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Abstract: Artificial intelligence (AI), machine learning (ML) and deep learning (DL) along with
big data (BD) management are currently viable approaches that can significantly help gas turbine
components’ design and development. Optimizing microstructures of hot section components such
as thermal barrier coatings (TBCs) to improve their durability has long been a challenging task
in the gas turbine industry. In this paper, a literature review on ML principles and its various
associated algorithms was presented first and then followed by its application to investigate thermal
conductivity of TBCs. This combined approach can help better understand the physics behind thermal
conductivity, and on the other hand, can also boost the design of low thermal conductivity of the
TBCs system in terms of microstructure–property relationships. Several ML models and algorithms
such as support vector regression (SVR), Gaussian process regression (GPR) and convolution neural
network and regression algorithms were used via Python. A large volume of thermal conductivity
data was compiled and extracted from the literature for TBCs using PlotDigitizer software and then
used to test and validate ML models. It was found that the test data were strongly associated with
five key factors as identifiers. The prediction of thermal conductivity was performed using three
approaches: polynomial regression, neural network (NN) and gradient boosting regression (GBR).
The results suggest that NN using the BR model and GBR have better prediction capability.

Keywords: artificial intelligence; algorithms; hot section components; thermal barrier coatings;
thermal physical properties; gas turbine engines

1. Introduction

Recent advances in artificial intelligence (AI) emerge from quantum improvements in
computational capabilities and ever-growing datasets in almost all domains of science and
technology. Over the past two decades, innovations in cloud computing, data infrastructure
management and processing and in computation speeds have increased dramatically.
Artificial intelligence (AI), machine learning (ML), deep learning (DL) and big data (BD)
encompass powerful data processing to augment human decision making with the use
of computational algorithms. The algorithm and programming of ML and DL allow
computers to learn and extract information from data automatically by computational and
statistical models and methodologies. ML and DL can also make it possible to identify
trends in machine performance such as anomalies and signatures. Predictive maintenance
system (PMS) based on the aviation industry’s big data analysis can monitor failures
in gas turbine engines (GTE), schedule maintenance in advance resulting in huge costs
savings, and enable original equipment manufacture (OEM) to identify long-term trends
and requirements of complex aircraft systems with far more accuracy [1–3].

DL mainly involves analyzing non-linear correlation and high dimensional datasets
implemented through specifically designed numerical algorithms. DL also makes it pos-
sible to develop an understanding of patterns of behavior and estimate efficiencies in a
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machine. Furthermore, the combination of AI–ML–DL–BD will significantly strengthen
digital capability in the gas turbine industry and is expected to play an essential role in
investigating degradation of hot section components under adverse environments.

High temperature gas turbine materials in the aerospace industry hold an important
place and contribution to modern technological progress. Hot section components of gas
turbine engines are yet to exploit and embrace ML/DL/AI technologies. However, recent
research initiatives indicate a highly promising impact of AI across the entire domain of
materials, structures, processing, multiscale modeling and simulations. Large volumes of
aviation industries materials data are available and accessible for AI to explore. The ma-
terial property data, namely physical, chemical, mechanical, structural, thermodynamic,
thermos-physical, image-based, etc., build up the big data resource. ML can couple with
big data analytics to discover and design new materials, to improve and modify exist-
ing materials, to uncover materials laws and phenomena, and to predict/accelerate new
material technology [2,4]. Historically, such material discovery and development work
have been through experiment-based trial and error methods and/or the theoretical and
computational modeling and simulation approach. Both approaches consume a large
amount of time involving considerable uncertainties, huge cost and a long development
cycle. ML and DL can accelerate the process efficiently through data-driven analytics and
modeling. However, quite a few significant challenges remain before the methodologies
could be fully developed through sustained research efforts [5,6].

Our current research initiative is towards the area of hot section components of the gas
turbine engine and aims to develop the ML modeling algorithm to predict an important
material property. In the hot section of gas turbines engines, high-temperature insulating
coatings are necessary to protect engine hardware from degradation and prevent service
failure. The coatings will allow a higher gas inlet temperature to achieve higher engine
efficiency, reliability and durability. Thermal barrier coatings (TBCs) are thin ceramic
layers, generally applied by plasma-spraying or physical vapor deposition techniques, to
insulate air-cooled metallic components, namely blades and vanes from high-temperature
combustion gases. The TBCs are made of a ceramics-based topcoat, intermetallic bond
coat, thermally growth oxide (TGO) and substrates. Low thermal conductivity (TC) of TBC
material is of prime importance for effective insulation and lasting service. Many factors
are known to influence TCs of TBCs; namely, microstructures (grain size, cracks, porosity
and density), TBC thickness, sintering effect, anisotropy and inhomogeneity besides TBC
compositions. Recent work has demonstrated the effectiveness of TCs on thermal insulation
considering thermal flows and coating thickness. A comparison with two TCs (0.8 W/m-k
and 1.5 W/m-k) confirmed that the insulation effect (drop in temperature across the TBC)
tends to be more effective with lower TC, higher coating thickness and higher thermal
flows. Thin TBCs show 20% lower thermal conductivity than thick coatings. The higher
content of porosity in the coating improves phonon scattering and decreases thermal
conductivity significantly. Thermal barrier coatings are designed to be porous to exhibit
low TC. Three other significant factors controlling the microstructures and TC are bond
coat surface roughness, coating particles size and coating temperature and speed [7,8].

Only limited research initiatives have been undertaken with thermal conductivity
prediction in aeroengine hardware components using ML and DL. This paper aims at
addressing the following aspects as given in two main sections and is expected to make a
useful contribution. (1) State of the art review of the current progress and challenges in high
temperature materials developments for aeroengines using artificial intelligence technology;
(2) capabilities of machine learning and deep learning in material property prediction is
presented, where the review and analysis focusses on big data structure, resources and manage-
ment, various algorithms used for ML and DL and different computational tools; (3) modeling
and simulation for developing an ML algorithm for thermal conductivity predictions in thermal
barrier coatings. A large dataset comprising thermal conductivity is obtained from the literature
for the popularly used 6–8 wt% YSZ TBC, the key associated factors are identified, and lastly
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an attempt was made to make predictions of TC based on the TBC processing conditions such
as ageing temperature and time, coating thickness and TBC compositions.

What sets this work apart is the utilization of machine learning algorithms to predict
thermal conductivity values in TBCs. By employing a large dataset and identifying key factors,
our approach offers a more accurate prediction of thermal conductivity in TBCs than existing
methods. Additionally, the findings of this research can be useful in improving the performance
of TBCs and in the development of new TBCs for various industrial applications.

2. Current Status of Machine Learning and Its Application in Materials Design
and Development

Demands of modern life coming from various fields have imposed an important and
diverse requirement for the development and quick delivery of materials with improved
performance and life span. Traditionally, developing new materials involves seven sequen-
tial stages, such as discovery, property optimization, design procedure and integration as
shown in Figure 1. Mainly due to heavy involvement of time-consuming, high-cost and
low-efficiency repetitive laboratory experiments and density functional theory (DFT)-based
theoretical studies during this traditional process, it takes a longer time period, typically
around one or two decades, to go from primary concept/discovery to the final application
of new materials. Other notable factors contributing to this long time duration are the
sequential nature of the entire process without feedback or interactions between the initial
and/or later stages [9]. Over the last five decades, the advent of digital computers has led
to the development of this traditional process being aided by computer simulations that
resulted in the reduction of the above time frame from 10–20 years to 14–18 months [10].
Over the last two decades, the appearance of the so-called “big data” prompted materials
science researchers to use ML techniques for the design and development of new materials
which significantly further reduced the development time and computational costs.
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The aforementioned advancements in materials science research and development
can be summarized using four paradigms, drawing analogies to the overall evolution of
science and technology throughout history [5]. The initial paradigm in science relates
to empirical observations made over centuries, analogous to metallurgical observations
and trial-and-error experiments in materials science. The second paradigm in science
emerged a few centuries ago and involves theoretical developments characterized by the
formulation of classical laws, theories and models. In materials science, this paradigm
manifests through the establishment of thermodynamic laws. The third paradigm in science
emerged with the advent of computers a few decades ago and encompasses computational
science, enabling the simulation of complex real-world problems based on theories from
the second paradigm. In materials science, computer simulations of materials using DFT
and molecular dynamics (MD) exemplify this paradigm. In recent years, the substantial
amount of data generated by these three paradigms has given rise to the fourth paradigm, also
known as data-driven science, that perfectly unifies the other three paradigms, encompassing
theory, experimentation, and computer simulations. Within the fourth paradigms, the study of
materials science has given rise to the emergence of machine learning techniques rooted in big
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data analysis. Similarly, an analogy has been drawn between the advancements in materials
research and the industrial revolution, labeling the fourth paradigm of materials research as
“Materials 4.0” in parallel with the latest industrial revolution known as “Industry 4.0”. [11].

It is impossible to overstate the importance of the availability of high-quality, data-
related materials science for realizing the great benefits offered by the fourth paradigm of
materials research or “Materials 4.0”. Realizing this significance of high quality materials
data resources, the Materials Genome Initiative (MGI) [12] was launched in 2011 which in
collaboration with other stakeholders and big data resources provides multiple avenues to
create/collect and store a significant amount of materials data. These initiatives made it
possible for scientists and engineers to have ready access to large and high-quality materials
databases proving all kinds of information about known materials. Section 2.1 of this paper
reviews several databases for materials properties resulting from these initiatives.

To expedite the progress of materials design and development using the fourth
paradigm of materials research, the application of machine learning techniques has emerged
as a significant force within materials science. Machine learning, a branch of artificial intel-
ligence capable of creating models that can effectively learn from past data and situations,
holds great promise for the design and development of new materials. Notably, several
notable review articles have recently been published, documenting the impact and advance-
ments in machine learning applications for materials design and development [4,5,13–15].
Agrawal and Choudhary [5] present a comprehensive framework for materials informatics
and discuss the utilization of data-driven techniques to learn relationships between process-
ing, structure, properties and performance. Mueller et al. [13] offer an extensive overview
of machine learning techniques, showcasing various examples of recent applications in
materials science and exploring emerging efforts. Hill et al. [16] delve into the challenges
and opportunities associated with data-driven materials research, with a particular focus
on materials data challenges. Kalidindi et al. [15] present a visionary outlook for data and
informatics within the future materials innovation ecosystem. Liu et al. [4] provide an
inclusive review of the current research status regarding machine learning applications in
material property prediction, new materials discovery and other related fields, discussing
the associated research issues and outlining future research directions. Wei et al. [3] offer an
extensive review specifically focused on recent machine learning applications in materials
science, with a special emphasis on deep learning applications.

One of the main goals of the current study is to conduct an overview of ML methods
including ensemble learning and deep learning methods and their applications in different do-
mains of material science, and to show the successful experiences and the common challenges.

2.1. Big Data in Materials Science

The data/material informatics make use of existing high quality material data to
discover new materials by employing data driven or machine learning techniques. The use-
fulness of data/material informatics for material development and commercialization was
also envisioned by the Materials Genome Initiative (MGI) [12], which ultimately led to
the emergence of more open access materials science data infrastructures that collect, host
and provide material properties of known elements to various interested practitioners.
The emerging interest around the use of data driven or ML techniques to accelerate de-
sign of advanced materials ultimately led to the transition of data centers into materials
discovery platforms such as the Computational Materials Repository, Citrination, Materials
Project, Open Materials Database, Marvel NCCR, SUNCAT and AFLOWLIB.

Some of the publicly available materials data resources that contain large numbers of
different kinds of materials properties and structures data are summarized in Appendix A
Table A1. Appendix A Table A2 provides details on some of the commercially available
materials databases that contain information on the structures and property of different
kinds of materials.
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2.2. Machine Learning Framework for Materials Design and Development

ML encompasses a collection of potent techniques capable of automatically generating
models by learning from previous data and experiences. ML has exhibited its potential
across various real-world domains, including pattern recognition, data mining, game the-
ory, bioinformatics, finance, and more. Typically, the general ML framework, depicted in
Figure 2 [17], can be employed to construct a prediction model using ML. This framework
involves several steps: Firstly, gathering extensive and diverse datasets generated through
laboratory experiments and computer simulations. Subsequently, data preprocessing meth-
ods are applied to select pertinent materials properties and cleanse the data. The dataset is
then divided into training and testing sets and is utilized later in the pipeline by the Model
Build and Model Validation modules, respectively. Following this, the Feature Engineering
module undertakes the extraction of quality features from the raw data, a task that can be
very challenging and dependent on the specific application. It is widely recognized that
providing well-designed features is critical to developing a high-performing model.
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After successfully extracting suitable features, the subsequent step in the ML frame-
work illustrated in Figure 2 involves training a prediction model by selecting an appropriate
learning algorithm that suits the specific problem. ML algorithms can be broadly catego-
rized into supervised, unsupervised, semi-supervised and reinforcement learning types.
However, for the purpose of this paper, our focus is solely on supervised learning algo-
rithms for the design and development of new materials. Popular supervised learning
algorithms include k-nearest neighbors, artificial neural networks, decision trees and sup-
port vector machines, among others. Additionally, by training multiple prediction models,
it becomes possible to develop an ensemble of models using supervised ensemble learning
algorithms. Prominent examples of such ensemble learning algorithms for generating
prediction models are random forests and gradient boosting trees.

In the ML application for materials design and development, several crucial steps
can be identified from the workflow depicted in Figure 2. These steps include data prepa-
ration, feature engineering and the selection of an appropriate ML algorithm for model
development. When analyzing materials properties, it is essential to carefully curate the
properties used in the analysis since not all properties may be relevant for a specific analysis.
Accurate techniques must be employed to ensure a proper selection. Equally important is
the task of selecting the ML algorithm, which should be based on the nature of the specific
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task and the features present in the dataset. This step also requires careful consideration to
ensure the most suitable algorithm is chosen.

2.2.1. Classes of ML Problems

The most common problems tackled by ML techniques are classification, regression,
clustering, input/feature selection and anomaly detection. In classification problems, ML
builds classifiers or classification models that label given objects into one or more classes.
In regression problems, ML techniques are used to build prediction models to output values
for some continuous response variable. In clustering problems, ML techniques are used
to group objects into different categories based on their similarity measure. ML methods
are effective in solving the input/feature selection problem which concerns selecting the
smallest subset of inputs/features from all available inputs/features that are necessary to
enhance the prediction performance. In anomaly detection, ML methods are used to build
computational models to identify or detect novel or outlier objects/events. This paper on
ML applications for materials design and development will focus only on the first three
problems, namely, classification, regression and clustering.

Supervised learning is by far the most widely used learning type in ML applications.
In supervised learning, all the training data instances have target outputs which are labeled
with an aim to “teach” or train a model using the labeled data so that it can make accurate
predictions on new data instances. Classification and regression problems are generally
solved using supervised learning algorithms. In unsupervised scenarios, the training
instances have no labels associated with their target output, and the goal is to discover
groups or some inherent distributions within the data. Clustering problems are typically
solved using unsupervised learning algorithms. In semi-supervised learning, only some
of the training data instances have labels for their target outputs, and the remaining data
instances, which are typically a major part of the whole training dataset, are not labeled.
In reinforcement learning, the traditional approach of providing explicit error feedback to
guide the model in generating correct outputs is replaced by using reinforcement signals
obtained through interactions with the environment. These reinforcement signals are
utilized to evaluate the quality of the generated outputs, enabling the system to learn and
enhance its strategies for adapting to the environment.

2.2.2. Feature Engineering and Dimension Reduction

It is well known that the classic ML methods require carefully designed features
to achieve good generalization performance. Therefore, feature engineering which is
conducted manually is a very important step in the workflow of the traditional ML process.
As discussed later, deep learning techniques alleviate this problem by automating this
feature engineering step. In materials science, the features are also called descriptors.

Like any ML problem, the selection of crucial features or descriptors that exhibit a
strong correlation with the desired material property is a significant step in the feature
engineering process and is performed prior to model selection and training as illustrated in
Figure 2. An effective material descriptor should satisfy three essential criteria: it should
provide a distinct characterization of the material, demonstrate sensitivity towards the
target property and be easily obtainable [6].

