Interaction of Aluminum and Platinum Surfaces with the Ionic Liquids 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. [Py1,4]TFSI on Platinum
3.2. [Py1,4]TFSI on Aluminum
3.3. [EMIm]TFSI on Platinum
3.4. [EMIm]TFSI on Aluminum
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piatti, E.; Guglielmero, L.; Tofani, G.; Mezzetta, A.; Guazzelli, L.; D’Andrea, F.; Roddaro, S.; Pomelli, C.S. Ionic liquids for electrochemical applications: Correlation between molecular structure and electrochemical stability window. J. Mol. Liq. 2022, 364, 120001. [Google Scholar] [CrossRef]
- Endres, F.; Abedin, S.Z.E. Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 2006, 8, 2101–2116. [Google Scholar] [CrossRef]
- Bebensee, F.; Borisenko, N.; Frerichs, M.; Höfft, O.; Maus-Friedrichs, W.; Zein El Abedin, S.; Endres, F. Surface Analysis of Nanoscale Aluminium and Silicon Films Made by Electrodeposition in Ionic Liquids. Z. Phys. Chem. 2008, 222, 671–686. [Google Scholar] [CrossRef]
- Totolin, V.; Conte, M.; Berriozábal, E.; Pagano, F.; Minami, I.; Dörr, N.; Brenner, J.; Igartua, A. Tribilogical investigations of ionic liquids in ultra-high vacuum environment. Lub. Sci. 2014, 26, 514–524. [Google Scholar] [CrossRef]
- Minami, I. Ionic Liquids in Tribology. Molecules 2009, 14, 2286–2305. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Shinka, Y.; Masuko, M. Tribological Characteristics of Imidazolium-based Room Temperature Ionic Liquids Under High Vacuum. Tribol. Lett. 2007, 27, 307–313. [Google Scholar] [CrossRef]
- Azimi, B.; Maleki, H.; Gigante, V.; Bagherzadeh, R.; Mezzetta, A.; Milazzo, M.; Guazzelli, L.; Cinelli, P.; Lazzeri, A.; Danti, S. Cellulose-based fiber spinning processes using ionic liquids. Cellulose 2022, 29, 3079–3129. [Google Scholar]
- Liu, C.; Chen, B.; Shi, W.; Huang, W.; Qian, H. Ionic Liquid for Enhanced Drug Delivery: Recent Progress and Prevailing Challenges. Mol. Pharm. 2022, 19, 1033–1046. [Google Scholar] [CrossRef]
- Villa, R.; Alvarez, E.; Porcar, R.; Garcia-Verdugo, E.; Luis, S.V.; Lozano, P. Ionic liquids as an enabling tool to integrate reaction and separation processes. Green Chem. 2019, 21, 6527–6544. [Google Scholar] [CrossRef]
- Najafabadi, M.S.; Lay, E.N. An empirical correlation for predicting vapor pressure. J. Ion. Liq. 2022, 2, 100035. [Google Scholar] [CrossRef]
- Xu, C.; Cheng, Z. Thermal Stability of Ionic Liquids: Current Status and Prospects for Future Development. Processes 2021, 9, 337. [Google Scholar] [CrossRef]
- Cremer, T.; Wibmer, L.; Krick Calderón, S.; Deyko, A.; Maier, F.; Steinrück, H.P. Interfaces of ionic liquids and transition metal surfaces-adsorption, growth, and thermal reactions of ultrathin [C1C1Im][Tf2N] films on metallic and oxidized Ni(111) surfaces. Phys. Chem. Chem. Phys. 2012, 14, 5153–5163. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, T.; Huang, H.H.; Hoster, H.E.; Höfft, O.; Endres, F.; Behm, R.J. Imaging an Ionic Liquid Adlayer by Scanning Tunneling Microscopy at the Solid I Vacuum Interface. Chem. Phys. Chem. 2011, 12, 2565–2567. [Google Scholar] [CrossRef] [PubMed]
