CeO2 Protective Material against CMAS Attack for Thermal–Environmental Barrier Coating Applications
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Characterizations
3. Results and Discussions
3.1. Interaction Behavior of CeO2 and CMAS Powders
3.2. Effects of the CeO2 Content and Duration Time on the Crystalline Products Formation
3.3. Interface Interaction between Molten CMAS and CeO2 Pellets
4. Conclusions
- (1)
- In the presence of molten CMAS, CeO2 dissolves in the melt followed by precipitating many CeO2 solid solution particles, in which Si, Ca, and Al are present and the Si content is the highest.
- (2)
- The reaction between CMAS and CeO2 is not vigorous at 1300 °C; only when the CeO2 content is increased or the duration time prolonged to 10 h, a reaction product of apatite and some self-crystallization products of anorthite and wollastonite phases can be formed. During this reaction process, the CeO2 solid solution particles are acted as the nucleating agent.
- (3)
- After heat treatment at 1300 °C for 10 h, the CMAS on the CeO2 pellet is completely crystallized due to Ce migration to the melt providing the nucleating agent. No CMAS penetration and no reaction products are found, indicating that CMAS crystallization is rapid and the Ce diffusion in the melt is limited, meaning excellent stability of CeO2 in molten CMAS.
- (4)
- CeO2 can be used as a dopant in T/EBC to promote CMAS crystallization, and it is also a promising protective layer material on the T/EBC surface to inhibit CMAS penetration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, J.; Li, T.; Zheng, H.; Ma, Y. Applications of structural efficiency assessment method on structural-mechanical characteristics integrated design in aero-engines. Chin. J. Aeronaut. 2020, 33, 1260–1271. [Google Scholar] [CrossRef]
- Zhang, B.; Song, W.; Wei, L.; Xiu, Y.; Xu, H.; Dingwell, D.B.; Guo, H. Novel thermal barrier coatings repel and resist molten silicate deposits. Scr. Mater. 2019, 163, 71–76. [Google Scholar] [CrossRef]
- Chen, H.F.; Zhang, C.; Liu, Y.C.; Song, P.; Li, W.X.; Yang, G.; Liu, B. Recent progress in thermal/environmental barrier coatings and their corrosion resistance. Rare Met. 2019, 39, 498–512. [Google Scholar] [CrossRef]
- Darolia, R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. Int. Mater. Rev. 2013, 58, 315–348. [Google Scholar] [CrossRef]
- Bakan, E.; Vaßen, R. Ceramic top coats of plasma-sprayed thermal barrier coatings: Materials, processes, and properties. J. Therm. Spray Technol. 2017, 26, 992–1010. [Google Scholar] [CrossRef]
- Diaz, O.G.; Axinte, D.; Butler-Smith, P.; Novovic, D. On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process. Mater. Sci. Eng. A 2018, 743, 1–11. [Google Scholar] [CrossRef]
- Dicarlo, J.A. Advances in SiC/SiC composites for aero-propulsion. M. Ceram. Matrix Compos. 2014, 217–235. [Google Scholar] [CrossRef]
- Fang, G.; Gao, X.; Song, Y. A Review on Ceramic Matrix Composites and Environmental Barrier Coatings for Aero-Engine: Material Development and Failure Analysis. Coatings 2023, 13, 357. [Google Scholar] [CrossRef]
- Zhu, D. Advanced environmental barrier coatings for SiC/SiC ceramic matrix composite turbine components, Engineered ceramics: Current status and future prospects. M. Eng. Ceram. Curr. Status Future Prospect. 2016, 187–202. [Google Scholar] [CrossRef]
