuir (a), Frumkin (b),
Freundlich (c), and Temkin (d)).

The relationship between the adsorption standard free energy ∆G◦ads and Kads was
calculated using the following Equation [54]:

∆G◦ads = −RTln(Kads ∗ Csolvent) (10)
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As the data show in Table 7, it can be noticed that the ∆G◦ads value is equal to
−44.05 kJ mol−1. The fact that the value is negative implies that the adsorption phe-
nomenon of the inhibitor in question on the metal substrate is spontaneous. According
to the literature, when the ∆G◦ads is about −20 kJ mol−1 this indicates an electrostatic
(physisorption) reaction metal/inhibitor. However, when the adsorption energy higher
than −40 kJ mol−1, it can be explained by charge transfer or electron sharing between
the inhibitor molecule and the CS area [18]. The high value of ∆G◦ads reflects the strong
interaction with the CS, that is, the electron sharing taking place between the studied
inhibitor and the CS by forming the coordinate bonds. Hence, it can be concluded that the
investigated inhibitor is adsorbed on the CS by strong chemisorption bonds [8].

Table 7. Adsorption-thermodynamics magnitudes of QO12.

Langmuir Isotherm R2 Slope Kads103 (M) ∆G◦ads (kJ/mol)

QO12 1 1.059 709.486 −44.05

3.5. UV-Visible Spectroscopy

In this work, an ultraviolet-visible (UV-vis) spectrum was investigated in order to
study the possibility of complex formation.

Figure 9 shows the UV-vis spectra of QO12 before and after the immersion of CS at
room temperature for 24 h in 1 M HCl at 10−3 M of QO12.
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Figure 9. UV spectra of QO12 before and after immersion of CS at 303 K for 24 h in 1 M HCl at
10−3 M of QO12.

The absorption spectrum shows three absorption bands at wavelengths of 226.8,
275.6, and 308.8 nm before immersion, which is likely to be ascribed to n −π* and π−π*
transitions. However, after 24 h of immersion these bands are displaced to 229.2, 278.4, and
311.2 nm, respectively.

According to the literature, if the absorbance maximum changes the position and/or
values, this indicates the formation of a complex among the soluble species present in
the electrolytic solution [51]; from the absorption spectra of QO12, a displacement of the
wavelength has been observed, and also a diminution in the absorbance intensity values.
This is usually attributed to metal–inhibitor interactions and the formation of a complex
between Fe and the inhibitor.
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3.6. SEM-EDX Investigation

Figure 10 depicts SEM observations and EDX spectra of CS only, in 1 M HCl without
and with 10−3 M of the QO12. When the metal was submerged in 1 M HCl for 24 h,
the surface was significantly corroded and had many quantities of corrosion products,
indicating substantial corrosion (Figure 10b) [54]. However, in the presence of QO12
(Figure 10c), the surface smoothness significantly improved, showing a significant reduction
in corrosion rate. This enhancement in surface morphology is attributed to the formation of
a protective film on the CS surface, which is responsible for corrosion inhibition. The EDX
spectrum of reference solution in Figure 10 shows Cl and O signals for the ingredients of the
1 M HCl solution, as well as iron oxide signals, indicating that corrosion products had built
up on the steel surface. The EDX spectra related to the oxide of corrosion products partially
disappeared after the addition of QO12, and the peak of chlorine was greatly decreased.
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3.7. DFT Approaches