- Cremer, T.; Stark, M.; Deyko, A.; Steinrück, H.P.; Maier, F. Liquid/solid interface of ultrathin ionic liquid films [C1C1Im][Tf2N] and [C8C1Im][Tf2N] on Au(111). Langmuir 2011, 27, 3662–3671. [Google Scholar] [CrossRef]
- Cremer, T.; Killian, M.; Gottfried, J.M.; Paape, N.; Wasserscheid, P.; Maier, F.; Steinrück, H.P. Physical Vapor Deposition of [EMIM][Tf2N]: A New Approach to the Modification of Surface Properties with Ultrathin Ionic Liquid Films. Chem. Phys. Chem. 2008, 9, 2185–2190. [Google Scholar] [CrossRef]
- Biedron, A.B.; Garfunkel, E.L.; Castner, E.W.; Rangan, S. Ionic liquid ultrathin films at the surface of Cu(100) and Au(111). J. Chem. Phys. 2017, 146, 054704-1–054704-10. [Google Scholar] [CrossRef] [Green Version]
- Buchner, F.; Forster-Tonigold, K.; Bolter, T.; Rampf, A.; Klein, J.; Groß, A.; Behm, R.J. Interaction of Mg with the ionic liquid 1-butyl-1-methylpyrrolibiunium bis(trifluoromethylsulfonyl)imide-An experimental and computational model study of the electrode-electrolyte interface in post-lithium batteries. J. Vac. Sci. Technol. A. 2022, 40, 023204-1–023204-23. [Google Scholar] [CrossRef]
- Krebs, F.; Höfft, O.; Endres, F. Investigations on the electrochemistry and reactivity of tantalum species in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide using X-ray photoelectron spectroscopy (in situ and ex-situ XPS). Appl. Surf. Sci. 2023, 608, 155130-1–155130-9. [Google Scholar] [CrossRef]
- Adhikari, R.; Massicot, S.; Fromm, L.; Talwar, T.; Gezmis, A.; Meusel, M.; Bayer, A.; Jaekel, S.; Maier, F.; Görling, A.; et al. Structure and Reactivity of the Ionic Liquid [C1C1Im][Tf2N] on Cu(111). Top. Catal. 2023. [Google Scholar] [CrossRef]
- Forster-Tonigold, K.; Buchner, F.; Bansmann, J.; Behm, R.J.; Groß, A. A Combined XPS and Computational Study of the Chemical Reduction of BMP-TFSI by Lithium. Batter. Supercaps 2022, 5, e202200307. [Google Scholar]
- Olschewski, M.; Gustus, R.; Höfft, O.; Lahiri, A.; Endres, F. Monochromatic X-ray Photoelectron Spectroscopy Study of Three Different Ionic Liquids in Interaction with Lithium-Decorated Copper Surfaces. J. Phys. Chem. C. 2017, 121, 2675–2682. [Google Scholar] [CrossRef]
- Zein El Abedin, S.; Moustafa, E.M.; Hempelmann, R.; Natter, H.; Endres, F. Electrodeposition of nano- and microcrystalline aluminium in three different air and water stable ionic liquids. Chem. Phys. Chem. 2006, 7, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Howlett, P.C.; Izgorodina, E.; Forsyth, M.; MacFarlane, D.R. Electrochemistry at negative potentials in bis(trifluoromethanesulfonyl)amide ionic liquids. Z. Phys. Chem. 2006, 220, 1483–1498. [Google Scholar] [CrossRef]
- Deyko, A.; Lovelock, K.R.J.; Corfield, J.-A.; Taylor, A.W.; Gooden, P.N.; Villar-Garcia, I.J.; Licence, P.; Jones, R.G.; Krasovskiy, V.G.; Chernikova, E.A.; et al. Measuring amd predicting ∆vapH298 values of ionic liquids. Phys. Chem. Chem. Phys. 2009, 11, 8544–8555. [Google Scholar] [CrossRef]
- Armstrong, J.P.; Hurst, C.; Jones, R.G.; Licence, P.; Lovelock, K.R.J.; Satterley, C.J.; Villar-Garcia, I.J. Vapourisation of ionic liquids. Phys. Chem. Chem. Phys. 2007, 9, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Endres, F.; Zein El Abedin, S. In Situ Scanning Tunneling Microscopy in Ionic Liquids: Prospects and Challenges. Z. Phys. Chem. 2007, 221, 1407–1427. [Google Scholar] [CrossRef]