- Harder, B.J. Oxidation performance of Si-HfO2 environmental barrier coating bond coats deposited via plasma spray-physical vapor deposition. Surf. Coat. Technol. 2020, 384, 125311. [Google Scholar] [CrossRef]
- Zhu, R.B.; Zou, J.P.; Mao, J.; Deng, Z.Q.; Zhang, X.F.; Deng, C.M.; Liu, M. A comparison between novel Gd2Zr2O7 and Gd2Zr2O7/YSZ thermal barrier coatings fabricated by plasma spray-physical vapor deposition. Rare Met. 2021, 40, 2244–2253. [Google Scholar] [CrossRef]
- Zhu, D.; Miller, R.; Fox, D. Thermal and environmental barrier coating development for advanced propulsion engine systems. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL, USA, 7–10 April 2008; p. 2130. [Google Scholar]
- Amer, M.; Curry, N.; Hayat, Q.; Sharma, R.; Janik, V.; Zhang, X.; Nottingham, J.; Bai, M. Cracking Behavior of Gd2Zr2O7/YSZ Multi-Layered Thermal Barrier Coatings Deposited by Suspension Plasma Spray. Coatings 2023, 13, 107. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Q.; Hu, X.P.; Guo, J.W.; Zhu, W.; Zhang, F.; Xia, J. CMAS corrosion resistance behavior and mechanism of Hf6Ta2O17 ceramic as potential material for thermal barrier coatings. Coatings 2023, 13, 404. [Google Scholar] [CrossRef]
- Mehboob, G.; Liu, M.; Xu, T.; Hussain, S.; Mehboob, G.; Tahir, A. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime. Ceram. Int. 2019, 46, 8497–8521. [Google Scholar] [CrossRef]
- Yang, S.-J.; Song, W.-J.; Dingwell, D.B.; He, J.; Guo, H.-B. Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings. Rare Met. 2021, 41, 469–481. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Song, W.J.; Guo, L.; Li, X.X.; He, W.T.; Yan, X.D.; Dingwell, D.B.; Guo, H.B. Molten-volcanic-ash-phobic thermal barrier coating based on biomimetic structure. Adv. Sci. 2023, 10, 2205156. [Google Scholar] [CrossRef]
- Guo, L.; Gao, Y.; Ye, F.X.; Zhang, X.M. CMAS corrosion behavior and protection method of thermal barrier coatings for aeroengine. Acta. Metall. Sin. 2021, 57, 1184–1198. [Google Scholar]
- Mikulla, C.; Steinberg, L.; Niemeyer, P.; Schulz, U.; Naraparaju, R. Microstructure Refinement of EB-PVD Gadolinium Zirconate Thermal Barrier Coatings to Improve Their CMAS Resistance. Coatings 2023, 13, 905. [Google Scholar] [CrossRef]
- Hu, X.; Liu, G.; Liu, Q.; Zhu, W.; Liu, S.; Ma, Z. Failure Mechanism of EB-PVD Thermal Barrier Coatings under the Synergistic Effect of Thermal Shock and CMAS Corrosion. Coatings 2022, 12, 1290. [Google Scholar] [CrossRef]
- Poerschke, D.L.; Jackson, R.W.; Levi, C.G. Silicate Deposit Degradation of Engineered Coatings in Gas Turbines: Progress toward Models and Materials Solutions. Annu. Rev. Mater. Res. 2017, 47, 297–330. [Google Scholar] [CrossRef]
- Poerschke, D.L.; Hass, D.D.; Eustis, S.; Seward, G.G.; Van Sluytman, J.S.; Levi, C.G. Stability and CMAS Resistance of Ytterbium-Silicate/Hafnate EBCs/TBC for SiC Composites. J. Am. Ceram. Soc. 2014, 98, 278–286. [Google Scholar] [CrossRef]
- Godbole, E.; Von Der Handt, A.; Poerschke, D. Apatite and garnet stability in the Al–Ca–Mg–Si–(Gd/Y/Yb)–O systems and implications for T/EBC: CMAS reactions. J. Am. Ceram. Soc. 2021, 105, 1596–1609. [Google Scholar] [CrossRef]