The main motivation for performing input selection or dimension reduction is to real-
ize the following potential benefits: (a) providing better understanding of the underlying
process/model by facilitating data visualization and data understanding, (b) improving
efficiency by reducing measurement, storage and computation (model training and utiliza-
tion) costs, and (c) improving prediction performance. Improved predictive performance
due to dimensionality reduction can be obtained by tackling the following issues: (i) us-
ing too many input variables reduces predictive performance due to model overfitting,
(ii) irrelevant and redundant features can confuse learning algorithms, and (iii) input
selection can help to defy the curse of dimensionality to deal with limited training data.
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In the extensive material databases discussed in Section 2.1, it is important to ac-
knowledge that the available materials data often exhibit high correlation among them-
selves. Hence, in many instances, it becomes necessary to employ dimensionality reduction
techniques to preprocess the high-dimensional datasets before constructing ML models.
Several dimensionality reduction algorithms [18], such as principal component analysis
(PCA), multidimensional scaling (MDS) and linear discriminant analysis (LDA), are avail-
able to reduce the dimensionality of the feature space. These techniques aid in identifying
the most relevant descriptors (or key features) that exhibit a strong correlation with the
target material property.

2.2.3. ML Algorithms

In this subsection, the most used shallow learning type of machine algorithms for
materials science applications are described by giving brief details on their algorithmic
working principles followed by a few of application case studies from the materials science
literature. In the subsequent subsections, ensemble learning, and deep learning type
algorithms will be described.

k-Nearest Neighbor (kNN) Method

The k-nearest neighbor (kNN) algorithm is used as a multivariate non-parametric
method for both regression and classification tasks in ML applications. The kNN method
is often called the k-nearest neighbor classifier when it is used for classification problems,
while it is called k-nearest neighbor regression when it is applied for regression problems
involving prediction of continuous outputs. The kNN method is a memory-based approach
without requiring an explicit model and its associated training process; instead the entire
training dataset is stored and then is used for the prediction of the new output response
whenever a new unseen data instance is presented [19]. This kNN procedure can be
described as follows: For a given unseen data instance, the kNN algorithm identifies the
k data instances from the training set that are most similar or closest (nearest neighbors)
to the unseen data instance. The similarity measure between a new unseen data instance
and the nearest neighbors can be defined by any of several distance metrics such as the
Euclidian distance in the input or feature space [19]. Then, the unseen data instance is
going to be classified to the majority class among the k nearest neighbors for classification
problems; while for regression problems, the unseen data is going be assigned the average
value or weighted average of the k nearest neighbors.

A diverse dataset of organic molecules was utilized to apply the kNN modeling
technique for predicting melting points [20]. The investigation into the influence of the
number of nearest neighbors involved the combination of information from these neighbors
using different methods. This exploration provided valuable insights into the applicability
of the “molecular similarity principle,” which forms the foundation for the kNN method in
predicting materials properties. Four distinct methods, including arithmetic and geometric
averages, inverse distance weighting and exponential weighting, were tested to predict
based on the melting temperatures of the nearest neighbors. The results indicated that the
exponential weighting scheme produced the most accurate outcome. The kNN classifier
was investigated by Rahim et al., [21] to classify the materials non-destructively tested
according to their mechanical properties. The classification results from the study show
the kNN classifier giving the accuracy more than 99% which is comparable to the accuracy
achieved with the neural network classifier from the same study.

Naïve Bayes Classifier

The naive Bayes classifier, as its name implies, is a simple, yet effective and commonly
used ML technique for classification problems. It is a series of simple probabilistic classifiers
that make classifications using the maximum a posteriori (MAP) decision rule in a Bayesian
setting assuming strong independence between the features. This assumption of strong
independence between the features simplifies the computations involved, thus, making
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this algorithm attractive when the dimension of the feature space is high. While this
assumption is generally not satisfied, thus giving credence to the term “naive” in its
name, in many practical applications this classifier often outperforms more advanced
classifiers [19]. Besides its computational efficiency, the naive Bayes classifier possesses
another advantage: it can make classification decisions by estimating the mean and variance
of each feature variable using a limited amount of training data.

The important computational steps of this classifier are summarized as follows.
During the training stage, the naïve Bayes classifier estimates the probabilities p (Ck)
for classes, k = 1, . . . , K, and p (xi|Ck) for all features i = 1, . . . , n and all feature values
xi from the training set. During this stage, to classify a new unseen data instance, the
posterior probability is estimated using Bayes theorem and the independence assumption
between the features is p (Ck|x) = p(Ck)∏n

i=1 p(xi|Ck) . The new unseen data instance x
will be identified with the label Ck if p (Ck|x), which attains the maximum value among
all the labels.

Due to its simplicity and robustness, the naive Bayesian classifier has been applied to
various materials scenarios such as materials damage detection [22] and classification of
engineering materials datasets [23–25], resulting in computation cost savings in the process
of materials classification and selection.

Decision Tree

Decision trees are extensively employed for addressing classification and regression
problems using inductive inference. Within a decision tree, every internal node corresponds
to a feature test, also referred to as a split, and the data falling into that node are divided
into various subsets based on their distinct values regarding the feature test. Each terminal
or leaf node is linked to a label, which is assigned to data instances that belong to that
specific node. When new data is introduced, the decision algorithm executes a sequence of
feature tests commencing from the root node, and the outcome is determined once a leaf
node is reached.

In the process of decision tree learning, which involves recursion, each step involves
providing a training dataset and selecting a split. This chosen split is utilized to divide
the training dataset into subsets, and each subset is then treated as the provided training
dataset for the subsequent step. The crux of a decision tree algorithm lies in the selection of
these splits. More popular decision tree algorithms reported in the literature are ID3 [26],
C4.5 [27] and CART [28]. The information gain criterion is used for selecting the splits in
the ID3 algorithm. According to this criterion, the feature–value pair that will result in the
largest information gain is selected for the split. The C4.5 algorithm, which was developed
as an improvement on the ID3 algorithm, uses the gain ratio criterion for split selection,
whereas the CART algorithm employs the Gini index for selecting the splits. The decision
tree algorithm generally encompasses three main stages: feature selection, decision tree
generation and decision tree pruning. Feature selection plays a crucial role in choosing the
most relevant features that enhance classification performance. On the other hand, pruning
is aimed at simplifying the decision tree to prevent overfitting, ultimately improving the
overall ability of the tree to generalize well.

Notably, these newly identified chemistries exhibit a significantly elevated Curie
temperature [29]. This data-driven approach also enables the identification of essential
physical characteristics that seem to govern the properties of specific crystal compositions,
such as piezoelectric with high Curie temperatures. Consequently, this methodology offers
a mechanistic-based discovery process, deviating from conventional heuristic strategies.

Neural Networks

Artificial neural networks (ANN) are computational models that mimic the function-
ality of the human nervous system. They encompass various types of networks, each
constructed using mathematical operations and a specific set of parameters known as
weights. These weights are essential in facilitating output prediction within the network.
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While it is possible to employ an ANN architecture with numerous hidden layers, the
prevalent practice involves utilizing one or two hidden layers. This choice is motivated
by the fact that a feed-forward neural network with just one hidden layer is capable of
approximating any continuous function. Utilizing additional hidden layers can introduce
challenges such as divergence or instability, necessitating the use of more complex algo-
rithms to address such issues. For further information on the architecture and learning
algorithms pertaining to neural networks, refer to Section 3.3.1.

Support Vector Machines and Support Vector Regression

Support vector machines (SVMs) are powerful ML algorithms used for solving clas-
sification and regression problems [30,31]. When solving regression problems, they are
known as support vector regression (SVR) algorithms. Since the 1990s, the SVM and SVR
have been widely applied in face recognition, text categorization, biomedicine and other
pattern recognition and regression problems. Originally developed for solving binary
classification problems, SVMs are generalized linear classifiers with an objective to separate
borderline data instances of different classes with the maximum margin/gap decision space
or hyperplane. The margin refers to the minimum distance between instances belonging to
different classes and the classification hyperplane. Because of this optimization objective,
the SVMs are commonly referred to as large margin classifiers. The data instances that lie
on the boundary and define the maximum margin are known as support vectors.

When dealing with inherently nonlinear problems where the data points are not lin-
early separable, the linear SVM classifiers mentioned above may struggle to effectively sep-
arate the classes. In such scenarios, SVM classifiers commonly employ a general approach
of mapping the data points to a feature space of higher dimensionality. This transformation
allows the initially non-separable data points to become linearly separable. The determina-
tion of this mapping from the original lower-dimensional features to a higher-dimensional
feature space, where a linear separation is feasible, is achieved using a class of functions
known as kernel functions or simply kernels. Noteworthy examples of kernels include
the linear kernel, the polynomial kernel, and the Gaussian kernel [20]. The feature space
derived by kernel functions is called the Reproducing Kernel Hilbert Space (RKHS) [30,31].
There is equivalence between an inner product in the RKHS and kernel mapping of the
inner product of data instances in the original lower-dimensional feature space, and this
clever mathematic construction of mapping the data points with a kernel and then ac-
complishing the learning task in the RKHS is called the kernel trick. Since all the learning
algorithms that employ this kernel trick are called kernel methods, the SVMs are also
known as kernel methods.

The support vector regression (SVR) has shown promising outcomes in predicting the
atmospheric corrosion of metallic materials such as zinc and steel. To achieve this, a hybrid
approach is employed where a genetic algorithm (GA) is utilized to automatically identify
the optimal hyper-parameters for the SVR [32].

2.2.4. Ensemble Learning Algorithms

Ensemble learning is a machine learning procedure that involves constructing and
combining multiple classification (or regression) models using various combination meth-
ods to create a final ensemble prediction model, as depicted in Figure 3. Unlike conventional
shallow learning approaches that aim to create a single model from training data, ensemble
learning methods focus on developing multiple models to address the same problem.
The use of ensemble learning typically results in improved accuracy and/or robustness
across various applications, as it leverages accurate and diverse models that are combined
into an ensemble solution. Prominent examples of ensemble learning algorithms include
boosting [33], bagging [34] and stacking [35,36] algorithms.
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Ensemble learning methods can be classified into two types based on how the base
models are generated: sequential ensemble learning methods and parallel ensemble learn-
ing methods. Sequential ensemble learning methods involve generating the base models
sequentially, with boosting methods being notable examples of this approach. On the other
hand, parallel ensemble learning methods generate the base models simultaneously, with
bagging techniques serving as prominent examples of this type of ensemble method.

In general, a parallel ensemble method, as illustrated in Figure 3, is executed in three
stages: (1) generation of base learners/models, (2) selection of base learners/models, and
(3) aggregation of the chosen base learners/models using specific combination strategies.
Initially, a collection of base learners/models is generated, which can comprise either ho-
mogeneous base learners/models of the same type or heterogeneous base learners/models
featuring a mixture of different types. Next, a subset of base learners/models is selected
based on their accuracy and diversity. Lastly, an ensemble model is created by combining
the selected models using a combination strategy. To obtain a final ensemble model with
enhanced generalization performance, it is preferable for the chosen base learners/models
to exhibit both high accuracy and significant diversity.

In the following, two well-known ensemble learning methods are described: namely, the
gradient boosting tree algorithm and the random forest technique representing the sequential
ensemble learning method and the parallel ensemble learning method, respectively.

Gradient Boosting Tree Algorithm

A gradient boosting tree (GBT) is a highly effective machine learning algorithm that
utilizes a sequential ensemble learning technique to transform multiple base models or
learners, commonly referred to as weak learners (often decision trees), into a robust en-
semble model that exhibits enhanced generalization performance. The GBT algorithm is
versatile and can be employed for classification, regression and feature ranking tasks [19].

The GBT algorithm comprises three major components, namely, a set of weak learners,
a loss function and an additive model, that combine multiple weak learners to create
a strong ensemble model. Decision trees are commonly chosen as the base learners for
constructing the GBT algorithm. These decision trees are generated in a greedy manner,
selecting the best split points to minimize the specified loss function. In gradient boosting,
weak learners are sequentially added using an additive model, employing a gradient
descent strategy to minimize the loss function. Essentially, the gradient boosting algorithm
frames the task of combining weak learners into a strong learner (ensemble model) as a
sequential gradient descent optimization problem. During each iteration, after calculating
the loss, a weak learner is incorporated into the model by parameterizing the decision
tree and adjusting its parameters in the direction of gradient descent to minimize the loss.
The output of the new tree is then combined with the output of the existing sequence of
trees, aiming to rectify or enhance the final model output. A fixed number of trees are
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added, or the training process stops when the loss reaches an acceptable level or no longer
improves on an external validation dataset.

The gradient boosting tree (GBT) technique, which is a sequential ensemble learning
technique, was used to classify a novel candidate material as a metal or an insulator, and
the band gap energy will be predicted if the material is an insulator [37]. Prior to model
training, the dataset is partitioned using 5-fold cross-validation. During the training of
the models, the GBT method and descriptors are utilized without any manual tuning or
variable selection. Hyper-parameters are determined with grid searches on the training set
and 10-fold cross-validation. The performance measures such as the ROC curve, RMSE,
MAE and R2 are used to evaluate the prediction accuracy of the trained models.

Random Forest Algorithm

A random forest (RF) is a versatile ML algorithm that employs a parallel ensemble learning
approach to transform multiple and diverse base models or learners (usually decision trees)
into a robust ensemble model with improved generalization performance [38]. In general,
the RF algorithm can be utilized for classification and regression tasks. It is an extension
of the bagging algorithm, another powerful parallel ensemble learning method, but it
incorporates randomized feature selection as a key difference. During the construction of
each decision tree in the RF algorithm, additional randomness is introduced. Specifically,
the RF algorithm randomly selects a subset of features at each node and then proceeds
with the conventional split selection process using the chosen feature subset. In other
words, instead of searching for the optimal feature when splitting a node, the RF algorithm
searches for the best feature among a randomly selected subset of features. This approach
promotes greater tree diversity, which is beneficial in a parallel ensemble learning setting.
This randomness during the construction of a component decision tree also adds to the
efficiency of the method during the training stage.

In the research of Oliynyk et al. [39], an ML approach based on a random forest
algorithm was used to evaluate the probabilities at which compounds showing the for-
mula AB2C will adopt Heusler structures, based on the composition alone. Very high
performance was achieved using this model which successfully predicted 12 novel gallides,
namely as Heusler compounds. The RF algorithm was used to train a model using exper-
imentally obtained compounds to predict the stability of half-Heusler compounds [40].
This model demonstrated good performance by retrieving 71,178 compositions and yield-
ing 30 results for further exploration. The random forest algorithm was used to identify a
low-thermal-conductivity half-Heusler semiconductor, and results were demonstrated by
scanning more than 79,000 half-Heusler entries in the AFLOWLIB database [41].

2.2.5. Deep Learning Algorithms

Deep learning (DL) is a sub-discipline of ML, which in turn is a sub-discipline of AI.
The advent of DL happened over the last decade and came about due to a clear need for
automatically generating features to gain the best possible ML models. It is well known that
the performance of classic ML models very much depends on how good the features are,
thus giving major emphasis to feature engineering, which is mostly performed manually.
The approach to constructing features automatically is known as representation learning
which predates DL. Therefore, hierarchically, we go from AI to ML, then to representation
learning and then finally to DL [42].

The demand for DL applications in materials science arises from two primary factors.
Firstly, while classic ML (shallow learning) applications yield reasonable or satisfactory
accuracy results across various materials science domains, they do not reach the same level
of accuracy achievable with DFT calculations. Secondly, as mentioned earlier, shallow
learning algorithms necessitate manual feature engineering, which relies on domain knowl-
edge to develop suitable representations for input data. This manual process can lead to a
decline in model accuracy [43].
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In recent years, inspired by the success of DL in other domains such as image recogni-
tion, speech recognition, natural language processing (NLP) and biomedicine, the field of
materials science has witnessed progress in utilizing data-driven DL methods. These factors
have further accelerated the adoption of DL applications in the past decade. DL models
typically outperform shallow models in nonlinear tasks by leveraging nonlinear cascade
processing units for automatic feature extraction, resulting in more abstract high-level rep-
resentations of attribute categories. Despite the enthusiasm surrounding DL applications
in materials science, there are still factors that could impede rapid progress. These factors
include the limited size of available material databases, lengthy training times and the low
interpretability of deep neural networks.

Nevertheless, in recent years, various deep neural network (DNN) architectures such
as the convolutional neural network (CNN), recurrent neural network (RNN), deep belief
network (DBN) and deep coding network have exhibited exceptional performance in
material detection, analysis, design and quantum chemistry [3]. CNN and RNN are the
prominent architectures that have found applications in materials science, and they will be
described briefly in the following subsections.

