Optimization of the Monte Carlo Simulation for Sapphire in Wet Etching
Abstract
:1. Introduction
2. Experimental
- (1)
- Coordinate points on the three sapphire hemispherical surfaces are measured every two degrees. The measurement range is from −10° to 90° (latitude) and from 0° to 358° (longitude).
- (2)
- According to the experimental parameters shown in Table 1, three groups of etching experiments of sapphire hemispheres are carried out without stirring.
- (3)
- The coordinate points on the three sapphire hemispherical surfaces are measured again after etching. The step is the same as (1).
- (4)
- According to the ratio of the etching distances along the radial direction to the etching times of crystallographic planes, etch rates of sapphire under different temperature conditions (H2SO4:H3PO4 = 3:1, 202 °C, 223 °C and 236 °C) are obtained.
3. Results and Discussion
3.1. Accuracy Optimization of the Monte Carlo Simulation of Sapphire
3.2. Efficiency Optimization of the Monte Carlo Simulation of Sapphire
4. Conclusions, Limitations, and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, K.C.; Wuu, D.S.; Shen, C.C.; Ou, S.L. Surface Modification on Wet-Etched Patterned Sapphire Substrates Using Plasma Treatments for Improved GaN Crystal Quality and LED Performance. J. Electrochem. Soc. 2011, 158, H988–H993. [Google Scholar]
- Foxon, C.T.; Campion, R.P.; Grant, V.A.; Novikov, S.V.; Harris, J.J.; Thomson, R.; Taylor, C.; Barlett, D. Use of band-gap thermometry to investigate the growth of GaN on sapphire and GaAs. J. Cryst. Growth 2007, 301, 482–485. [Google Scholar] [CrossRef]
- Kao, C.C.; Su, Y.K.; Lin, C.L.; Chen, J.J. Enhanced luminescence of GaN-based light-emitting diodes by selective wet etching of GaN/sapphire interface using direct heteroepitaxy laterally overgrowth technique. Displays 2011, 32, 96–99. [Google Scholar] [CrossRef]
- Wang, N. Low temperature dealloying preparation of extremely fine double-levels nano-SnO2 particles with excellent photocatalytic properties. Appl. Sur. Sci. 2020, 506, 144970. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, S.J. Sapphire substrate-transferred nitride-based light-emitting diode fabricated by sapphire wet etching technique. Solid-State Electron. 2006, 50, 1522–1528. [Google Scholar] [CrossRef]
- Wang, N. Fabrication of unique Ti0.8Sn0.2O2 double-levels nanoparticles with extremely fine structure and promising photocatalytic activity by dealloying novel Cu-Ti-Sn-Y metallic glasses. Mat. Sci. Semicon. Proc. 2022, 141, 106426. [Google Scholar] [CrossRef]
- Mu, D.K.; Feng, K.Y.; Lin, Q.L.; Huang, H. Low-temperature wetting of sapphire using Sn–Ti active solder alloys. Ceram. Int. 2019, 45, 22175–22182. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Yuan, Z.Y.; Jiang, S.D.; Shen, H.X.; Cao, F.Y.; Ning, Z.L.; Huang, Y.J.; Xing, D.W.; Zuo, H.B.; Han, J.C.; et al. Cavity etching evolution on the A-plane of sapphire crystal in molten KOH etchant. J. Cryst. Growth 2020, 552, 125926. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Yuan, Z.Y.; Shen, H.X.; Jiang, S.D.; Cao, F.Y.; Ning, Z.L.; Xing, D.W.; Zuo, H.B.; Huang, Y.J.; Han, J.C.; et al. Etching Behaviors of Sapphire’s C-Plane Cavity. Surf. Sci. 2021, 707, 121805. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, D.; Wang, Y.; Gan, Y. AFM and SEM Study on Crystallographic and Topographical Evolution of Wet-Etched Patterned Sapphire Substrates (PSS) I. Cone-Shaped PSS Etched in Sulfuric Acid and Phosphoric Acid Mixture (3:1) at 230 degrees C. ECS J. Solid State Sci. Technol. 2017, 6, R24–R34. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, D.; Wang, Y.; Gan, Y. AFM and SEM Study on Crystallographic and Topographical Evolutions of Wet-Etched Patterned Sapphire Substrate (PSS): Part III. Cone-Shaped PSS Etched in H2SO4 and H3PO4 Mixture at Various Temperature. ECS J. Solid State Sci. Technol. 2017, 6, R163–R169. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, D.; Wang, Y.; Gan, Y. AFM and SEM Study on Crystallographic and Topographical Evolutions of Wet-Etched Patterned Sapphire Substrate (PSS): Part II. Cone-Shaped PSS Etched in H2SO4 and H3PO4 Mixture with Varying Volume Ratio at 230 degrees C. ECS J. Solid State Sci. Technol. 2017, 6, R122–R130. [Google Scholar] [CrossRef]
- Aota, N.; Aida, H.; Kimura, Y.; Kawamata, Y.; Uneda, M. Fabrication Mechanism for Patterned Sapphire Substrates by Wet Etching. ECS J. Solid State Sci. Technol. 2014, 3, N69–N74. [Google Scholar] [CrossRef]
- Wang, N. FeCoNiMnCuTi high entropy amorphous alloys and M50Ti50 (M = Fe, Cu, FeCoNiMnCu) amorphous alloys: Novel and efficient catalysts for heterogeneous photo-Fenton decomposition of Rhodamine B. Surf. Interfaces 2022, 33, 102265. [Google Scholar] [CrossRef]
- Wang, J.; Guo, L.W.; Jia, H.Q.; Wang, Y.; Xing, Z.G.; Li, W.; Chen, H.; Zhou, J.M. Fabrication of Patterned Sapphire Substrate by Wet Chemical Etching for Maskless Lateral Overgrowth of GaN. J. Electrochem. Soc. 2006, 153, C182–C185. [Google Scholar] [CrossRef]
- Lin, R.M.; Lu, Y.C.; Yu, S.F.; Wu, Y.S.; Chiang, C.H.; Hsu, W.C.; Chang, S.J. Chang. Enhanced Extraction and Efficiency of Blue Light-Emitting Diodes Prepared Using Two-Step-Etched Patterned Sapphire Substrates. J. Electrochem. Soc. 2009, 156, H874–H876. [Google Scholar] [CrossRef]
- Yan, T.Y.; Ji, L.F.; Hong, M.H. Backside wet etching of sapphire substrate by laser-induced carbothermal reduction. Opt. Laser Technol. 2022, 149, 107900. [Google Scholar] [CrossRef]
- Wu, G.R.; Xing, Y.; Chen, Y.; Zhou, Z.F. Application of the evolutionary kinetic Monte Carlo method for the simulation of anisotropic wet etching of sapphire. J. Micromech. Microeng. 2021, 31, 065001. [Google Scholar] [CrossRef]
- Zhou, Z.F.; Huang, Q.A.; Li, W.H. Modeling and Simulations of Anisotropic Etching of Silicon in Alkaline Solutions with Experimental Verification. J. Electrochem. Soc. 2009, 156, F29–F37. [Google Scholar] [CrossRef]
- Gupta, A.; Aldinger, B.S.; Faggin, M.F.; Hines, M.A. Kinetic Monte Carlo simulations of anisotropic Si(100) etching: Modeling the chemical origins of characteristic etch morphologies. J. Chem. Phys. 2010, 133, 044710. [Google Scholar] [CrossRef]
- Xing, Y.; Gosalvez, M.A.; Sato, K.; Tian, M.; Yi, H. Evolutionary determination of kinetic Monte Carlo rates for the simulation of evolving surfaces in anisotropic etching of silicon. J. Micromech. Microeng. 2012, 22, 085020. [Google Scholar] [CrossRef]
- Gorbunov, S.A.; Babaev, P.A.; Rymzhanov, R.A.; Volkov, A.E.; Voronkov, R.A. Atomistic Model of Wet Chemical Etching of Swift Heavy Ion Tracks. J. Phys. Chem. C 2023, 127, 5090–5097. [Google Scholar] [CrossRef]