- Turcer, L.R.; Krause, A.R.; Garces, H.F.; Zhang, L.; Padture, N.P. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7. J. Eur. Ceram. Soc. 2018, 38, 3914–3924. [Google Scholar] [CrossRef]
- Liu, H.; Cai, J.; Zhu, J. CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers. Ceram. Int. 2018, 44, 452–458. [Google Scholar] [CrossRef]
- Islam, A.; Sharma, A.; Singh, P.; Pandit, N.; Keshri, A.K. Plasma-sprayed CeO2 overlay on YSZ thermal barrier coating: Solution for resisting molten CMAS infiltration. Ceram. Int. 2022, 48, 14587–14595. [Google Scholar] [CrossRef]
- Li, B.W.; Sun, J.Y.; Guo, L. CMAS corrosion behavior of Sc doped Gd2Zr2O7 /YSZ thermal barrier coatings and their corrosion resistance mechanisms. Corros. Sci. 2021, 193, 109899. [Google Scholar] [CrossRef]
- Chen, W.B.; He, W.T.; He, J.; Guo, Q.; Li, S.; Guo, H.B. Failure mechanisms of (Gd0.9Yb0.1)2Zr2O7/Yb2SiO5/Si thermal/environmental barrier coatings during thermal exposure at 1300 °C/1400 °C. J. Eur. Ceram. Soc. 2022, 42, 3297–3304. [Google Scholar] [CrossRef]
- Yan, Z.; Guo, L.; Li, Z.; Yu, Y.; He, Q. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings. Corros. Sci. 2019, 157, 450–461. [Google Scholar] [CrossRef]
- Krämer, S.; Yang, J.; Levi, C.G.; Johnson, C.A. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits. J. Am. Ceram. Soc. 2006, 89, 3167–3175. [Google Scholar] [CrossRef]
- Guo, L.; Xin, H.; Li, Y.; Yu, Y.; Yan, Z.; Hu, C.; Ye, F. Self-crystallization characteristics of calcium-magnesium-alumina- silicate (CMAS) glass under simulated conditions for thermal barrier coating applications. J. Eur. Ceram. Soc. 2020, 40, 5683–5691. [Google Scholar] [CrossRef]
- Gao, L.; Guo, H.; Gong, S.; Xu, H. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium–magnesium–alumina–silicate penetration. J. Eur. Ceram. Soc. 2014, 34, 2553–2561. [Google Scholar] [CrossRef]
- Shing, O.P.; Ping, T.Y.; Hin, T.Y.Y. Mechanochemical synthesis and characterization of calcium-doped ceria oxide Ion conductor. IOP Conf. Ser. Mater. Sci. Eng. 2011, 17, 012017. [Google Scholar] [CrossRef]
- Tsunekawa, S.; Sivamohan, R.; Ito, S.; Kasuya, A.; Fukuda, T. Structural study on monosize CeO2-x nano-particles. Nanostructured Mater. 1999, 11, 141–147. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Sun, Y.Z.; Zhou, K.B. Synthesis of one-dimensional Ce1−xYxO2−x/2 (0 <= x <= 1) solid solutions and their catalytic properties: The role of oxygen vacancies. J. Phys. Chem. C 2010, 114, 8926–8932. [Google Scholar]
- Yan, Z.; Guo, L.; Zhang, Z.; Wang, X.; Ye, F. Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings. Corros. Sci. 2020, 167, 108532. [Google Scholar] [CrossRef]
- Wolf, M.; Mack, D.E.; Guillon, O.; Vaßen, R. Resistance of pure and mixed rare earth silicates against calcium-magnesium-aluminosilicate (CMAS): A comparative study. J. Am. Ceram. Soc. 2020, 103, 7056–7071. [Google Scholar] [CrossRef]
- Lyu, G.; Kim, I.-S.; Song, D.; Park, H.-M.; Kim, J.S.; Song, T.; Myoung, S.; Jung, Y.-G.; Zhang, J. Sintering behavior and phase transformation of YSZ-LZ composite coatings. Ceram. Int. 2019, 46, 1307–1313. [Google Scholar] [CrossRef]
- Shi, Y.; Li, B.W.; Zhao, M.; Zhang, M.X. Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent. J. Am. Ceram. Soc. 2018, 101, 3968–3978. [Google Scholar] [CrossRef]