Convolutional Neural Network (CNN)

CNNs are simply feed-forward ANNs that use convolution in place of matrix multi-
plication in at least one of their layers [42]. To put it simply, a convolutional neural network
(CNN) combines ANN with discrete convolution for image processing, enabling direct
input of images into the network. This eliminates the need for complex processes such as
feature extraction and data reconstruction that are typically carried out in traditional image
recognition algorithms. The neocognitron, its predecessor developed in 1980 for visual
pattern recognition, faced limitations in further development due to insufficient computing
resources when increasing network depth. However, the availability of high-efficiency
GPUs since 2006 facilitated the progress of CNNs.

A typical CNN network model, as applied here to TBC porosity prediction, is depicted
in Figure 4. In this CNN network, neurons in adjacent layers are fully connected, while
neurons within the same layer are not. Each layer in a CNN accepts the output of the
layer above as input, establishing the input–output connections between layers. The CNN
architecture between the input and output typically consists of three types of layers: convo-
lutional layers, pooling layers and fully connected layers. The convolutional layer extracts
the characteristics of the input data and reduces noise, while the pooling layer subsamples
the input data and applies functions, such as averaging or maximum operations, on smaller
regions within the input.

Recurrent Neural Network (RNN)

CNNs lack feedback connections, resulting in unidirectional data flow from the input
layer to the hidden layer and ultimately to the output layer. As a result, CNNs face diffi-
culties in processing sequential or time-related data. On the other hand, recurrent neural
networks (RNNs) have feedback connections within each layer, making them suitable for
handling sequential data. RNNs have been extensively employed in various domains
dealing with sequential data, including machine translation, speech recognition and nat-
ural language processing. In the field of materials science, RNNs have been utilized for
designing new materials with specific properties [44].
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2.2.6. Model Validation Methods

A model obtained using a data-driven approach should be validated to evaluate its
accuracy on a separate dataset, called a test dataset, which is different from the training
dataset. For this purpose, typically, ML methods divide the original data into a training set
and a test set and use the training set for model training and the test set for model validation.
There are various validation methods and the most common ones are k-fold validation,
leave-one-out cross-validation (LOOCV), hold-out validation, and bootstrapping-based
cross-validation [19].

When data is limited, k-fold cross-validation uses part of the available data to fit the
model, and a different part is used to test or validate it. K-fold cross-validation involves
randomly dividing the dataset into k non-overlapping parts. One part is used as a test
(or validation) set, while the remaining k-1 parts are combined to create a larger training
set. This process is repeated k times, with each iteration using a different part as the test set
and the remaining k-1 parts as the training set. Each iteration or instance in this process
is referred to as a fold. Over these k times repeated runs, model performance measures
are computed using the test dataset and the average of these performance measures are
outputted as the model performance measures based on k-fold cross-validation.

It should be noted that k-fold cross-validation is k times more computationally expensive
(approximately) than its holdout counterpart. In practice, commonly used values for k range
from 3 to 10. To reduce the influence of randomness introduced by the data split, the k-fold
cross-validation can be repeated q times, which is called q-times k-fold cross-validation.

Leave-one-out cross-validation (LOOCV) is a specific variant of k-fold cross-validation,
where k is equal to the number of samples, N, in the original dataset. In LOOCV, each
sample is treated as the verification set once, while the remaining N-1 samples are used as
the training set. This means that N models are created, each using a different sample as the
verification set. The average classification accuracy of the final validation set from these
N models is then used as the performance metric for evaluating the classifiers in LOOCV.

As an alternative procedure to perform model validation, a bootstrapping-like approach
is described in this subsection. The bootstrap procedure is commonly employed to assess
statistical accuracy. In this method, given a dataset with n data points, a random sample of
size n is selected with replacement from the original sample. As the sampling is performed
with replacement, the bootstrap sample may contain duplicated data points from the original
sample while omitting others. This process of repeatedly sampling from the original sample is
referred to as bootstrapping or resampling. For our model validation purpose, we modified this
resampling procedure such that we randomly select a small percentage (usually between 10%
and 30%) of the sample size as testing data points without replacement. The remaining data points
will be used as the training dataset. This selection will provide us with a non-overlapping
division of the original dataset into training and test datasets. To reduce the influence of
randomness introduced by the data split, this bootstrapping-like procedure can be repeated
q times. Over these q-times repeated runs, model performance measures are computed using
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the test dataset and the average of these performance measures are outputted as the model
performance measures based on the bootstrapping-based model validation.

2.3. ML Applications in Materials Science

With the introduction of the fourth paradigm of materials research (also known as
materials informatics or Materials 4.0), ML techniques aided by the availability of high-
quality material databases have begun to demonstrate superiority in getting desired results
in terms of time efficiency and prediction accuracy. By harnessing the key strengths of ML
techniques, such as their ability to effectively identify patterns in large, high-dimensional,
and complex datasets, and rapidly extract valuable information and uncover hidden pat-
terns, significant benefits can be attained by applying these techniques to various materials
design and development endeavors. This comprehensive review on ML applications in
materials science will primarily concentrate on two specific areas: material property predic-
tion and the discovery of novel materials. Material property prediction typically involves
employing ML methods suited for regression problems. On the other hand, Bayesian
techniques, in combination with other supervised learning algorithms, are considered for
their application in the exploration and discovery of new materials.

2.3.1. Material Property Prediction

In the initial three paradigms of materials research, the investigation of material
properties, such as hardness, melting point, glass transition temperature, ionic conductivity,
molecular atomization energy and lattice constant, primarily rely on two commonly used
methods: laboratory experiments and computer simulations. These methods play a crucial
role in understanding and characterizing various material properties. These properties can
be studied at both macroscopic and microscopic levels. Even though these two traditional
methods to study materials properties mostly yield sufficient results, there are instances
when they fail to deliver the desired level of accuracy or are not able to provide the means
to study the properties. These situations necessitate the need for ML techniques which
are capable of developing a prediction model to understand the properties of materials
with high efficiency and low computational cost. In the following subsections, recent
applications of ML for material property are reviewed under three categories: shallow
learning applications, ensemble learning applications and DL applications.

Shallow Learning Applications

Advanced ML techniques are utilized to solve the regression problem for material
property prediction. This involves mapping the nonlinear relationships between the prop-
erties of a material and their associated factors. The framework illustrated in Figure 2
provides a structured approach to employing these ML techniques and facilitating the
analysis of complex relationships. Based on their performance in solving regression prob-
lems, ANN and SVM algorithms are predominantly used for material property prediction.
Macroscopic properties such as mechanical and physical properties are studied by looking
at their relationship with the microstructure of materials [4].

To predict the fatigue strength of steel, a study was conducted to examine the re-
lationship between various properties of the alloy, its composition and manufacturing
process parameters. Predictive modeling, supported by feature selection techniques, was
employed [45]. For predictive modeling ANN, SVM and linear regression models were
explored, and a ranking-based feature selection was used to select more relevant features
from the set 25 features associated with fatigue strength. The analysis revealed that the tem-
pering temperature emerged as the most significant feature impacting the fatigue strength
of the steel. The performance of the ML-based models was evaluated using leaving-one-out
cross-validation. Impressively high prediction accuracies were achieved, with R2 values
exceeding 0.98 and error rates below 4%. Furthermore, various ANN-based shallow learn-
ing schemes were employed in material analysis tasks, including the detection of metal
corrosion, asphalt pavement cracking, and the determination of concrete strength [46–49].



Coatings 2023, 13, 1140 15 of 59

The strength of backpropagation training-based ANNs lies in their capability to ap-
proximate any nonlinear function. This feature has been utilized to establish mappings
between material properties, such as temperature responses, elongation, wastage corrosion,
compressive properties and various external factors [49–51]. Backpropagation training-
based ANNs have proven to be effective in predicting material properties without relying
on domain knowledge, yielding acceptable prediction performance. However, they are
susceptible to slow convergence rates and can get stuck in local minima. To address these
challenges, an alternative type of ANN known as the radial basis function (RBF)-based
ANN has been employed for material property prediction. An RBF-based ANN was
utilized to investigate crack propagation in a pavement bituminous layered structure.
The inputs for this model were chosen as the thicknesses of each layer, the load value and
the Young’s moduli of the layers composing the pavement. The findings revealed that
a decrease in the thickness of the bituminous layer B2 led to a considerable increase in
cracking, while the thickness of the asphalt layer B1 had a lesser effect on the cracking of
the sub-grade layer [52].

It is well known that ANN requires a sufficient number of data instances with enough
diverse representation to provide reliable prediction results. When the data size is small,
SVM can be used for reliable results as it can efficiently handle large dimensions and the
overfitting problem. The SVR has been demonstrated with promising results for forecasting
atmospheric corrosion of metallic materials such as zinc and steel using a hybrid approach
in which a genetic algorithm (GA) is adopted to automatically determine the optimal
hyper-parameters for the SVR [32]. In other studies for ionic conductivities prediction,
such as glass transition temperature prediction, the SVM has demonstrated its potential in
providing very good prediction performance [53,54].

Various studies [55–57] have explored the use of ML techniques, including logistic
regression (LR), SVR and ANN for predicting microscopic properties. The results indicate
that SVR demonstrates the highest accuracy among the investigated techniques, while
ANN surpasses LR in accuracy and performance. Additionally, SVR demonstrates better
training and testing efficiency than ANN, particularly for smaller datasets.

Ensemble Learning Applications

Ward et al. [58] employed a comprehensive approach, incorporating ensemble learning,
to enhance the time efficiency and prediction accuracy of ML methods for predicting the
band gap energies and glass-forming ability of inorganic materials. They devised a versatile
ML framework that incorporated three key strategies to improve efficiency and accuracy:
(a) the utilization of a general-purpose attribute set encompassing 145 elemental properties
that effectively captured the decision properties; (b) the implementation of an ensemble
learning technique to overcome the limitations of individual methods, thereby leveraging
the strengths of multiple models; and (c) a partitioning strategy that grouped dataset
elements into subsets based on chemical similarity, allowing separate models to be trained
on each subset.

To classify novel candidate materials as either metals or insulators and predict the
band gap energy for insulators, the researchers employed gradient boosting decision
trees (GBDT), a sequential ensemble learning technique [37]. Additionally, predictions
were made for six thermo-mechanical properties: bulk modulus, shear modulus, Debye
temperature, heat capacity at constant pressure, heat capacity at constant volume and
thermal expansion coefficient. Prior to model training, the dataset was partitioned using
5-fold cross-validation. During model training, the GBDT method and descriptors were
employed without manual tuning or variable selection. Hyperparameters were determined
through grid searches on the training set using 10-fold cross-validation. To evaluate the
prediction accuracy of the trained models, performance measures such as ROC curve, root
mean square error (RMSE), mean absolute error (MAE) and R-squared (R2) were utilized.
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DL Applications

Several DL techniques, including deep CNNs, were investigated for material analysis
purposes, such as detecting metal corrosion, asphalt pavement cracking and determining
concrete strength [59–65]. To automatically detect pavement cracks in three-dimensional
(3D) images of asphalt surfaces with high accuracy, an efficient CNN architecture with pixel-
level precision was proposed [65]. Furthermore, a model based on a fully convolutional
network was introduced for railway track inspection. The model utilized four convolu-
tional layers for material classification and five convolutional layers for fastener detection.
Data collection involved capturing images of 203,287 track sections spanning 85 miles
using an artificially illuminated car. The collected data was annotated using a custom soft-
ware tool and divided into five parts, with 80% allocated for training and 20% for testing.
Each data segment consisted of 50,000 randomly sampled patches for each class, resulting
in training each model on 2 million patches.

Due to the time-consuming nature of density functional theory (DFT) calculations for
microscopic property predictions, ML techniques offer an alternative approach, enabling
rapid and highly accurate structure and property predictions for molecules, compounds
and materials. ElemNet is an ML model based on a deep neural network (DNN) that takes
elements as inputs to predict material properties [66]. It automatically extracts physical
and chemical interactions and similarities between elements, facilitating fast and precise
predictions. Similarly, Chemception is a CNN-based model that converts raw compound
data into 2D images to predict properties such as toxicity, activity and solvation [67].

2.3.2. New Materials Discovery

Traditional approaches to discovering new materials involve experimental and com-
putational screenings, which typically include element replacement and structure trans-
formation. However, these screening methods often require extensive computation or
experimentation, leading to an “exhaustive search” that consumes significant time and
resources. Additionally, such methods may lead to efforts being directed in incorrect
directions. Recognizing these challenges and the benefits of ML, a novel approach is pro-
posed that combines ML with computational simulation to enable efficient evaluation and
screening of new materials in silico, providing suggestions for improved materials.

The proposed method involves a completely adaptive process that consists of two main
components: a learning system and a prediction system. The learning system performs
essential tasks such as data cleaning, feature selection and model training and testing.
The prediction system applies the trained model obtained from the learning system to
make predictions about material components and structures. Typically, the discovery of
new materials follows a suggestion-and-test approach: the prediction system recommends
candidate structures based on composition and structure recommendations, and their
relative stability is compared using DFT calculations.

Shallow Learning Applications

New guanidinium salts were designed and experimentally tested to discover novel
ionic liquids [68]. To predict the melting points (mp) of guanidinium salts belonging to four
different anionic families, quantitative structure–property relationships were established.
Using a dataset of 101 salts and employing counter propagation neural networks, models
were constructed. The predictions for an independent test set resulted in an R2 value of
0.815, while a 5-fold cross-validation procedure yielded an R2 value of 0.742. These quanti-
tative structure–property relationship (QSPR) models were based on counter propagation
neural networks (CPG NNs), which learned the connections between the structural pro-
file of guanidinium cations (represented by 92 descriptors) and the melting point of the
corresponding salts with 1 of 4 possible anions. The models were validated through an
independent test set, a 5-fold cross-validation and y-randomization, demonstrating their
ability to provide accurate predictions.
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An ML-assisted approach was employed to facilitate the discovery of new materials.
A wide range of models, including decision trees, random forests, logistic regression, k-nearest
neighbors and SVMs, were evaluated. Among these models, SVMs achieved the highest
accuracy of 74%, as determined by averaging the results of 15 training/test splits. Specifically,
an SVM model with a Pearson VII function-based kernel was trained using a dataset of
3,955 labeled reactions previously conducted by the laboratory. To assess the model’s accuracy, it
was tested against known data using a standard 1/3-test and 2/3-training data split. Given that
the objective was to predict reaction outcomes with new combinations of reactants, careful
partitioning of the test set was necessary. Randomly withholding test data could potentially
result in the same combinations of inorganic and organic reactants being present in both the test
and training sets, leading to artificially inflated accuracy rates. Instead, all reactions containing
a specific set of inorganic and organic reactants were assigned to either the test or training set
to ensure proper evaluation.

Ensemble Learning Applications

Oliynyk et al. employed an ML approach based on the random forest algorithm to
assess the probabilities of compounds with the formula AB2C adopting Heusler structures,
relying solely on composition-based descriptors [39]. This model achieved a high true posi-
tive rate of 0.94 and successfully predicted 12 novel gallides, namely MRu2Ga and RuM2Ga
(M = Ti − Co), as Heusler compounds. The random forest algorithm was utilized to train a
model using experimentally reported compounds to predict the stability of half-Heusler
compounds [40]. The model retrieved 71,178 compositions and yielded 30 results, predomi-
nantly matching half-Heusler compounds, for further exploration. Another similar study
focused on the identification of low-thermal-conductivity half-Heusler semiconductors [41].
Here, the random forest algorithm was employed to screen over 79,000 half-Heusler entries
in the AFLOWLIB database. Potential half-Heusler compounds were considered from all
nonradioactive combinations of elements in the periodic table.

2.3.3. ML Approach for Thermal Conductivity Evaluation

Thermal conductivity (TC) is of great significance for many materials and in scientific
and thermal engineering applications. As discussed earlier in the Introduction section,
the insulation effect in thermal barrier coating largely depends on this thermos-physical
property. Conventionally, the TC in materials is determined experimentally or through
understanding of physical heat-transfer mechanisms. This section briefly discusses the
available information from the literature on various ML modeling for TC prediction of
composites and other materials of scientific and engineering interest.

The regression algorithm has shown promise for atomistic modeling with length
and as well as time scales of interatomic potential in crystalline and amorphous silicon.
Trained equilibrium molecular dynamics is used to obtain TC in silicon that agrees well
with experimental data [69].