A set of the electronic properties, global reactivity descriptors, and local reactivity
indices of the neutral form of the QO12 were calculated to examine the corrosion inhibition
efficiencies and to suggest a possible corrosion-inhibition mechanism [55]. Marvin Sketch
software was employed to locate the protonation site(s) [56]. Based on this, the structure of
QO12 does not have a protonation site(s). To ensure the conformity of the structure, it is
necessary to have the absence of imaginary frequencies using the identical level of theory.
GaussView/5 software was utilized [57] to trace the structure, HOMO, and LUMO for the
QO12 molecule, as illustrated in Figure 11. Close examination of the HOMO_LUMO of
the QO12 molecule reveals that it is essentially concentrated over almost the entire base
structure of quinoxalinone, with the exception of the joint moiety (C12). These results have
been approved by the analysis of the ESP maps (Figure 12). The results obtained show the
tendency of QO12 to be adsorbed on the carbon steel surface and consequently increase the
corrosion inhibition efficiencies of the investigated species, which is in agreement with the
provided experimental data.
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EHO and ELU values serve to analyze the donor/acceptor ratio in the molecule/metal
relationship [58,59]. Indeed, an inhibitor molecule tends to be more effective against
corrosion as the EHO/ELU ratio is increased/reduced. Table 8 contains the different data
from this investigation. It appears that the high value of EHO (−5.847 eV) and the low
value of ELU (−1.994 eV) attest that QO12 has the ability to donate/accept electrons
conveniently. ∆Egap (ELU − EHO) allows us to measure the reactivity of a molecule; as
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the most minimal value of this descriptor, this specific reactivity is maximal, compatible
with QO12 (3.853 eV) [60,61]. When the value of hardness (η) diminishes, the reactivity
of a molecule gets more prominent and interacts more successfully with the surface of
a metal. Furthermore, it should be concluded from Table 8 that the values of η and
electro-negativity (χ) of QO12 are acceptable, indicating the molecule may possess good
anti-corrosive characteristics and can prevent the corrosion of Fe metal.

Table 8. Quantum chemical descriptors of the QO12 molecule (In eV).

EHO ELU ∆Egap X η ∆N110 TE

−5.847 −1.994 3.853 3.920 1.926 0.233 −32,546.928

The fraction of electron-transferred (∆N110) values provide useful information on
the tendency of electrons to flow from the inhibitor molecule to the carbon steel surface
(∆N > 0) or from the carbon steel to the inhibitor (∆N < 0) [62]. Inspection of the ∆N110
values in Table 8 indicates that the electrons can flow from the neutral form to the CS
surface. Another descriptor used to reliably assess the responsiveness and stability of a
molecule is the total energy (TE). From Table 8, the lowest negative value (−32,546.928 eV)
suggests QO12’s strong reactivity.

To study the adsorption process of the QO12 onto CS, molecular electrostatic potential
(MEP) and Fukui function analysis were used to estimate the nucleophilic and electrophilic
attacks caused by the most active centers of the QO12 and enhance the experimental
results [63]. Figure 12 shows the 3D iso-surface of the Fukui functions and the MEP for
nucleophilic (f+k ) and electrophilic (f−k ) attack centers. In alignment with the results of
the HOMO and LUMO surface, these isosurfaces clearly indicate the active region for
nucleophilic and electrophilic attacks in the investigated species.

In addition, the MEP can recognize both acceptor and donor electron sites, and this
feature is reflected in several colors: red for electron donor, blue for electron acceptor, and
other colors (not significant) [64].

Figure 12 makes it clear that the atoms N7, N16, and O63 are the electrophilic
attack centers.

These contribute to reinforcing the importance of electron donation to acceptor loca-
tions on the Fe surface. However, the major electron acceptor sites (atoms) are located in
the quinoxalinone part (blue color) in order to raise the arrangement degree of the QO12
on the CS.

3.8. MD Simulation Investigations
3.8.1. QO12/Fe (110) System

Computational methods, such as MD simulations, can be valuable in helping to predict
and understand the adsorption pattern of a molecule onto a metal. In addition, the MD
is a potent tool for exploring the behavior of molecular systems [65]. The aim of the
present MD is to evaluate and understand the way in which the neutral form for the QO12
molecule operates on the iron atomic support (Fe(110)) [66,67]. Figure 13 shows the side
and superior perspectives of the QO12 deposited on the Fe atomic layer together. The
QO12 adsorbs using the structure of the quinoxalinone base without the carbon chain (C12)
on the examined surface, which proves that the simulated molecule carries more reactive
sites localized in the part filled by the FMO (HOMO_LUMO) with the iron atoms, and
has great potential to adsorb onto the CS through the presence of the coordination bonds
inhibitor -Fe(110).
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The Einteraction (Einter) value is defined by the following equation [68]:

Einter = −E(surface+solution) − EQO12 + Etotal (11)