- Deyko, A.; Lovelock, K.R.J.; Licence, P.; Jones, R.G. The vapour of imidazolium-based ionic liquids: A mass spectroscopy study. Phys. Chem. Chem. Phys. 2011, 13, 16841–16850. [Google Scholar] [CrossRef] [PubMed]
- Zaitsau, D.H.; Kabo, G.J.; Strechan, A.A.; Paulechka, Y.U.; Tscherisch, A.; Verevkin, S.P.; Heintz, A. Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J. Phys. Chem. A 2006, 110, 7303–7306. [Google Scholar] [CrossRef] [PubMed]
- Cumpson, P.J.; Seah, M.P. Elastic Scattering Corrections in AES and XPS. II. Estimating Attenuation Lengths and Conditions Required for their Valid Use in Overlayer/Substrate Experiments. Surf. Interface Anal. 1997, 25, 430–446. [Google Scholar] [CrossRef]
- Reinmöller, M.; Ulbrich, A.; Ikari, T.; Preiß, J.; Höfft, O.; Endres, F.; Krischok, S.; Beenken, W.J.D. Theoretical reconstruction and elementwise analysis of photoelectron spectra for imidazolium-based ionic liquids. Phys. Chem. Chem. Phys. 2011, 13, 19526–19533. [Google Scholar] [CrossRef] [Green Version]
- Carstens, T.; Ispas, A.; Borisenko, N.; Atkin, R.; Bund, A.; Endres, F. In situ scanning tunneling microscopy (STM), atomic force microscopy (AFM) and quartz crystal microbalance (EQCM) studies of the electrochemical deposition of tantalum in two different ionic liquids with the 1-butyl-1-methylpyrrolidinium cation. Electrochim. Acta 2016, 197, 374–387. [Google Scholar] [CrossRef]
- Syres, K.L.; Jones, R.G. Adsorption, Desorption, and Reaction of 1-Octyl-3-methylimidazolium Tetrafluoroborate, [C8C1Im] [BF4], Ionic Liquid Multilayers on Cu(111). Langmuir 2015, 31, 9799–9808. [Google Scholar] [CrossRef] [PubMed]
- Thiele, J.; Barrett, N.T.; Belkhou, R.; Guillot, C.; Koundi, H. An experimental study of the growth of Co/Pt(111) by core level photoemission, low-energy electron diffraction and Auger electron spectroscopy. J. Phys. Cond. Matter. 1994, 6, 5025–5038. [Google Scholar] [CrossRef]
- Hohner, C.; Fromm, L.; Schuschke, C.; Taccardi, N.; Xu, T.; Wasserscheid, P.; Görling, A.; Libuda, J. Adsorption Motifs and Molecular Orientation at the Ionic Liquid/ Noble Metal Interface: [C2C1Im][NTf2] on Pt(111). Langmuir 2021, 37, 12596–12607. [Google Scholar] [CrossRef]
- Schuschke, C.; Hohner, C.; Stumm, C.; Kettner, M.; Fromm, L.; Görling, A.; Libuda, J. Dynamic CO Adsorption and Desorption through the Ionic Liquid Layer of a Pt Model Solid Catalyst with Ionic Liquid Layers. J. Phys. Chem. C 2019, 123, 31057–31072. [Google Scholar] [CrossRef]
- Miller, A.C.; McCluskey, F.P.; Taylor, J.A. An X-ray photoelectron spectroscopy study of aluminum surfaces treated with fluorocarbon plasmas. J. Vac. Sci. Technol. A 1991, 9, 1461–1465. [Google Scholar] [CrossRef]
- Kim, Y.C.; Park, H.H.; Chun, J.S.; Lee, W.J. Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition. Thin Solid Films 1994, 237, 57–65. [Google Scholar] [CrossRef]
- Crist, B.V. (Ed.) Handbook of the Elements and Native Oxides; XPS International L.L.C.: Mountain View, CA, USA, 1999. [Google Scholar]