The ML approach has been recently used for TC of neutron irradiated nuclear fuel.
The model links up TC of irradiated fuel with various reactor operating conditions and material
microstructure. Here, a DNN approach has been used for the ML algorithm and trained
with historical irradiation data. The predicted TC value is found to be within 4% error [70].
The work suggests improved prediction capability of the empirical ML modeling approach.

Recently, the ML approach has also been From Section 2.used to determine TCs in
composite and porous materials considering support vector regression (SVR), Gaussian
process regression (GPR) and convolution neural network (CNN). Reliable data for the
composites are used to train, test and validate these ML models. The results obtained
indicate that the models can produce better performance than other approaches used
earlier to determine TCs. The research also found the prediction capability of the ML model
for other thermo-physical properties of composites and porous structures [71].

Lattice TC is very important for thermoelectric and semiconductor materials and
mostly computational and theoretical approaches are used to approximate the data. An ML
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model has been used recently, using a Gaussian process regression algorithm successfully,
and is found to be highly effective for rational design and screening purposes

An ML approach such as Gaussian approximation potential (GAP) has been employed
and found to be effective for describing geometries, mechanical and thermos-physical
properties. The method has been used for TC determination for semiconductor Silicane
material, and the value is good as found by other first principles such as the Boltzmann
transport equation [72].

3. Prediction of Thermal Conductivity of TBC Using ML

This section includes a case study that showcases the application of an ML approach
to determine and predict thermal conductivity using the following methodology:

(1) Polynomial Regression;
(2) Neural Network;
(3) Gradient Boosting Regressor.

3.1. Data Collection

Regardless of the field of study or inclination for characterizing information, accurate
data collection and exact information assortment is key and essential for maintaining the
integrity of research.

In the present work, a literature review of previous work was conducted on optimizing
the fabrication technologies of advanced YSZ TBC, during the last decades. YSZ TBCs
are the state-of-the-art TBC material with 6–8% Y2O3 partially stabilized ZrO2, they are
widely used since they have a low thermal conductivity. The effect of YSZ particle size, the
stabilized materials and other additives that affect the thermal conductivity of coatings on
the performance of the coating have been studied in the last years [73–79].

APS and EB-PVD methods are the two most used ways to manufacture the advanced
TBC at present. Both APS and especially EB-PVD are highly anisotropic. The ceramic
topcoat is commonly produced by EB-PVD, because of the unique columnar structure
of the EB-PVD TBCs, which provides excellent resistance against thermal stress [79–83].
APS coatings are layered by nature, and they can be dense, porous or dense vertical cracked.
In the process of data collection, we collected 39 papers related to the experimental work
on thermal conductivity (TC) of TBC (mainly YSZ) published from 1998 to 2017.

3.1.1. Basic Information Gathering

The initial stage of data collection involved reviewing research papers and gathering
essential information regarding their study. This included details such as material informa-
tion, manufacturing methods, temperature-dependent thermal conductivity measurements
and other relevant parameters, which are listed in the table provided in Appendix A
Table A2. Recent data and accuracy were equally important in our data collecting. It can
be seen from Appendix A Table A2 that 3 papers were published before the year 2000,
and the remaining 36 were published after the year 2000, which assures the data is recent.
Taking the work of Rätzer-Scheibe and Schulz [84] as an example, the procedure we used
to collect details of the research is explained.

From Section 2.1, experimental, the information of the material of coatings is collected:
APS PYSZ TBCs with a composition of ZrO2–8wt.%, and EB-PVD PYSZ coatings with
7 wt.% Y2O3-stabilized ZrO2. Details of measurements using the laser flash method were
obtained from Section 2.2. Two types of samples were studied in their research: (1). free-
standing APS and EB-PVD coating samples with a diameter of 12.7 mm and a thickness of
about 300 µm; and (2). two-layer samples that had an EB-PVD coating deposited on bond
coated (50 µm) nickel-base super alloy IN625 substrates (0.5 mm).

To study the heat treatment on thermal conductivity, the heat treatments of APS and
EB-PVD PYSZ coatings were conducted at 1100 ◦C in air from 100 h to 900 h. For APS
and EB-PVD PYSZ coatings, the first 100 h heat treatment caused a significant increase
in thermal conductivity attributed to microstructural changes due to sintering processes.
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A two-layer sample of an EB-PVD PYSZ coating with a thickness of 207 µm bonded to a
metallic substrate was heated up to 800 h.

3.1.2. Data Extracting

In the second step, the data extraction process involved obtaining data from plots.
In many published research papers, thermal conductivity (TC) data is presented in the form
of plots showing its variation with temperature or other parameters. In our study, we uti-
lized PlotDigitizer to extract the data from scanned plots, scaled drawings or orthographic
photographs. PlotDigitizer allows users to digitize data accurately from these graphical
representations. The process of data extraction using PlotDigitizer involves four steps, as
illustrated below.

Step 1: Importing plot;
Step 2: Calibrating x- and y-axis;
Step 3: Digitizing dataset points;
Step 4: Exporting dataset.

The thermal conductivity plots mentioned in reference papers, listed in Appendix A
Table A3, have been digitized using the PlotDigitizer tool. Subsequently, all the data
points from these plots have been consolidated into a single large table, allowing for sort-
ing based on various measurements. The total number of data points obtained is 1893.
Each of these 1893 extracted data points includes information about the thermal conductivity
(TC), measured temperature and material. Significant efforts have been made to gather impor-
tant parameters relevant to the thermal conductivity of TBCs, such as the number of TBC layers,
thickness of the TBC, grain size, heat treating temperature, time and substrate information.

In practical applications, a significant volume of data is often necessary for various
ML problems. It is important to note that the dataset size is closely linked to the choice of
the number of neurons in a neural network. To ensure effective training of a network, it is
essential to use an ample amount of data [85]. The dataset should encompass all possible
variations and knowledge pertaining to the problem domain. It is crucial to provide the
system with a comprehensive data representation to achieve a robust and dependable
network. To gather more samples of EB-PVD TBC experimental results, for some references
without information of heat treatment, we assumed that the values of AgingTemp and
AgingTime are zero.

3.1.3. Dataset Used in the Present Study

It is important to note that not all parameters (TBC layers, thickness of TBC, grain
size, heat treating temperature and time, and substrate information) are available in all
39 reference papers. To create datasets suitable for direct use in machine learning testing, a
single dataset was compiled from the data in the large table, as summarized and explained
in Tables 1 and 2. This dataset consists of 6 variables (TC, Temp, Material, Thickness,
AgingTemp, AgingTime) with a total of 705 samples.
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Table 1. Summary of dataset of EB-PVD YSZ TBC.

Paper No. Year Author wt.% of Y2O3 Sample No.

[86] 1999 An 8 18

[87] 2002 Nichols 7 1

[88] 2004 Jang 7 10

[89] 2004 Singh 8 11

[90] 2004 Matsumoto 7.1 3

[76] 2006 Renteria 7.5 128

[91] 2006 Scheibe 7 152

[92] 2007 Almeida 8 7

[84] 2007 Scheibe 7 187

[93] 2007 Schulz 7 146

[94] 2008 Jang 7 10

[95] 2009 Matsumoto 7 6

[96] 2011 Jang 8 18

[97] 2011 Liu 7 4

[98] 2013 Bobzin 7 4

Number of Total Samples 705

Table 2. Variables of EB-PVD YSZ TBC datasets.

Variables Unit Description Functions

TC W/(m·K) Thermal conductivity of TBC layer Output

Temp ◦C Temperature during measurement

Inputs

Material NA wt.% of Y2O3

Thickness mm Thickness of the top layer of the TBC

AgingTemp °C Temperature of heat treatment

AgingTime Hour Time of heat treatment

The data provided to the ML model, known as inputs, are used to make decisions or
predictions about the data. To process the data using individual neurons, it is converted
into binary signals, such as breaking down an image into individual pixels. In the current
study, five variables are adopted as inputs. The output, also known as the target, of the
ML framework can take the form of a real value ranging from 0 to 1, a boolean value or a
discrete value representing a category ID. In this study, the focus is on investigating and
predicting TC, which serves as the output variable. In summary, the following set of input
and output variables were prepared for this study:

1. Input variables for the prediction of thermal conductivity:
2. Temperature;
3. wt.% of Y2O3;
4. Thickness of TBC;
5. Aging Temperature;
6. Aging Time;
7. Output: Conductivity.

3.2. Exploratory Data Analysis

Before ML modeling was performed, exploratory data analysis (EDA) was performed.
In the field of statistics and scientific research, EDA is a valuable tool for examining collected
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datasets. It aids in summarizing the primary characteristics of the data and identifying
patterns that facilitate the development and refinement of hypotheses [99]. Moreover, EDA
proves useful in uncovering underlying structures, extracting important variables, and
detecting outliers and anomalies, among other purposes.

3.2.1. Exploratory Graphs

In this study, since TC is the subject investigated, it was plotted vs. the other five
important variables, as shown in Figure 5. The scatterplot for TC vs. Temp reveals an
approximate linear (or 2nd polynomial) relationship between TC and Temp, but more
importantly, it indicates a statistical condition referred to as heteroscedasticity (that is, non-
constant variation in Y over the values of X). For a heteroscedastic dataset, the variation in
Y differs depending on the value of X. In this example, small values of Temp yield large
scatter in TC while large values of X result in small scatter in Y. While no clear trends can
be found between TC vs. the other four inputs.
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Figure 5. Scatterplot and histogram for TC vs. the five important inputs: (A) TC vs. Temp; (B) TC vs.
Material; (C) TC vs. Thickness; (D) TC vs. AgingTemp; and (E) TC vs. AgingTime.

Besides the scatterplots, the distribution of TC and the five input variables is also
shown in Figure 5 (histogram plots) and Figure 6. It can be seen that the range of the TC is
0.5 to 3.5 W/(m·K). The center of TC values is around 1.5 W/(m·K), and the vast majority
of TC values are between 1 and 2 W/(m·K). The range of measurement temperature is 0 to
1400 ◦C, and the distribution is relatively even if compared with other inputs.
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3.2.2. Correlation Analysis and Principal Components Analysis (PCA)

Variable ranking method, a widely used input selection method as a preprocessing
step in ML applications, is classified as a filter approach [100,101] because it is used
independently of the model leaning algorithm. In the variable ranking-based approach,
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each input variable is assigned a score based on any one of the statistical or information-
theoretic measures, which are used to determine the measure of relevancy between the
individual input variable and the output variable. Then the input variables are ranked
based on their scores and the higher ranked input variables are selected as the relevant
input variables using a predefined threshold that determines the number of input variables
to be selected from the original set of inputs.

In numerous applications of PCA, the primary goal is to reduce the m elements of the
original data to a significantly smaller number of principal components (PCs), denoted as
p, while minimizing information loss. In the current study, the number of input variables
is not extensive (five). The primary purpose of employing PCA in this context is to gain
statistical insights into all variables and determine how many of the original input variables
are necessary to capture a substantial portion of the variation within the original data.

In the following, one such use of PCA is illustrated with the help of the MATLAB
function pca for determining the number of variables that can account for almost all the
variation within the original set of input variables. First, few details on the MATLAB
function pca are given as

[coe f f , score, latent, tsquared, explained] = pca (Xc) (1)

in which the term “Xc” represents the X data that has been centered by subtracting the
column means. The “coeff” refers to the principal component coefficients, also known
as loadings, for the n-by-m data matrix Xc. Each row of Xc represents an observation,
while each column represents a variable. The coefficient matrix has dimensions m-by-m.
Within the coefficient matrix, each column corresponds to the coefficients of one princi-
pal component, arranged in descending order based on the variance of the components.
The default approach employed by the PCA algorithm is to center the data and utilize the
singular value decomposition (SVD) algorithm.

score—refers to the principal component score, which represents the projection of the
centered data, Xc, onto the principal component space. Each row of the “score” corresponds
to an observation, while each column represents a principal component. The centered data,
Xc, can be reconstructed by multiplying the “score” with the “coeff” matrix.
latent—pertains to the principal component variances, specifically referring to the eigenval-
ues of the covariance matrix derived from the centered data, Xc.
tsquared—represents the Hotelling’s T-squared statistic calculated for each observation in
the original data matrix using all available principal components in the full dimensional
space, even if a lower number of principal components is requested.
explained—refers to a vector that contains the percentage of the total variance explained by
each principal component.

In the PCA analysis conducted in this study, the five inputs along with the output of TC are
included. The resulting matrix of correlation coefficients can be found in Table 3. It can be noted
from Table 3 that input variables Temp, Thickness, AgingTemp and AgingTime have enough
correlations with the output variable TC such that they can be identified as relevant inputs.

Table 3. Matrix of correlation coefficients for TC and five inputs.

TC Temp Material Thickness AgingTemp AgingTime

TC 1 −0.21871 0.071464 −0.14227 0.175485 0.317287

Temp −0.21871 1 0.2324 −0.09883 0.147777 0.076015

Material 0.071464 0.2324 1 −0.18194 0.137038 0.234873

Thickness −0.14227 −0.09883 −0.18194 1 −0.19923 −0.05417

AgingTemp 0.175485 0.147777 0.137038 −0.19923 1 0.290966

AgingTime 0.317287 0.076015 0.234873 −0.05417 0.290966 1
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The percentage of the total variance explained by each principal component is calcu-
lated as follows:

explained =
29.495
21.514
15.645
13.993
10.258
9.0946

sum(explained) = 100
sum(explained(1:4)) = 80.64
sum (explained (1:5)) = 90.905

Using the percentage of the total variance explained, we can see that the first five
PCs account for more than 90.905% of the variation while the first four PCs account for
only 80.647% of the same. Therefore, one can conclude that in most cases all variables are
needed to capture the variation within the original data.

3.3. Prediction of Thermal Conductivity Using Polynomial Regression

In this subsection, polynomial regression-based predictive models are developed for
predicting the thermal conductivity output variable using five input variables, namely,
temperature, material property, thickness, aging temperature and aging time. In the fol-
lowing, the general formulation of polynomial regression models is first described. Then,
more details are given on a multistage predictive modeling framework which incorporates
the forward selection orthogonal least squares algorithm for efficiently performing model
structure selection. Finally, the effectiveness of the multistage predictive modeling frame-
work for developing polynomial regression models for thermal conductivity prediction is
demonstrated using modeling results obtained based on the dataset given in Section 3.1.

3.3.1. Polynomial Regression Model

To enhance the predictive modeling capability, it is advantageous to expand the
original input set by transforming the original inputs x = [x1, · · · , xm]

T into a collection of
basis functions Ψi(x), i = 1, · · · , M, M > m. This extended set of basis functions is used to
predict the output y as follows:

y = w0 + ∑M
i=1 wiΨi(x) (2)

where wi, i = 1, · · · , M are constant parameters and M is the number of basis functions.
The basis functions Ψi(x), i = 1, · · · , M in (2) can be constructed using different sets of
original inputs. For example, the component terms of an infinite Volterra-Kolmogorov-Gabor
(VKG) polynomial represent simple basis functions constructed using polynomial terms of
the original inputs as shown below:

y = a0 + ∑m
i=1 aixi + ∑m

i=1 ∑m
j=i bijxixj + ∑m

i=1 ∑m
j=i ∑

m
k=j cijkxixjxk + · · · (3)

where the basis functions and the constant parameters in Equations (2) and (3) are related
by the following:

Ψi ∈
{

x1, · · · , xm, x1x2, x1x3 · · · , x2
1, · · · , x2

m, x2
1x2, x2

1x3, · · · , x1x2x3, x1x2x4 · · · , x3
1, · · · , x3

m, · · ·
}

wi ∈
{

a0, a1, . . . , am, b12, b13, . . . , b11, . . . , bmm, c112, c113, . . . , c123, c124, . . . , c111, . . . , cmmm, . . .
}

The expression given in (2) can be used to represent any polynomial regression model
given the number of inputs (m) and the highest degree of polynomial considered (d). For a
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given polynomial regression model expressed as a VKG polynomial in (2), the relationship
between M and (m, d) is defined analytically as follows:

M =
(m + d)!

m!d!
− 1 (4)

For example, a cubic polynomial regression model to predict thermal conductivity
using five input variables will have M = 55 polynomial terms plus one bias (constant) term.

3.3.2. Multistage Predictive Modeling Framework

To construct parsimonious higher order polynomial regression models, particularly
cubic regression models, a multistage input selection framework (depicted in Figure 7)
has been explored. This framework combines input selection and model structure search
effectively. It draws inspiration from the filter and wrapper methods proposed in the
literature for the input selection process [102]. Figure 7 illustrates the implementation of the
multistage input selection framework, which includes Stage 2 input selection positioned
between the Stage 1 filter method and the Stage 3 wrapper method.