- Wiesner, V.L.; Bansal, N.P. Crystallization kinetics of calcium–magnesium aluminosilicate (CMAS) glass. Surf. Coat. Technol. 2014, 259, 608–615. [Google Scholar] [CrossRef]
- Poerschke, D.L.; Levi, C.G. Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS. J. Eur. Ceram. Soc. 2015, 35, 681–691. [Google Scholar] [CrossRef]
- Aygun, A.; Vasiliev, A.L.; Padture, N.P.; Ma, X. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 2007, 55, 6734–6745. [Google Scholar] [CrossRef]
- Guo, L.; Yan, Z.; Wang, X.; He, Q. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings. Ceram. Int. 2019, 45, 7627–7634. [Google Scholar] [CrossRef]
- Hopkins, R.H.; De Klerk, J.; Piotrowski, P.; Walker, M.S.; Mathur, M.P. Thermal and elastic properties of silicate oxyapatite crystals. J. Appl. Phys. 1973, 44, 2456–2458. [Google Scholar] [CrossRef]
- Krause, A.R.; Li, X.; Padture, N.P. Interaction between ceramic powder and molten calcia-magnesia-alumino-silicate (CMAS) glass, and its implication on CMAS-resistant thermal barrier coatings. Scr. Mater. 2016, 112, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Mechnich, P.; Braue, W.; Green, D.J. Volcanic ash-induced decomposition of EB-PVD Gd2Zr2O7 thermal barrier coatings to Gd-oxyapatite, zircon, and Gd,Fe-Zirconolite. J. Am. Ceram. Soc. 2013, 96, 1958–1965. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Wang, Z.; Zhao, Z.; An, Z.; Wang, W. Effect of CeO2 on the viscosity and structure of high-temperature melt of the CaO-SiO2(-Al2O3)-CeO2 system. J. Non-Cryst. Solids. 2020, 540, 120085. [Google Scholar] [CrossRef]
- Turcer, L.R.; Padture, N.P. Rare-earth pyrosilicate solid-solution environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass. J. Mater. Res. 2020, 35, 2373–2384. [Google Scholar] [CrossRef]
- Guo, L.; Li, G.; Wu, J.; Wang, X. Effects of pellet surface roughness and pre-oxidation temperature on CMAS corrosion behavior of Ti2AlC. J. Adv. Ceram. 2022, 11, 945–960. [Google Scholar] [CrossRef]
- Krause, A.R.; Senturk, B.S.; Garces, H.F.; Dwivedi, G.; Ortiz, A.L.; Sampath, S.; Padture, N.P. 2ZrO2·Y2O3 Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: Part I, Optical Basicity Considerations and Processing. J. Am. Ceram. Soc. 2014, 97, 3943–3949. [Google Scholar] [CrossRef]
- Chen, Q.; Qiao, Y.; Wang, H. Spectra and magneto optical behavior of CeO2 doped heavy metal diamagnetic glass. J. Non Cryst. Solids 2017, 470, 70–77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Wang, Y.; Liu, M.; Gao, Y.; Ye, F. CeO2 Protective Material against CMAS Attack for Thermal–Environmental Barrier Coating Applications. Coatings 2023, 13, 1119. https://doi.org/10.3390/coatings13061119
Guo L, Wang Y, Liu M, Gao Y, Ye F. CeO2 Protective Material against CMAS Attack for Thermal–Environmental Barrier Coating Applications. Coatings. 2023; 13(6):1119. https://doi.org/10.3390/coatings13061119
Chicago/Turabian StyleGuo, Lei, Yuanpeng Wang, Mingguang Liu, Yuan Gao, and Fuxing Ye. 2023. "CeO2 Protective Material against CMAS Attack for Thermal–Environmental Barrier Coating Applications" Coatings 13, no. 6: 1119. https://doi.org/10.3390/coatings13061119
APA StyleGuo, L., Wang, Y., Liu, M., Gao, Y., & Ye, F. (2023). CeO2 Protective Material against CMAS Attack for Thermal–Environmental Barrier Coating Applications. Coatings, 13(6), 1119. https://doi.org/10.3390/coatings13061119