The low value of Einter attests to the interaction of QO12 with the interacting iron
atoms [69,70]. The value of this descriptor for the system is calculated; the value of the
QO12/Fe(110) system is −871.306 kJ mol−1, indicating a better reactivity

3.8.2. RDF

The radial distribution function “RDF” was entered as the main purpose of this method
for assessing the adsorption suitability of the bonds between the QO12 (N7, N16, and O63)
and the Fe atoms [71]. The research literature has shown that if the bond length values
are shorter than 3.5 Å, adsorption of a chemical nature is most probable. Alternatively,
adsorption of an electrostatic nature becomes more likely [72]. Figure 14 gives the peak data
of this investigation. The numbers recorded in the first peak prove that the bond lengths
of QO12 towards the Fe atoms of the first layer are shorter than 3.5 Å, informing us that
QO12 is highly bonded to the metal substrate, implying improved inhibitory protection.

3.8.3. MSD Tool

The film inhibition potential shown by QO12 against Cl− and H3O+ ions was assessed
with the fractional free volume (FFV).

If the inhibitor film contains considerable cavities, the dispersion of the ions is raised
automatically, so the inhibition performance is automatically lowered [73].

Figure 15d shows the molecular dynamics simulation reaches the fundamental state
with the curve stabilizing around the average temperature of 303 K.
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Figure 15b served to calculate the free Vf and occupied Vo volumes for the systems
constructed with a Connolly area as obtained in the previous published research [73].

It is noteworthy that the higher FFV results from the presence of a larger vacant Vf
inside the molecule film, and consequently the lesser effect of the corrosion-molecule film
on the spread of corrosive elements [74]. In the present research, it was found that the FFV
value of QO12 films corresponded to 21.08 %. This value is low, reflecting the success of
the QO12 film in controlling the ingress of aggressive elements. This observation is also
supported by the presence of the film which is formed from denser QO12 (Figure 15a).

In particular, the mean square displacement (MSD) in question measured the anticor-
rosion performance of 60 molecules of QO12 inside a supercell containing 3H3O+ and 3Cl−

using Forcite with Materials Studio/8 software. The calculation of the diffusion coefficient
(Dion) can be performed using Equations (12) and (13) [72]:

Dion =
1

6Nα
lim

x→∞

d
dt

Nα

∑
i=1

〈
[Ri(t)− Ri(0)]

2
〉

(12)

MSD =
〈
[Ri(t)− Ri(0)]

2
〉

(13)

Figure 15c reproduces the MSD graphs for the ions considered within the QO12 films.
It is generally considered that if the Dion value is low, then the degree of inhibitory potency
is high [75]. The values found for Figure 14c are 0.01795 ± 0.00264 10−12 m2 s−1 for Cl−

and 0.02098 ± 0.00198 10−12 m2 s−1 for H3O+.

4. Conclusions

The anti-corrosive ability and inhibition mechanism of a novel quinoxalinone (QO12)
against CS corrosion in an acidic electrolyte were investigated using systematic method-
ologies and characterization tools. The following conclusions may be formed based on
the findings:

• QO12 has excellent effectiveness inhibiting CS corrosion in an acidic electrolyte and
its performance improves as the amount rises, reaching a max of 95.33%, at 10−3 M.
This efficiency value is closer to that of Q1 and Q2 in Table 1, while it is lower than
that of the Q3 inhibitor, due to the presence of the nitro (NO2) attracting group.

• The PDP profiles show that QO12 significantly inhibits anodic metal dissolution and
cathodic hydrogen evolution processes, indicating that it is a mixed-type inhibitor with
a cathodic tendency. EIS assessments show that the presence of the QO12 increases Rp
values while decreasing the constant phase element of the double layer (Cdl), hence
validating the inhibitor’s inhibitory impact on CS corrosion.

• The chemisorption mechanism of QO12 adsorption on the CS interface is consistent
with the Langmuir adsorption isotherm.

• Surface and electrolyte analyses (SEM, EDX, and UV-visible) suggest QO12 adsorption
on the CS interface.

• Theoretical approaches indicate a good adsorption of QO12 on the selected surface.
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