The multistage predictive modeling framework illustrated in Figure 7 initiates with
essential data analysis of the raw data, involving tasks such as data cleaning (removal of
noise) and exploratory data analysis (to extract additional information), as described
in Sections 3.1 and 3.2. For the Stage 1 input selection process, filter methods such
as correlation analysis and domain expert knowledge can be employed, as outlined in
Section 3.2. Within this framework, the Stage 2 input/model selection process incorporates
the orthogonal least squares (OLS) algorithm [103,104] as an embedded approach. The OLS
algorithm facilitates forward selection of inputs, thereby determining the most suitable
input or model terms. Inputs or model terms obtained from Stage 2 then undergo further
selection in Stage 3, which employs the wrapper method. The wrapper method performs a
comprehensive search using various subset regression methods [101]. Finally, model testing
is conducted on multiple optimal input/model selections obtained from Stage 3, utilizing
holdout, k-fold, or bootstrapping-based cross-validation methods [19]. Subsequently, in the
following sections, further details are provided on the forward selection orthogonal least
squares (OLS) algorithm.

Forward Selection Orthogonal Least Squares Algorithm

One of the techniques regarding the most popular modal structure determination is
the forward selection orthogonal least squares (OLS) algorithm that selects model terms (or
input terms) in a forward manner based on the corresponding error reduction ratio (ERR).
Such an algorithm is adopted here as the embedded approach for the forward selection of
input/model terms as shown in Figure 7.

For n data points representing input and output observations of the process that is
modeled by Equation (1), the output vector y ∈ Rn is given by

y = Ψw + e (5)

where w ∈ RM is an unknown parameter vector, e ∈ Rn is the model error vector and
Ψ ∈ RnxM is the regressor matrix. An orthogonal decomposition of Ψ ∈ RnxM is

Ψ = ΦU (6)

where U ∈ RMxM is an upper triangular matrix and Φ ∈ RnxM is a matrix with orthogonal
columns that satisfy

ΦTΦ = diag{α1, . . . , αM} (7)

with αj = ϕT
j ϕj, j = 1, . . . , M, so that the regression Equation (5) can be expressed as

y =
(
ΨU−1)(Uw

)
+ e = Φβ + e (8)
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where β = [β1, . . . , βM]T is an auxiliary vector, and defined as

Uw = β (9)

As e(t) is uncorrelated with past outputs, then

β j =
ϕT

j y

ϕT
j ϕj

, j = 1, . . . , M. (10)

As ϕT
i ϕj,= 0 f or all i 6= j by the orthogonal property, then multiplying (8) by itself

and time averaging gives

1
n

yTy =
1
n ∑M

j=1 β2
jϕ

T
j ϕj +

1
n
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The LHS of Equation (10) shows the total output variance consists of two terms given
by the RHS of Equation (10): its first term in the RHS of Equation (10) represents the output
variance explained by the model regressors (or input variables) while its second term represents
the unexplained model error variance. The relationship provides us with a valuable criterion
named error reduction ratio (ERR) for automatically selecting the p most relevant input
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variables from the total of M input variables. The ERR is defined as the increment of the
overall output variance due to each regressor or input variable divided by the total output
variance and is expressed as

[ERR]j =
β2

jϕ
T
j ϕj

yTy
, j = 1, . . . , M. (12)

According to this criterion, a simple and effective procedure was developed for for-
ward selecting the p most relevant input variables. At the jth selection step, a candidate
input is selected as jth basis of the subset if it produces the largest [ERR]j from the remaining
(M-j-1) candidates. This procedure is terminated at the pth selection step when

1−∑p
j=1[ERR]j < δ (13)

where 0 < δ < 1 is a chosen tolerance. Such procedure can automatically select a sub-
set of the p most relevant input variables to construct a parsimonious predictive model.
The original parameter vector, w ∈ RM, in Equation (5) can be computed from Equation (13)
through back substitution.

It is well known that the above model structure selection based on the CGS procedure
is very sensitive to computer round-off errors. In order to tackle this numerical issue, the
modified Gram–Schmidt (MGS) procedure is utilized for the model structure selection in a
forward manner based on the ERR criterion. In this project, the forward selection OLS
algorithm based on the MGS procedure is adopted as part of the multistage predictive
modeling framework. It should be noted here that the abovementioned forward selection
OLS algorithm (using either the CGS or MGS procedure) is capable of solving the combined
problem of model structure selection and model parameter estimation.

Multistage Predictive Modeling Procedure

The following procedure outlines a stepwise manner regarding the multistage in-
put/model selection process incorporating the abovementioned forward selection OLS
algorithm based on the MGS procedure in the intermediate stage as shown in Figure 8.
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Step 1 (Data Analysis): Perform essential data analysis on the raw data including
data cleaning (noise removal) and exploratory data analysis (to extract more information).
This is carried out in Sections 3.1 and 3.2.

Step 2 (Stage 1 Input Selection): On the original set of inputs available from Step 1,
apply filter methods such as PCA (to determine number of terms needed in the regression
model), PVs method or correlation analysis (to further reduce the number inputs whenever
needed or possible), and variance inflation factor (VIF) analysis (to even further reduce the
number of inputs to be processed by Stage 2 input selection). Some of these analyses are
carried out in Section 3.2.

Step 3 (Stage 2 Model Selection): On the reduced set of inputs available from Step 2,
apply the forward selection OLS algorithm (as an embedded approach) to further reduce
the number of inputs or model terms so that the model structure search space is reduced to
a manageable size that can be handled by the wrapper method in the next step. The num-
ber of inputs or model terms (Ms = p) selected in this step is mainly determined by the
computational considerations for the wrapper method. Sometimes, Step 3 can be skipped
if the number of inputs available from Step 2 is already small, and one can proceed to
Step 4 directly. As noted before, since the forward selection OLS algorithm can solve the
combined model structure search and parameter estimation problem effectively, sometimes
it is not possible for Step 3 to reduce the number of inputs or model terms to a manageable
size and it is required to come up with the model structure search space in such a way that
Step 3 can work with Step 5 directly by skipping Step 4 altogether..

Step 4 (Stage 3 Model Selection): On the reduced set of inputs or model terms available
from Step 3, apply all possible subset regression methods (wrapper approach) to perform
global search and selection to identify multiple optimal input/model selections satisfying
multiple selection criteria. It should be noted here that this step also performs combined
input and model structure selection. As noted above, sometimes this step can be skipped
whenever Step 3 is unable to reduce the number of inputs or model terms to a manageable
size and can decide on the model structure search space by itself. This situation is applicable
for the prediction of thermal conductivity in this project.

Step 5 (Model Validation): Perform model testing on the multiple optimal model
selections available from Step 4 using holdout, k-fold or bootstrap cross-validation methods.
This step performs rigorous evaluation multiple optimal models identified by Step 3 and/or
Step 4 by using evaluation criteria such as the coefficient of determination (R2), adjusted R2, mean
squared error (MSE), mean absolute error (MAE) and maximum absolute error (MAXE) [105].
Some of these evaluation criteria are described later in Model Performance Evaluation.

Model Performance Evaluation

The following performance measures are considered for evaluating prediction models
using different training datasets:

1. Coefficient of Determination (R2)

In statistics, the coefficient of determination (R2) is a metric and is used to assess
the goodness of fit of regression predictions to the actual data points. An R2 value of 1
indicates that the regression predictions perfectly align with the observed data. The most
comprehensive definition of the coefficient of determination is as follows:

R2 = 1− SSres

SStot
(14)

SSres = ∑n
i=1(yi − fi)

2 (15)

SStot = ∑n
i=1(yi − y)2 (16)

where “n” represents the total number of observations, “yi” refers to the real data points and
“fi” represents the corresponding predicted values. The values close to 1 for the coefficient
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of determination indicate a strong predictive power of the selected inputs for the output
variable, while values close to 0 indicate a poor fit between the predicted and actual data.

2. Mean Squared Error (MSE)

In statistics, the mean squared error (MSE) is a widely used metric to quantify the
discrepancy between a predictor (or an estimator) and the observed value. It provides a
measure of the quality of an estimator, where smaller values indicate a better fit to the
data. MSE is particularly useful when dealing with datasets that contain numerous outliers.
The formula for MSE is as follows:

MSE =
∑n

i=1( fi − yi)
2

n
(17)

3. Maximum Absolute Error (MAXE)

Absolute error is defined as the absolute value of the difference and has the same unit
of measurement as the values being compared. The maximum absolute error represents
the largest possible deviation between the measured value and the true value, taking into
account the measuring tool’s level of accuracy.

MAXE = max(| fi − yi|) (18)

3.3.3. Polynomial Regression Modeling Results and Discussion

First, to demonstrate the effectiveness of the multistage predictive modeling framework
and the utility of the forward selection OLS algorithm within it for model selection and model
parameter estimation, the TC dataset with 705 data samples as presented and analyzed in
Sections 3.1 and 3.2 is used for the model selection process. Using the polynomial regression
model as described in Section 3.3.1 and given in Equation (2), multiple polynomial regression
models along with the associated datasets are generated by varying the polynomial degree
from one to six for processing by the forward selection OLS algorithm. The number of model
terms involved in each of these models, which is given by Equation (3) and the corresponding
R2 values obtained for these models using the OLS algorithm on all data samples are given
in Table 4. The outputs of this algorithm depicting the ERR and the corresponding selected
input indices along with the accumulated sum of ERR are given for polynomial degrees one
and two in Tables 5 and 6, respectively. It can be noted that the last entry in the last column
of Tables 5 and 6 represent the corresponding R2 values (based on all the data samples) for
the polynomial regression models as listed in Table 7. This observation also implies that for
any polynomial regression model, which is constructed using the subset of model terms by
sequentially adding terms from the first row onwards from the 3rd column of Tables 5 and 6,
one can obtain R2 values from the corresponding row in the last column of Tables 5 and 6.

Table 4. Results on six polynomial regression models using the OLS algorithm.

Polynomial Degree Number of Terms R2 (on All Data)

1 5 0.19114
2 20 0.40414
3 55 0.62683
4 125 0.78005
5 251 0.84011
6 461 0.88241

Table 5. Model selection with polynomial degree one using the OLS algorithm.

Selection Step ERR Input/Model Term Index Sum of ERR

1 0.10067 5 0.10067
2 0.059308 1 0.15998
3 0.022232 3 0.18221
4 0.0089309 4 0.19114
5 1.22 × 10−6 2 0.19114
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Table 6. Model selection with polynomial degree two using the OLS algorithm.

Selection Step ERR Input/Model Term Index Sum of ERR

1 0.1019 17 0.1019
2 0.086333 7 0.18823
3 0.029454 16 0.21768
4 0.027596 18 0.24528
5 0.056016 13 0.3013
6 0.023156 20 0.32445
7 0.013976 12 0.33843
8 0.015815 8 0.35424
9 0.010708 6 0.36495
10 0.013737 3 0.37869
11 0.0049433 2 0.38363
12 0.0061258 1 0.38976
13 0.0026508 11 0.39241
14 0.0029095 10 0.39532
15 0.0033999 5 0.39872
16 0.0010177 14 0.39974
17 0.00084935 9 0.40058
18 0.00050989 19 0.40109
19 0.0028143 15 0.40391
20 0.00023171 4 0.40414

Table 7. Top 10 performing 3rd degree PRM models ranked based on test data R2 and selected using
the OLS algorithm (100 times repeat).

Train Data (100 Times) Test Data (100 Times) All Data (100 Times)

# of Terms R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

45 0.62749 1.1053 0.041667 0.55114 0.94892 0.050533 0.61107 1.1367 0.04344

46 0.62768 1.1072 0.041603 0.54925 0.9571 0.050934 0.61082 1.1384 0.043469

32 0.57957 1.1156 0.04701 0.53946 0.96682 0.051537 0.57073 1.167 0.047916

31 0.57842 1.0936 0.047111 0.53765 0.97857 0.052283 0.56895 1.1664 0.048145

47 0.62909 1.1043 0.041448 0.53262 1.03 0.053746 0.60734 1.1774 0.043908

38 0.6083 1.0821 0.043814 0.53212 0.93576 0.053089 0.59125 1.1371 0.045669

29 0.56916 1.1071 0.04812 0.5316 0.94384 0.05256 0.56089 1.1414 0.049008

39 0.60982 1.0894 0.043646 0.53089 0.93726 0.053284 0.59215 1.1444 0.045573

48 0.62975 1.0957 0.041373 0.53083 1.0299 0.053977 0.60747 1.1686 0.043894

35 0.59576 1.1181 0.045229 0.53067 0.95151 0.052893 0.58136 1.1678 0.046762

Figure 8 shows the effect of the number of included model terms on the R2 performance
for the 3rd, 4th, 5th and 6th degree polynomial regression models when trained on all data
samples. It is clear from this figure that a fraction of available model terms is sufficient for
achieving the R2 performance close to the maximum possible, as given in Table 4. Adding more
model terms than necessary will contribute to the overfitting of models as will be seen below.

In the multistage predictive modeling framework, as described in Section 3.3.2, the
wrapper method is typically used for the combined model selection and parameter esti-
mation when the number of model terms is within a manageable size, say less than 40.
Based on the number of model terms listed in Table 7, this is not computationally feasible
for polynomial regression models with degree 3 or higher. In this situation, the forward
selection OLS algorithm plays a very significant role in the multistage predictive modeling
framework by reducing the number of model terms to a manageable size or directly coming
up with a reduced model structure search space as explained in the section Multistage
Predictive Modeling Procedure. In this paper, the later approach is adopted by the OLS
algorithm by exploiting the ranking of input/model terms based on the ERR criterion
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(for example, as given by the third column of Tables 8 and 9). To illustrate the model
structure search space generated by the OLS algorithm in the case of linear input/model
terms (i.e., polynomial model with degree one), consider the following sequence generated
from the third column of Table 5: {5}, {5, 1}, {5, 1, 3}, {5, 1, 3, 4} and {5, 1, 3, 4, 2}. Here, the
total number of input/model term combinations generated in this manner equals the total
number model terms available. Hence, this model structure search space grows linearly
with the number of model terms as opposed to the exponential growth situation faced by
the wrapper method.

Table 8. Top 10 performing 4th degree PRM models ranked based on test data R2 and selected using
the OLS Algorithm (100 times repeat).

Train Data (100 Times) Test Data (100 Times) All Data (100 Times)

# of Terms R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

63 0.76379 0.87438 0.026429 0.64568 1.0605 0.044038 0.73468 1.1313 0.02995

62 0.75617 0.88107 0.027252 0.62731 1.2072 0.057195 0.71697 1.292 0.033241

69 0.76814 0.88605 0.025935 0.61991 1.2078 0.055133 0.72555 1.2849 0.031774

67 0.76705 0.88869 0.02606 0.61712 1.2599 0.053943 0.72542 1.3401 0.031637

61 0.75483 0.88853 0.027398 0.61692 1.3323 0.062347 0.71083 1.4122 0.034388

70 0.76839 0.88623 0.025899 0.6164 1.2297 0.055927 0.72479 1.3009 0.031905

57 0.71268 1.1149 0.032142 0.61543 1.0718 0.047358 0.68768 1.282 0.035185

68 0.76739 0.88766 0.026022 0.61537 1.2589 0.055661 0.72449 1.3246 0.03195

64 0.7652 0.87173 0.026248 0.6124 1.2677 0.055151 0.72249 1.3347 0.032029

66 0.76697 0.89022 0.026063 0.61239 1.2683 0.054678 0.72414 1.3462 0.031786

Table 9. Top 10 performing 5th degree PRM models ranked based on test data R2 and selected using
the OLS algorithm (100 times repeat).