- Jiang, X.L.; Wu, L.X.; Yang, K.; Liu, T.X.; Liao, W.; Zhang, C.C.; Zhang, L.J.; Liu, Y.; Jiang, X.D. Kinetic etch front instability responsible for roughness formation in plasma etching. Appl. Surf Sci. 2021, 543, 148862. [Google Scholar] [CrossRef]
- Valentin, A.; Brinza, O.; Farhat, S.; Achard, J.; Benedic, F. 3D kinetic Monte-Carlo simulations of diamond growth on (100) surfaces. Diam. Relat. Mater. 2022, 123, 108865. [Google Scholar] [CrossRef]
- Sato, K.; Shikida, M.; Matsushima, Y.; Yamashiro, T.; Asaumi, K.; Iriye, Y.; Yamamoto, M. Characterization of orientation-dependent etching properties of single-crystal silicon: Effects of KOH concentration. Sens. Actuators A Phys. 1998, 64, 87–93. [Google Scholar] [CrossRef]
- Sato, K.; Shikida, M.; Yamashiro, T.; Tsunekawa, M.; Ito, S. Roughening of single-crystal silicon surface etched by KOH water solution. Sens. Actuators A Phys. 1999, 73, 122–130. [Google Scholar] [CrossRef]
- Xing, Y.; Guo, Z.Y.; Gosalvez, M.A.; Wu, G.R.; Qiu, X.L. Characterization of anisotropic wet etching of single-crystal sapphire. Sens. Actuators A Phys. 2020, 303, 111667. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, J.; Gosalvez, M.A.; Zhang, H.; Li, Y.; Zhou, S.H. The Maximum Positive Curvature Recognition Method to Determine Etch Profiles in Wet Etching of Quartz on AT and BT Cuts. J. Microelectromech. S. 2018, 27, 730–738. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, Y.; Li, Y.; Gosalvez, M.A.; Qiu, X.L. Kinetic Monte Carlo method for the simulation of anisotropic wet etching of quartz. Sens. Actuators A Phys. 2017, 256, 24–34. [Google Scholar] [CrossRef]
- Wu, G.R.; Xing, Y. The Model of Etch Rates of Crystallographic Planes of Sapphire Based on Step Flow Mechanism. J. Microelectromech. S. 2020, 29, 1234–1244. [Google Scholar] [CrossRef]
- Kohout, J. Modified Arrhenius Equation in Materials Science, Chemistry and Biology. Molecules 2021, 26, 7162. [Google Scholar] [CrossRef] [PubMed]
- Crapse, J.; Pappireddi, N.; Gupta, M.; Shvartsman, S.Y.; Wieschaus, E.; Wuhr, M. Evaluating the Arrhenius equation for developmental processes. Mol. Syst. Biol. 2021, 17, e9895. [Google Scholar] [CrossRef] [PubMed]
Group | Volume Ratio | Etching Temperature (°C) | Etching Time (h) |
---|---|---|---|
1 | H2SO4:H3PO4 = 3:1 | 202 | 32 |
2 | H2SO4:H3PO4 = 3:1 | 223 | 28 |
3 | H2SO4:H3PO4 = 3:1 | 236 | 24 |
Temperature (°C) | (0 0 0 1) (μm/h) | (1 1 −2 18) (μm/h) | (1 −1 0 11) (μm/h) | (1 −1 0 4) (μm/h) |
---|---|---|---|---|
202 | 0.67 | 1.01 | 1.34 | 1.28 |
223 | 1.38 | 2.01 | 2.45 | 2.35 |
236 | 1.77 | 2.42 | 3.11 | 2.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Li, Y.; Qian, J.; Miao, X. Optimization of the Monte Carlo Simulation for Sapphire in Wet Etching. Coatings 2023, 13, 981. https://doi.org/10.3390/coatings13060981
Wu G, Li Y, Qian J, Miao X. Optimization of the Monte Carlo Simulation for Sapphire in Wet Etching. Coatings. 2023; 13(6):981. https://doi.org/10.3390/coatings13060981
Chicago/Turabian StyleWu, Guorong, Yang Li, Jiaxing Qian, and Xinghua Miao. 2023. "Optimization of the Monte Carlo Simulation for Sapphire in Wet Etching" Coatings 13, no. 6: 981. https://doi.org/10.3390/coatings13060981
APA StyleWu, G., Li, Y., Qian, J., & Miao, X. (2023). Optimization of the Monte Carlo Simulation for Sapphire in Wet Etching. Coatings, 13(6), 981. https://doi.org/10.3390/coatings13060981