Train Data (100 Times) Test Data (100 Times) All Data (100 Times)

# of Terms R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

66 0.79891 0.85624 0.022456 0.70892 0.93127 0.034216 0.77879 1.04 0.024808

65 0.79815 0.85049 0.022541 0.70813 0.92153 0.033986 0.77841 1.0249 0.02483

67 0.79966 0.85581 0.022374 0.70673 0.94112 0.034698 0.77866 1.0485 0.024839

68 0.79883 0.85777 0.022474 0.70504 0.94058 0.035055 0.77754 1.0478 0.02499

69 0.79939 0.85926 0.022415 0.70469 0.94026 0.035019 0.77802 1.0502 0.024936

71 0.79997 0.86136 0.022347 0.70454 0.93829 0.035062 0.77839 1.048 0.02489

64 0.79699 0.84963 0.022671 0.7025 0.95808 0.035076 0.77577 1.0511 0.025152

70 0.79967 0.86065 0.022387 0.70069 0.97523 0.036334 0.77647 1.077 0.025177

72 0.80123 0.86336 0.022217 0.697 1.0077 0.037491 0.77616 1.1076 0.025271

73 0.80134 0.86947 0.022191 0.69149 1.0307 0.038879 0.77416 1.1308 0.025528

Using the model structure search space generated in the above manner by the forward
selection OLS algorithm, 3rd, 4th, 5th, and 6th degree polynomial regression model candi-
dates are assessed using the R2, MAXE and MSE performance measures. To validate the
models, a holdout cross-validation approach is employed by randomly splitting the data
into two sets: 80% for training and 20% for testing. This holdout cross-validation process is
repeated 100 times to ensure robustness. The training and testing results from each iteration are
averaged to evaluate all the model candidates accurately. Figures 9 and 10 show R2 values for a
subset of model candidates generated from 3rd, 4th, 5th and 6th degree polynomial regression
models and evaluated on the training, testing and all datasets. Top ten models ranked based on
the average R2 values generated on the test dataset for 3rd, 4th, 5th and 6th degree polynomial
regression models are shown in Tables 7–10, respectively.
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Table 10. Top 10 performing 6th degree PRM models ranked based on test data R2 and selected using
the OLS algorithm (100 times repeat).

Train Data (100 Times) Test Data (100 Times) All Data (100 Times)

# of
Terms R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

100 0.83527 0.77303 0.018422 0.72653 0.85674 0.031695 0.81188 0.93618 0.021077

97 0.8342 0.7724 0.018524 0.72343 0.90631 0.033052 0.80933 0.9756 0.02143

101 0.83554 0.77389 0.018379 0.72315 0.8829 0.033182 0.81028 0.96055 0.021339

102 0.83581 0.77315 0.018361 0.72308 0.8703 0.032871 0.81081 0.94719 0.021263

98 0.83462 0.77269 0.018476 0.72221 0.90712 0.033362 0.80922 0.98244 0.021454

99 0.83496 0.77386 0.018445 0.72208 0.89571 0.033394 0.80944 0.9735 0.021435

103 0.83607 0.77357 0.018332 0.71998 0.89182 0.033889 0.80967 0.96321 0.021443

94 0.83183 0.77169 0.018791 0.71942 0.94028 0.034201 0.80591 1.0085 0.021873

93 0.83143 0.77165 0.018835 0.71791 0.94227 0.034348 0.80528 1.0088 0.021938

95 0.8321 0.77179 0.018755 0.71573 0.96354 0.035515 0.80437 1.0307 0.022107
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with 100 times repeat for 5th and 6th degree polynomial regression models.

Figure 11 shows the average R2, MAXE and MSE performance based on all data
samples (with 100 times repeat) for the top 10 models selected from 3rd, 4th, 5th and 6th
degree polynomial regression models. The TC prediction performance for the best model
(6th degree polynomial regression with 100 terms) from Table 10 is displayed in Figure 12.
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3.4. Prediction of Thermal Conductivity Using Neural Networks
3.4.1. Neural Network Description
Basics of Neural Networks

At its core, an ANN is designed to mimic the functionality of the human brain.
The human brain is an incredibly intricate organ that possesses the ability to learn, adapt
to new environments and perform a wide range of complex activities. These activities go
beyond the control of physical body parts and include cognitive processes such as thinking,
visualizing, dreaming, imagining and learning. These aspects cannot be solely explained
in terms of physical attributes. In contrast, a biological brain consists of a vast network of
neurons. Each neuron receives electrical and chemical signals from multiple sources via
its dendrites and transmits output signals through its axon. The axons form connections,
known as synapses, with other neurons, allowing them to pass on their output signals.
This process of signal transmission and reception occurs repeatedly, millions and millions
of times within the brain.

ANNs are computational models that aim to replicate the functioning of the human
nervous system. There are various types of ANNs, each implemented based on mathemati-
cal operations and a set of parameters that determine the network’s output.

A neural network model typically consists of three main components: an input layer,
one or more hidden layers and an output layer. This structure is illustrated in Figure 13.
Multi-layer networks, which include multiple hidden layers, are known for their compu-
tational power. For example, a two-layer network with the first layer using a sigmoid
activation function and the second layer using a linear activation function can be trained to
approximate any function with a finite number of discontinuities very accurately. This type
of two-layer network is commonly utilized in backpropagation algorithms [106], which are
widely used for training neural networks.
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Figure 13. Formulation of a neural network.

In this particular study, the input layer of the neural network consists of five neurons,
which correspond to the five variables extracted from previous research on thermal con-
ductivity (TC) measurements. These variables are Temp, Material, Thickness, AgingTemp
and AgingTime, as depicted in Figure 14. The output layer of the network comprises
a single neuron that represents the target variable for prediction, which in this case is
thermal conductivity. For the hidden layer(s), this study explores both single-layer and
two-layer configurations with varying numbers of neurons. The number of layers and the
number of neurons in each layer are chosen to determine the topology of the ANN model.
More detailed information about the training parameter settings will be provided in the
“Training Parameters Setting” section.
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3.4.2. Training Algorithms

In function optimization problems involving neural networks, the training algorithm
aims to find the optimal network parameters that minimize network error. Various function
optimization methods can be employed for training the neural network model. For a
multi-layer feedforward network, the relationship between the input variables (pi) and the
output predictions (t̂) can be expressed using two forms, as described by Equations (19)
and (20) [107,108]:

Hidden Layer

n(1)
k = ∑R

j=1 ω
(1)
k pj + b(1)k ; a1

k = flevel−one
(
n(1)

k
)

(19)

Output Layer

n(2)
k = ∑R

j=1 ω
(2,1)
k a1

k + b(2)1 ; t̂i = a(2)k = flevel−two
(
n(2)

k
)

(20)

For an M-layer network with N neurons, the biases are denoted as b(1)
k (k = 1~N).

After the training process, the activated quantity is passed through the function g, which
can be expressed as follows:

g
[
∑N

j=1 ω
′
k fk(.) + b(2)k

]
= fk

(
n(2)

k
)

(21)

Then the estimated target variable value of ti in the training dataset can be expressed
as follows:

t̂i = g
{
∑N

j=1 ω
′
k f
(
∑R

j=1 ωkj pj + b(1)k
)
+ b(2)

}
(22)

in which, j = 1, 2, . . . , R and k = 1, 2, . . . , N.
The objective of the network is to learn the connection between the specified input–

output pairs in each dataset. In ML, particularly deep learning, the backpropagation
algorithm is widely used for training feedforward neural networks in supervised learning.
Backpropagation refers to the backward propagation of errors, where the error at the output
is computed and distributed backward through the layers of the network.

During the training process, a common performance function is used to measure the
discrepancy between the actual and predicted data. This function can be expressed as
follows [109,110]:

F = ED(D|ω, M) =
1
N ∑n

i=1

(
t̂i − ti

)2 (23)

in which ED is the mean sum of squares of the network error, D is the training set with
input–target pairs and M is the number of neural networks.

Backpropagation is an extension of the Widrow–Hoff learning rule to multiple-layer
networks with nonlinear differentiable transfer functions [106]. It involves training the
network using input vectors and corresponding target vectors until the network can
approximate a function, associate input vectors with specific output vectors or classify
input vectors appropriately. Backpropagation is closely related to the Gauss–Newton
algorithm and continues to be an area of ongoing research in neural networks. It is a
special case of the broader technique known as automatic differentiation. Properly trained
backpropagation networks can provide reasonable outputs when presented with unseen
inputs. Generally, a new input leads to an output that is like the correct output for inputs
used during training that are similar to the new input. This generalization property allows
training of the network on a representative set of input–target pairs and obtaining good
results without training the network on every possible input–output pair.

There are many variations of the backpropagation algorithm. A brief description of basic
backpropagation algorithm is presented here. In the present study, Levenberg–Marquardt and
Bayesian regularization were adopted, and both are backpropagation algorithms.
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Bayesian Regularization

Large weights in a neural network can lead to excessive variance in the output, which
can negatively affect the performance of the model [111]. Regularization is a commonly
used technique to mitigate the negative effects of large weights. The goal of regularization
is to achieve a smoother response from the network by adjusting the objective function
with the addition of a penalty term. This penalty term is typically computed as the sum
of squares of all network weights. By introducing the regularization term, the model
encourages smaller values for the weights, which reduces the model’s tendency to overfit
noisy patterns in the training data. One well-known regularization technique is Bayesian
regularization, which was introduced by Mackay [112]. This technique automatically
determines the optimal performance function to achieve excellent generalization using a
Bayesian inference approach. In Bayesian regularization, the optimization of regularization
parameters relies on calculating the Hessian matrix at the minimum point [108,113].

In a Bayesian regularization (BR) backpropagation network, regularization is applied
to penalize large weights and promote smoother mapping. This is achieved by adding
an additional term to the objective function. The performance function, as expressed in
Equation (6), can be further defined as follows:

F = βED(D|ω, M) + αEW(ω|M) (24)

where αEW(ω|M) = 1
N ∑n

i=1 ωj
2 is the sum of squares of network wights, α and β are

hyperparameters that need to be estimated from function parameters. The last term,
αEW(ω|M) is called weight decay and is also known as the decay rate. If a << b, then the
training algorithm will make the errors smaller. If a >> b, training will emphasize weight
size reduction at the expense of network errors, thus producing a smoother network response.
After the data are taken with the Gaussian additive noise assumed in target values, the posterior
distribution of the ANN weights can be updated according to Bayes’ rule:

P(ω|D, α, β, M) =
P(D|ω, β, M).P(ω|α, M)

P(D|α, β, M)
(25)

The BR algorithm treats the network weights as random variables and incorpo-
rates a probability distribution of weights. By maximizing the posterior probability
P(ω|D, α, β, M), the algorithm aims to find the optimal weights that best explain the
data while considering the regularization term. Maximizing the posterior probability
is equivalent to minimizing the regularized objective function F = βED + αEW [107].
By giving the joint posterior density

P(α, β|D, M) =
P(D|ω, β, M).P(ω|α, M)

P(D|M)
(26)

According to MacKay [114], the Laplace approximation can be expressed as follows:

P(D|α, C, M) =
P(D|ω, β, M).P(ω|α, M)

P(ω|D, α, β, M)
=

ZF(α, β)

(π/β)n/2(π/α)m/2 (27)

where n and m are the number of observations and total number of network parameters,
respectively. The Equation (10) (Laplace approximation) produces the following equation:

ZF(α, β) ∝
∣∣HMAP∣∣−0.5exp

(
−F
(
ωMAP)) (28)

The Hessian matrix can be approximated as follows:

H = JT J (29)
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in which J is the Jacobian matrix that contains the first derivatives of the network errors
with respect to network parameters. Backpropagation is used to calculate the Jacobian jX of
performance perf with respect to the weight and bias variables X. Each variable is adjusted
according to the following:

jj = jX× jX

je = jX× E

dX =−(jj+I×µ) /je (30)

where E is all errors, and I is the identity matrix.
The adaptive value µ is increased by µinc until the change shown above results in a

reduced performance value. The change is then made to the network, and mu is decreased
by µdec.

Similarly, training using the BR algorithm stops when any of these conditions occurs:

1. The maximum number of epochs (repetitions) is reached;
2. The maximum amount of time is exceeded;
3. Performance is minimized to the goal;
4. The performance gradient falls below the minimum threshold;
5. µ exceeds µmax.

Levenberg–Marquardt Algorithm

The Levenberg–Marquardt (LM) algorithm is a very simple, but robust, method for
approximating a function. Like the quasi-Newton methods, the Levenberg–Marquardt al-
gorithm was designed to approach second-order training speed without having to compute
the Hessian matrix.

When the performance function of a neural network has the form of a sum of squares,
which is common in training feedforward networks, the Hessian matrix can be approxi-
mated as follows:

H = JT J (31)

and the gradient g can be computed as follows:

g = JTe (32)

where, J is the Jacobian matrix, which contains the first derivatives of the network errors
with respect to the weights and biases. The Jacobian matrix is computed using the back-
propagation technique [113], which is a standard method for calculating derivatives in
neural networks. The Levenberg–Marquardt algorithm utilizes this approximation of the
Hessian matrix to perform a Newton-like update for adjusting the network weights and
biases. The update equation can be written as follows:

xk+1 = xk −
[
JT J + µI

]−1JTe (33)

When the scalar µ is set to zero, the algorithm behaves like Newton’s method, utilizing
the approximate Hessian matrix for faster convergence near the error minimum. As µ

increases, the algorithm transitions towards gradient descent with a smaller step size, which
helps in exploring the search space more effectively. The value of µ is adjusted during
the training process to ensure that the performance function is always reduced at each
iteration. It is decreased after each successful step (reduction in the performance function)
and increased only when a tentative step would increase the performance function.

The Levenberg–Marquardt training process continues until one of the stopping condi-
tions is met:

1. The maximum number of epochs (repetitions) is reached;
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2. The maximum amount of time allocated for training is exceeded;
3. The performance of the network is minimized to a predefined goal;
4. The performance gradient falls below a minimum threshold (min grad);
5. The value of µ exceeds a specified maximum (µ max);
6. The validation performance (if used) has increased more than a certain number of

times (max fail) since the last time it decreased.

These stopping conditions help control the duration and effectiveness of the train-
ing process.

3.4.3. Neural Network Training Topology and Details
Dataset Splitting

During the evaluation of neural networks, it is common to divide the dataset into three
subsets: training set, validation set, and testing set. This division is depicted in Figure 15.
The training set is used to fit the model, updating the weights and biases of the network
based on the output values and target values. The validation set is used to measure the
generalization of the network. It provides an independent evaluation of the network’s
performance and helps in preventing overfitting. The testing set is used to assess the final
performance of the trained network. It serves as an independent measure of the network’s
accuracy and is used to predict its performance on future, unseen data. In general, the
training set typically makes up the largest portion of the dataset, often around 70% of the
full dataset. The validation set and testing set each make up a smaller portion, usually
around 15% each. In some cases, certain training algorithms may only require a training
set and a testing set.

In the present study, for the Levenberg–Marquardt (LM) training algorithm, the
dataset is divided into approximately 70% for the training set, and the remaining 30%
is split equally between the validation set and the testing set (approximately 15% each).
This allocation ratio allows for effective training, validation and testing of the network.
However, for the Bayesian regularization (BR) training algorithm, no validation subset is
needed. Therefore, the training set comprises approximately 70% of the full dataset, while
the testing set occupies approximately 15% of the dataset. The details of data splitting in
the present work can be found in Table 11.
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Table 11. Data Splitting Details in Present TC Prediction using an NN Approach.

LM Algorithm BR Algorithm

Percentage Number of Data
Points Percentage Number of Data

Points

Training 70 493 85 599

Validation 15 106 0 0

Testing 15 106 15 106

Training Parameters Setting

In the present work, MATLAB programming was applied for prediction of TC using
NN modeling. MATLAB has several learning algorithms [115], two representative training
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algorithms mentioned in the previous section have been evaluated: Levenberg–Marquardt
(LM) and Bayesian regularization (BR). The code lines to choose the training model are
given as follows:

% set training model type and other details

modelname = [‘trainbr’]; %Bayesian Regularization backpropagation

% modelname = [‘trainlm’]; %Levenberg-Marquardt

Two types of hidden layer settings are adopted in the present work, i.e., single-layer
and two-layer. The MATLAB code lines to perform network training are given as follows:

net = fitnet(nn,modelname);% for single-layer

% net = fitnet([nn1,nn2],modelname); % for two-layer

net.trainParam.showWindow = false;

[net,tr] = train(net,x,t);

NET{i,j} = net;

TR(i,j) = tr;

y = net(x);

in which nn is the number of nodes (neurons) used in single-layer network training, and
nn1 and nn2 are the number of neurons for layer1 and layer2 in the two-layer network
training, respectively. Values of number of neurons used in cases of the present work are
listed in Table 12.

Table 12. Number of Neurons.

Cases
Single-Layer Two-Layer

nn nn1 nn2

1 10 4 2
2 20 6 2
3 30 6 4
4 40 8 2
5 50 8 4
6 60 8 6
7 70 10 2
8 80 10 4
9 90 10 6
10 100 10 8

Values of other training parameters used in the present work are listed in Table 13.

Table 13. Values of Training parameters.

Training Parameters Default Value Definition

net.trainParam.epochs 1000 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.mu 0.005 Marquardt adjustment parameter

net.trainParam.mu_dec 0.1 Decrease factor for mu

net.trainParam.mu_inc 10 Increase factor for mu

net.trainParam.mu_max 1 × 1010 Maximum value for mu

net.trainParam.max_fail inf Maximum validation failures

net.trainParam.min_grad 1 × 10−7 Minimum performance gradient

net.trainParam.show 25 Epochs between displays (NaN for no displays)

net.trainParam.showCommandLine false Generate command-line output

net.trainParam.showWindow true Show training GUI

net.trainParam.time inf Maximum time to train in seconds



Coatings 2023, 13, 1140 42 of 59

Exporting Training Results

After repeating training, the training results were stored as a .mat file, whose structure
is shown in Figure 16. NET is the cell file containing all trained neural networks for different
node settings, which can be reused in the future. Bfold_all, Bfold_test and B_trainig contain
the performance measures explained in Section 3.4.3 for all data points, the test dataset
and the training dataset, respectively. Ave_Y_all, Ave_Y_test and Ave_Y_train are the files
containing the predicted TC values for all data points, the test dataset and the training
dataset, respectively.
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3.4.4. Neural Network (NN) Training Results and Discussion
Results Using Single-Layer NN

Comparison performance of TC prediction using a single-layer NN model with LM
and BR algorithms, respectively, can be found in Tables 14–17, and Figures 17 and 18. It can
be seen that the BR algorithm provides overall larger R2 values, smaller MAE and MSE,
which proves that a better prediction model for TC is obtained by using the BR algorithm.
It also can be seen that the value of R2 does not increase consistently as the number of nodes
increases. In addition, a larger repeating validation value does not mean better prediction
results. For the LM algorithm, the best prediction model is obtained when the nn value is
20 and the repeating time is 10. Similarly, the best prediction model is obtained when the
nn value is 30 and the repeating time is 10, for the BR algorithm.

Table 14. Performance of LM Algorithm Repeating 10 Times for Single-Layer NN.

LM 10 Train 10 Test 10 All

nn R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

10 0.6826 0.9918 0.0360 0.5748 0.8232 0.0457 0.6617 1.0755 0.0381

20 0.7694 0.8975 0.0257 0.6509 0.9232 0.0406 0.7329 1.0689 0.0299

30 0.7753 0.9422 0.0250 0.6270 0.9293 0.0466 0.7238 1.2181 0.0311

40 0.7609 0.9386 0.0268 0.6162 0.8681 0.0401 0.7235 1.0816 0.0309

50 0.7444 0.9675 0.0283 0.6117 0.9441 0.0451 0.6965 1.1875 0.0344

60 0.7436 1.0142 0.0295 0.5512 1.3672 0.0865 0.6568 1.7214 0.0417

70 0.7974 0.8665 0.0225 0.6489 0.8708 0.0397 0.7470 1.1126 0.0284

LM 10 Train 10 Test 100 All

nn R2 MAE MSE R2 MAE MSE R2 MAE MSE

90 0.7954 0.9860 0.0226 0.5319 1.4754 0.0739 0.7004 1.7896 0.0349

100 0.8078 0.8757 0.0212 0.6312 0.9481 0.0472 0.7315 1.4427 0.0317
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Table 15. Performance of LM Algorithm Repeating 100 Times for Single-Layer NN.

LM 100 Train 100 Test 100 All

nn R2 MAE MSE R2 MAE MSE R2 MAE MSE

10 0.6774 0.9883 0.0363 0.5459 0.9828 0.0529 0.6449 1.1464 0.0398

20 0.7117 0.9841 0.0331 0.5754 0.9967 0.0520 0.6741 1.1705 0.0378

30 0.7544 0.9340 0.0275 0.6123 0.9289 0.0456 0.7122 1.1762 0.0324

40 0.7609 0.9429 0.0270 0.5726 1.1360 0.0556 0.7024 1.3485 0.0339

50 0.7643 0.9531 0.0267 0.5885 1.0932 0.0528 0.7097 1.3440 0.0334

60 0.7777 0.9321 0.0250 0.5993 1.1853 0.0675 0.7146 1.4348 0.0343

70 0.7766 0.9609 0.0254 0.5732 1.0903 0.0543 0.7140 1.3496 0.0330

90 0.7874 0.9396 0.0240 0.5705 1.2272 0.0670 0.7081 1.5107 0.0348

100 0.7991 0.9282 0.0226 0.5795 1.1686 0.0610 0.7242 1.4433 0.0321

Table 16. Performance of BR Algorithm Repeating 10 Times for Single-Layer NN.

BR 10 Train 10 Test 10 All

nn R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

10 0.7643 0.8418 0.0262 0.6202 1.1756 0.0541 0.7321 1.2170 0.0304

20 0.8469 0.6833 0.0170 0.6443 1.0706 0.0528 0.8034 1.1250 0.0224

30 0.8540 0.7328 0.0163 0.7228 0.7228 0.7179 0.0313 0.8339 0.0185

40 0.8255 0.7904 0.0195 0.6588 0.9704 0.0479 0.7895 1.0908 0.0238

50 0.8563 0.6921 0.0159 0.6861 0.9551 0.0398 0.8261 1.0484 0.0195

60 0.8606 0.6599 0.0156 0.5310 1.8826 0.1611 0.7548 1.8988 0.0375

70 0.8275 0.7896 0.0192 0.6733 0.8740 0.0369 0.8040 1.0180 0.0219

80 0.8540 0.7017 0.0161 0.6608 1.0552 0.0464 0.8167 1.1335 0.0207

90 0.8492 0.7088 0.0167 0.6983 1.0233 0.0388 0.8212 1.0845 0.0200

100 0.8595 0.6963 0.0160 0.6992 0.6992 0.9259 0.0328 0.8346 0.9658

Table 17. Performance of BR Algorithm Repeating 100 Times for Single-Layer NN.

BR 100 Train 100 Test 100 All

nn R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

10 0.7856 0.8410 0.0239 0.6554 0.9931 0.0466 0.7595 1.1017 0.0273

20 0.8441 0.7420 0.0173 0.6868 0.9604 0.0388 0.8169 1.0409 0.0205

30 0.8522 0.7239 0.0164 0.6775 0.9916 0.0437 0.8185 1.0678 0.0205

40 0.8466 0.7338 0.0171 0.6510 1.1477 0.0649 0.8047 1.2102 0.0243

50 0.8468 0.7405 0.0170 0.6632 1.1140 0.0493 0.8098 1.1783 0.0219

60 0.8502 0.7383 0.0167 0.6631 1.1337 0.0581 0.8088 1.2029 0.0229

70 0.8518 0.7123 0.0164 0.6303 1.3802 0.0822 0.7916 1.4364 0.0263

80 0.8494 0.7213 0.0167 0.6614 1.1500 0.0585 0.8098 1.2133 0.0230

90 0.8487 0.7289 0.0168 0.6539 1.1900 0.0723 0.8033 1.2615 0.0252

100 0.8503 0.7133 0.0167 0.6499 1.1991 0.0611 0.8051 1.2549 0.0233
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The comparison of results (predicted TC and error) of the best prediction model using
LM and BR algorithms are shown in Figure 19. It can be seen that the BR algorithm provides
overall smaller error for the whole dataset range. It must be noted that in four ranges, which are
marked by red circles in the plot, the prediction errors are much larger than other data points.
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Figure 19. Comparison of results using single-layer NN model with LM and BR algorithms, x-axis is
the used ample number, y-axis is TC value in the unit of W/(m·K). (A) LM algorithm (number of
neurons = 30, repeating 10). (B) BR algorithm (number of neurons = 100, repeating 10, R2 = 0.8346).
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Results Using Two-Layer NN

Similar to the single-layer NN model, comparison of performance of TC prediction
using a two-layer NN model with LM and BR algorithms was performed, as shown in
Tables 18–21 and Figures 20 and 21. It also can be seen that the BR algorithm provides
overall larger R2 values, smaller MAE and MSE, which proves that a better prediction
model for TC is obtained by using the BR algorithm. It can be seen that for LM two-layer
networks, the value of R2 shows an increasing trend as the number of nodes increases.
In addition, in the LM algorithm with a two-layer neuron, the best prediction model is
obtained when a larger nn value is adopted. For the BR algorithm, the two-layer and
single-layer neuron generate very similar prediction results.

Table 18. Performance of LM Algorithm Repeating 10 Times for Two-Layer NN.

10 Train 10 Test 10 All

nn1 nn2 R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

4 2 0.4996 1.0426 0.0556 0.4062 1.1792 0.0786 0.4764 1.3394 0.0592

6 2 0.6660 0.9897 0.0382 0.4469 1.1897 0.0651 0.6178 1.3659 0.0435

6 4 0.6835 0.9355 0.0343 0.5479 1.0531 0.0588 0.6451 1.1437 0.0398

8 2 0.6717 0.9355 0.0358 0.5069 1.0985 0.0573 0.6390 1.1896 0.0404

8 4 0.7320 0.9554 0.0297 0.5834 1.1156 0.0562 0.6833 1.3080 0.0358

8 6 0.7363 0.9673 0.0297 0.6414 0.8477 0.0414 0.7067 1.0266 0.0329

10 2 0.7021 0.9618 0.0326 0.5784 0.8267 0.0501 0.6703 1.0191 0.0368

10 4 0.6482 0.9385 0.0387 0.5421 0.9438 0.0554 0.6119 1.0221 0.0437

10 6 0.7229 0.9049 0.0315 0.6180 0.8010 0.0443 0.6954 1.0116 0.0342

10 8 0.7624 0.8974 0.0263 0.6766 0.7962 0.0380 0.7388 0.9780 0.0292

Table 19. Performance of LM Algorithm Repeating 100 Times for Two-Layer NN.

100 Ttrain 100 Test 100 All

nn1 nn2 R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

4 2 0.5141 1.0472 0.0548 0.4633 0.9372 0.0627 0.4972 1.1178 0.0565

6 2 0.6012 1.0126 0.0449 0.4914 1.1610 0.0867 0.5656 1.3142 0.0519

6 4 0.6426 0.9800 0.0403 0.5168 1.0306 0.0588 0.6082 1.1624 0.0441

8 2 0.6395 0.9831 0.0404 0.5418 0.9678 0.0534 0.6138 1.1124 0.0433

8 4 0.7052 0.9656 0.0330 0.5564 1.0385 0.0540 0.6677 1.1793 0.0374

8 6 0.7162 0.9272 0.0318 0.5812 1.0167 0.0585 0.6754 1.1749 0.0373

10 2 0.6827 0.9705 0.0354 0.5729 0.9255 0.0512 0.6518 1.0926 0.0391

10 4 0.7275 0.9397 0.0304 0.5694 1.0280 0.0511 0.6870 1.1677 0.0352

10 6 0.7158 0.9591 0.0318 0.5830 0.9806 0.0497 0.6797 1.1410 0.0359

10 8 0.7512 0.9049 0.0279 0.6127 0.9300 0.0459 0.7160 1.0583 0.0319

Table 20. Performance of BR Algorithm Repeating 10 Times for Two-Layer NN.

10 Train 10 Test 10 All

nn1 nn2 R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

4 2 0.7152 0.9551 0.0321 0.6615 0.7508 0.0357 0.7071 0.9696 0.0327

6 2 0.7608 0.9108 0.0266 0.6623 0.8873 0.0383 0.7459 0.9839 0.0284

6 4 0.8327 0.7700 0.0185 0.6875 1.0085 0.0441 0.8019 1.0303 0.0224

8 2 0.8046 0.8324 0.0219 0.7244 0.7237 0.0297 0.7932 0.8941 0.0231

8 4 0.8583 0.6963 0.0157 0.6798 1.1972 0.0492 0.8196 1.2427 0.0207
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Table 20. Cont.

10 Train 10 Test 10 All

nn1 nn2 R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

8 6 0.8773 0.6274 0.0138 0.6989 1.1218 0.0372 0.8462 1.1616 0.0173

10 2 0.8607 0.6391 0.0155 0.6848 1.0583 0.0431 0.8259 1.1097 0.0197

10 4 0.8693 0.6572 0.0145 0.6324 1.8664 0.1027 0.7950 1.8878 0.0278

10 6 0.8842 0.5968 0.0130 0.6953 1.1535 0.0426 0.8463 1.1784 0.0174

10 8 0.8890 0.5804 0.0123 0.6124 1.8345 0.1261 0.7963 1.8483 0.0294

Table 21. Performance of BR Algorithm Repeating 100 Times for Two-Layer NN.

100 Train 100 Test 100All

nn1 nn2 R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

4 2 0.6881 0.9444 0.0348 0.5918 0.9074 0.0457 0.6735 1.0273 0.0364

6 2 0.7620 0.9166 0.0265 0.6240 1.0206 0.0540 0.7343 1.1326 0.0306

6 4 0.8237 0.8006 0.0196 0.6766 1.0300 0.0433 0.7950 1.1024 0.0232

8 2 0.8111 0.8039 0.0209 0.6781 1.0534 0.0500 0.7819 1.1362 0.0253

8 4 0.8607 0.6759 0.0155 0.6799 1.0881 0.0464 0.8240 1.1322 0.0202

100 Train 100 Test 100All

nn1 nn2 R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

10 2 0.8429 0.7348 0.0175 0.6450 1.2597 0.0636 0.7967 1.3176 0.0244

10 4 0.8740 0.6275 0.0140 0.6788 1.1092 0.0458 0.8352 1.1381 0.0188

10 6 0.8846 0.6083 0.0128 0.6900 1.1417 0.0468 0.8443 1.1681 0.0179

10 8 0.8886 0.6002 0.0124 0.6392 1.5001 0.0608 0.8321 1.5185 0.0196
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R2 = 0.8462).

3.5. Prediction of Thermal Conductivity Using Gradient Boosting Regression
3.5.1. Basics of Gradient Boosting Regression (GBR)

Gradient boosting is a widely used and powerful ML algorithm that finds applications
in regression, classification and ranking tasks. Combining the principles of gradient
descent and boosting [116], gradient boosting enhances the performance of individual
base classifiers by creating an ensemble that outperforms any single base classifier [20].
Boosting involves sequentially adding new models to the ensemble, with each new model
trained to address the errors made by the ensemble thus far.

In this discussion, we introduce the basic methodology and learning algorithms
of gradient boosting regression (GBR), which was initially proposed by Friedman [117].
GBR comprises three key components:

1. A loss function to be optimized.

Loss function optimization: The choice of the loss function is flexible and depends
on the researcher’s preferences. The classic squared-error loss function is commonly
used, resulting in consecutive error-fitting during the learning process. Researchers have
developed various loss functions to cater to different scenarios, allowing customization
based on specific task requirements.

2. A weak-learner or base-learner model to make prediction.

It is common to constrain the base-learners in specific ways, such as a maximum
number of layers, nodes, splits or leaf nodes. This is to ensure that the learners remain
weak but can still be constructed in a greedy manner.
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3. An addictive model to add base-learners to minimize the loss function.

The basic idea behind this algorithm is to build the new base-learners to be maximally
correlated with the negative gradient of the loss function, associated with the whole
ensemble. Generally, this approach is called functional gradient descent or gradient descent
with functions.

The main disadvantage of GBR is scalability; due to the sequential nature of boosting,
it can hardly be parallelized. Furthermore, GBR is slow to train.

3.5.2. Gradient Boosting Regression (GBR) Topology and Details

In the present work, prediction of TC using GBR is performed in Python using the
scikit-learn library. First, an import of the library needs to be performed. The second step
is importing the data and setting up the input and output dataset. We tried two different
input settings for the GBR approach. The first one is the original five input variables
(Temp, Material, Thickness, AgingTemp and AgingTime). The other input setting is using
five input variables and their second-degree polynomial terms.

Codes regarding the data reading and setup are given as follows:

data= pd.read_excel(“xy_data_NRC.xlsx”, header = 0)
X0 = data.iloc[range(705),1:6]
y = data.iloc[range(705),0]
sc = StandardScaler()
Xn = sc.fit_transform(X0)
from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree = 2, include_bias = False)
X = poly_features.fit_transform(Xn)
X, y = shuffle(X, y, random_state = 13)
X = X.astype(np.float32)

Then the gradient boosting regression model can be conducted using the following codes:

params= {‘n_estimators’: 500, ‘max_depth’: 4, ‘min_samples_split’: 2, ‘learning_rate’: 0.01, ‘loss’: ‘ls’}
clf = gbr(**params)
clf = clf.fit(X_train,y_train)
scoring = [‘r2’]

3.5.3. Prediction Results Using GBR

In the present study, we conducted four cases of TC prediction using the GBR approach.
Similar to the neural network method, we evaluated the performance of TC prediction
using the metrics. Performance of TC prediction using GBR are listed Table 22. It can be
seen that the performances of prediction using GBR are very similar to those of the neural
network. Additionally, it can be seen from Table 22 that the best prediction performance
(using the Test subset results) is obtained by using the 1 degree input subset, while all four
GBR cases provide overall good prediction performance, whose values of R2 are all above
0.85. By comparing Figure 22, it can be seen that the distribution of predicted values and
the prediction error show very similar trends for the neural network and GBR approaches.

Table 22. Performances of TC Prediction using GBR approach.

Train Test All

Hyper
Parameters R2 MAXE MSE R2 MAXE MSE R2 MAXE MSE

deg 1 (10 times) 0.9364 0.5969 0.0071 0.7637 0.7723 0.0261 0.9024 0.7723 0.0109

deg 1 (100 times) 0.9360 0.6022 0.0071 0.7531 0.8268 0.0268 0.9007 0.8493 0.0111

deg 2 (10 times) 0.9450 0.5881 0.0061 0.7290 0.8203 0.0299 0.9024 0.8203 0.0109

deg 2 (100 times) 0.9441 0.5953 0.0062 0.7326 0.8265 0.0289 0.9033 0.8379 0.0108
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3.6. Summary of Prediction of TC Using ML

In this study, we focused on predicting the thermal conductivity (TC) of Electron Beam
Physical Vapor Deposition (EB-PVD) based on five input variables. The dataset used in this
study was obtained from experimental measurements conducted by previous researchers
over the past two decades. The dataset consists of six variables, namely TC, Temp, Material,
Thickness, AgingTemp and AgingTime. In total, there are 705 samples available for analysis
and modeling.

Two backpropagation algorithms of the neural network were tried: Levenberg–Marquardt
(LM) and Bayesian regularization (BR). The results show that the Bayesian regularization
model can generate relatively good prediction results of TC. In addition, different layers
and neuron numbers were tested, and the results proved that it is not necessary to adopt
large neuron numbers to obtain better prediction results. Several cases using GBR with
first- and second-degree polynomial inputs were also tried. The comparison of the three
approaches adopted in the present work are summarized in Table 23. The results sug-
gest that neural networks using a BR model and GBR have better prediction capability.



Coatings 2023, 13, 1140 50 of 59

In addition, the GBR approach needs relatively short computing time. In summary, ML has
emerged as a promising tool in material science, particularly for tackling the challenges
associated with highly complex systems such as TBCs.

Table 23. Performance of TC prediction using different machine learning approaches.

Approach Settings R2 MAXE MSE

Polynomial Input Selection OLS Algorithm Repeating
100 Times for 6th degree PRM 0.8121 0.9321 0.0211

Neural Network Double Layer 10 + 6 nodes 0.8443 1.1681 0.0179

Gradient Boosting Regression 1 Degree Inputs 0.9024 0.7723 0.0109

4. Conclusions

A literature review on ML principles and its various associated algorithms was con-
ducted with its application to thermal conductivity of TBCs. As compared to the potentiality
and wide scope of research and development in this area, very limited research initiatives
and progress have been made so far. The aviation industry’s big data treatment using
ML and DL models and analysis will facilitate gas turbine engines by monitoring fail-
ures, scheduling maintenance, saving operational cost and identifying long-term trends.
The following salient conclusions emerge out of the present work:

1. This state-of-the-art review covers areas of AI as applied to materials design, charac-
terization, and development, including big data, available algorithms for both ML
and DL, NN, and SVM approaches, and various algorithms.

2. This paper has also undertaken the prediction of thermal conductivity (TC) in
6–8 wt% YSZ TBCs using ML models. Recent studies have found the improved
capability of ML in predicting TC of TBCs. Various ML models and algorithms have
been researched, namely support vector regression (SVR), Gaussian process regression
(GPR) and convolution neural network (CNN) regression algorithms.

3. A large volume of experimental thermal conductivity (TC) data for YSZ (Yttria-
Stabilized Zirconia) thermal barrier coatings (TBCs) has been compiled from the
existing literature. This dataset serves as the basis for training, testing and validating
ML models. The TC data is strongly influenced by five key factors, which have
been identified and considered in this analysis. After collecting the TC data, several
preprocessing steps such as sorting, filtering, extracting and exploratory analysis were
conducted on the dataset. Three different approaches, namely polynomial regression,
NN and GBR, were employed for predicting the thermal conductivity. The training,
testing and prediction results obtained from these approaches were carefully analyzed,
presented and discussed. Based on the results, it was observed that the NN model
using the Bayesian regularization (BR) technique and the GBR approach exhibited
better prediction capabilities compared to polynomial regression.
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Appendix A

Table A1. List of some of the publicly available materials databases.

Name and Category Website and References Description

AFLOWLIB
Computational

aflowlib.org
[118]

Online computational platform for determining thermodynamic stability,
electronic band structures, vibrational dispersions and thermomechanical

properties of various inorganic compounds.

Computational Materials
Repository

Computational

cmr.fysik.dtu.dk
[114]

Material database system supporting a variety of tools for collecting,
storing, grouping, searching, retrieving and analyzing electronic structure
calculations generated by many modern electronic-structure simulators.

Crystallography open
database

Crystallography

crystallography.net
[119]

Online database that provides information on a variety of known atomic
coordinates of crystal structures of organic, inorganic, metal-organic

compounds and minerals collected from several research publications.

MARVEL NCCR
Computational

nccr-marvel.ch
[120]

Material informatics platform focusing on the design and discovery of new
materials via data driven, high performance quantum mechanical

simulations. Research tools, computational data and simulation software
accessible through the materials cloud platform.

Materials Project
Computational

materialsproject.org
[121]

Online platform that provides access to density functional theory (DFT)
calculations on a large number of metallic compounds, energy materials and

also mechanical properties of many materials.

MatNavi(NIMS)
General Materials data

mits.nims.go.jp/
index_en.html

[122]

Integrated material database system comprising structures and properties
for various materials including polymers and inorganic substances.

Organic materials
database

Computational

omdb.mathub.io
[123]

Electronic structure database of three-dimensional organic crystals that
also provides tools for search queries.

Open quantum materials
database

Computational

oqmd.org
[124]

A high throughput database comprising the thermodynamic
and structural properties of the known crystalline solids which

are calculated using the density functional theory computation technique.

Open materials database
Computational

openmaterialsdb.se
[125]

A high throughput computational database which is based on structures
from the Crystallography open database and provides information on the

properties of various materials.

SUNCAT/CatApp
Catalysts

suncat.stanford.edu/catapp
[126]

Materials informatics center focusing on catalyst and materials design for
next-generation energy solutions. Computational results for thousands of

surface reactions and online tools accessible at catalysis-hub.org.

Chemspider
Chemical data

chemspider.com
[127]

Chemical structure database containing information on physio-chemical
properties, interactive spectra, links to chemical vendor’s catalogs, literature

references and patents collected from a wide range of data sources.

Citrination
General Materials Data

citrination.com
[128]

Materials informatics platform containing information on the computed
and experimental properties of various materials and chemicals.

NIST Materials Data
Repository (DSpace)

General Materials Data

materialsdata.nist.gov/dspace/xmlui
[129]

File repository that accepts materials data in any format related to specific
research publications. The repository is implemented using a technology

called Dspace.

NanoHUB
Nanomaterials

nanohub.org
[130]

Premier online resource that offers course materials, lectures, seminars,
tutorials, professional networking and interactive simulation tools

for nanotechnology.

Nanomaterials Registry
Nanomaterials

nanomaterialregistry.org
[131]

A central web-based repository that provides links to associated journals
and publications, interactive simulation tools, computational results and
information such as physio-chemical characteristics, and biological and

environmental study data for different nanomaterials.

NIST Interatomic
Potentials Repository

Computational

ctcms.nist.gov/potentials
[132]

A reliable source for interatomic potentials and related files for various
metals. Evaluation tools to help researchers judge the quality and

applicability of their interatomic models are also available.

PubChem
Chemical data

pubchem.ncbi.nlm.nih.gov
[133]

A database that contains information on chemical substances and their
biological activities.
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Name and Category Website and References Description

TEDesignLab
Thermoelectrics

tedesignlab.org
[134]

A virtual platform that contains raw experimental and computational
thermoelectric data and a suite of interactive web-based tools that help in

the design of new thermoelectric material.

UCSB-MRL
thermoelectric database

Thermoelectrics

mrl.ucsb.edu:8080/datamine/
thermoelectric.jsp

[135]

A large repository created by extracting thermoelectric materials data
from several publications.

Table A2. List of some of the commercially available materials databases.

Name and Category Website and References Description

Inorganic Crystal
Structure Database

Crystallography

cds.dl.ac.uk/cds/datasets/
crys/icsd/llicsd.html

[136]
Repository providing information of various inorganic crystal structures.

Cambridge
Crystallographic Data

Centre
Crystallography

ccdc.cam.ac.uk/pages/Home.aspx
[137]

Non-profit organization that compiles and maintains the Cambridge
Structural Database, which contains information of various organic and

metal organic small molecule crystal structures.

NIST Standard Reference
Data

General Materials Data

nist.gov/srd/dblistpcdatabases.cfm
[138]

Generic material property data that provides measurable quantitative
information related to physical, chemical or biological properties of

known substances.

CALPHAD databases
(e.g., Thermocalc SGTE)

Thermodynamics

thermocalc.com/products-services/
databases/thermodynamic

[139]

Journal publishing the experimental and theoretical information on
phase equilibria and thermochemical properties of various materials.

ASM Alloy Center
Database

Alloys

mio.asminternational.org/ac
[140]

Database for researching accurate materials data of compositions,
properties, performance details and processing guidelines from

authoritative sources for specific metals and alloys.

ASM Phase Diagrams
Thermodynamics

asminternational.org/AsmEnterprise/APD
[141]

Online repository that provides information related to binary and ternary
alloy phase diagrams and associated crystal data for many alloy systems.

MatDat
General Materials Data

matdat.com
[142]

Online database that provides information on published design-relevant
material data to the industrial, academic and research community.

Pauling File
General Materials Data

paulingfile.com
[143]

Online database that includes information on the crystal structures,
physical properties and phase diagrams for various non-organic

solid-state materials.

Springer
Materials

General Materials Data

materials.springer.com
[144]

Materials research platform that provides curated data for identifying
material properties and a set of advanced functionalities for data

analysis and visualization of materials properties.

Total Materia
General Materials Data

totalmateria.com
[145]

Online materials database that includes search and cross-reference tools,
chemical composition, properties and specifications for various metals,

polymers, ceramics and composites.

Table A3. Summarized experimental researf105ches on TC of TBC.

Year Author Material Research Topic

1 1998 Taylor [146] Al2O3 and ZrO2 and of four and eight
alternating layers of Al2O3–ZrO2

TC vs. temp and different thickness

2 1998 Raghavan [147] 5.8 wt.% yttria YSZ TC vs. temp and densities (% of theoretical) and grain
diameters (in nm)

3 1999 An [86] Al2O3 and 8YSZ TC vs. temp

4 2000 Zhu [148] EB-PVD. ZrO2-8 wt.%Y2O3 (8YSZ) TC vs. time for different thickness

5 2002 Nicholls [87] EB-PVD TBCs 7YSZ

TC vs. Yttia (wt%), TC vs. T and grain size; thermal
conductivities of dopant modified EB-PVD TBCs at

4 mol% addition and 250 mm thickness; data measured
at room temperature

6 2002 Zhu [149] YSZ-Nd-Yb and YSZ-Gd-Yb; 8YSZ TC vs. temp and time; TC vs. total
dopant concentration
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Year Author Material Research Topic

7 2004 Cernuschi [150] 8Y2O3ZrO2, 22 wt.%MgO–ZrO2,
and 25 wt.%CeO2–2.5Y2O3–ZrO2

TC vs. temp for different cycles

8 2004 Jang [88] EB-PVD ZrO2-4 mol% Y2O3 TC vs. substrate thickness (areal thermal diffusion time)

9 2004 Singh [89] EB-PVD 8YSZ, ZrO2–8% Y2O3
HfO2-40% wtZrO2-27 wt%Y2O3

TC vs. time and number of layers

10 2004 Matsumoto [90] ZrO2–Y2O3–La2O3 TC vs. La2O3 content %

11 2005 Wolfe [151] ZrO2– 8 wt.% Y2O3 TC vs. time and number of layers

12 2006 Renteria [76] three morphologically different
EB-PVD PYSZ TBC TC vs. temp and time

13 2006 Rätzer-Scheibe [91] EB-PVD PYSZ TC vs. temp and thickness

14 2006 Ma [152] SPPS-7YSZ and SPPS LK-Zr TC vs. temp and time

15 2007 Almeida [92] EB-PVD 2O3–ZrO2 TC vs. temp

16 2007 Rätzer-Scheibe [84] EB-PVD ZrO2–7wt.%Y2O3 TC vs. temp and heat treatment time and thickness

17 2007 Schulz [93] EB-PVD (Three types) FeCrAlY; PYSZ TC vs. temp; aging time

18 2008 Jang [94] EB-PVD ZrO2–4 mol% Y2O3 TC vs. number of layers, porosity

19 2009 Matsumoto [95] EB-PVD YSZ, La2O3 and HfO2 TC vs. annealing time

20 2010 Yu [153] plasma sprayed Sm2Zr2O7 TC vs. temp and different heat-treating temperature

21 2011 Jang [96] EB-PVD ZrO2–4 mol% Y2O3 TC vs. coating thickness

22 2011 Liu [97] EB-PVD 7wt% Y2O3 (7YSZ) TC vs. substrate rotation speed

23 2012 Limarga [154] EB-PVD 3wt% Y2O3 (3YSZ) TC vs. temp and different heat-treating temperature
and time

24 2012 Łatka [155] ZrO2+8 wt.%Y2O3 (8YSZ) TC vs. temp

25 2012 Zhang [156] (La0.95Mg0.05)2Ce2O6.95
(La0.95Mg0.05)2Ce2O6.95 La2Ce2O7

TC vs. temp

26 2013 Jang [157] ZrO2–4 mol.%Y2O3 (TZ4Y) TC vs. temp and different sintered temp and different
GD2O3 percentile

27 2013 Bobzin [98]
EB–PVD 7YSZ, La2Zr2O7,

7YSZ + Gd2Zr2O7 DCL, Gd2Zr2O7,
7YSZ + Gd2Zr2O7

TC vs. temp

28 2013 Sun [158] Yb2O3–Y2O3–ZrO2 TC vs. temp

29 2013 Zhao [159] EB-PVD ZrO2 Y2O3 (8YSZ),
4TiYSZ, to 16TiYSZ TC vs. temp

30 2014 Jordan [160] SPPS YSZ TBCs with IPBs TC for different trials

31 2014 Lu [161] LSMZATO, La1−xSrxMg1−xZnxAl11
xTixO19

TC vs. temp

32 2014 Wang [162] YSZ/NiCoCrAlY TC vs. temp (numerical)

33 2015 Rai [163] YSZ and GZO TC for different layer and thickness

34 2016 Guo [164] 1RE1Yb–YSZ 1La1Yb–YSZ TC vs. temp

35 2016 Arai [165] YSZ (0, 5, 10, 15 wt%) TC vs. porosity, width of pore, at 570 K

36 2016 Guo [166] La2Zr2O7 TC vs. temp

37 2016 Wang [167] 8YSZ Numerical work (mathematic model) TC vs. porosity
and pores size

38 2016 Zhang [168] La2(Ce0.3Zr0.7)2O7-3 wt.%Y2O3 TC vs. temp (deposited at 5, 15 and 25 RPM)

39 2017 Meng [169] (a) La2Zr2O7; (b) Nd2Zr2O7;
(c) Sm2Zr2O7; (d) Gd2Zr2O7. TC vs. temp, concentration increase in oxygen vacancies
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