- Hauert, R.; Patscheider, J.; Tobler, M.; Zehringer, R. XPS investigation oft he a-C: H/Al interface. Surf. Sci. 1993, 292, 121–129. [Google Scholar] [CrossRef]
- Domen, K.; Chuang, T.J. Laser induced photodissociation and desorption—I: CH2I2 adsorbed on Al2O3. J. Chem. Phys. 1989, 90, 3318–3331. [Google Scholar] [CrossRef]
- Rueda, F.; Mendialdua, J.; Rodríguez, A.; Casanova, R.; Barbaux, Y.; Gengembre, L.; Jalowiecki, L. Characterization of Venezuelan laterites by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1996, 82, 135–143. [Google Scholar] [CrossRef]
- Mattogno, G.; Righini, G.; Montesperelli, G.; Traversa, E. XPS analysis of the interface of ceramic thin films for humidity sensors. Appl. Surf. Sci. 1993, 70, 363–366. [Google Scholar] [CrossRef]
- He, H.; Alberti, K.; Barr, T.L.; Klinowski, J. ESCA Studies of Aluminophosphate Molecular Sieves. J. Phys. Chem. 1993, 97, 13703–13707. [Google Scholar] [CrossRef]
- McGuire, G.E.; Schweitzer, G.K.; Carlson, T.A. Study of Core Electron Binding Energies in Some Group IIIa, Vb, and VIb Compounds. Inorg. Chem. 1973, 12, 2451. [Google Scholar] [CrossRef]
- Hess, A.; Kemnitz, E.; Lippitz, A.; Unger, W.E.S.; Menz, D.H. ESCA, XRD, and IR Characterization of Aluminum Oxide, Hydroxyfluoride, and Fluoride Surfaces in Correlation with Their Catalytic Activity in Heterogeneous Halogen Exchange Reactions. J. Catal. 1994, 148, 270–280. [Google Scholar] [CrossRef]
- Arata, K.; Hino, M. Solid catalyst treated with anion: XVIII. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalyzed by solid superacid of sulfate-supported alumina. Appl. Catalysis. 1990, 59, 197–204. [Google Scholar] [CrossRef]
- Frerichs, M.; Voigts, F.; Maus-Friedrichs, W. Fundamental processes of aluminium corrosion studied under ultra high vacuum conditions. Appl. Surf. Sci. 2006, 253, 950–958. [Google Scholar] [CrossRef]
- Reinmöller, M. (Ed.) Theoretical Reconstruction of Photoelectron Spectra and Its Application to Ionic Liquids; Diss. Technische Universität Ilmenau: Ilmenau, Germany, 2015. [Google Scholar]
- Carlson, T.A.; McGuire, G.E. Study of the x-ray photoelectron spectrum of tungsten-tungsten oxide as a function of thickness of the surface oxide layer. J. Electron Spectrosc. Relat. Phenom. 1972, 1, 161–168. [Google Scholar] [CrossRef]
- Beattie, D.A.; Harmer-Bassell, S.L.; Ho, T.T.M.; Krasowska, M.; Ralston, J.; Sellapperumage, P.M.F.; Wasik, P. Spectroscopic study of ionic liquid adsorption from solution onto gold. Phys. Chem. Chem. Phys. 2015, 17, 4199–4209. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, H. Synthesis and Characterization of Functionalized Ionic Liquid-Stabilized Metal (Gold and Platinum) Nanoparticles and Metal Nanopaticle/Carbon Nanotube Hybrids. Langmuir 2009, 25, 2604–2612. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krebs, F.; Höfft, O.; Endres, F. Interaction of Aluminum and Platinum Surfaces with the Ionic Liquids 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Coatings 2023, 13, 1182. https://doi.org/10.3390/coatings13071182
Krebs F, Höfft O, Endres F. Interaction of Aluminum and Platinum Surfaces with the Ionic Liquids 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Coatings. 2023; 13(7):1182. https://doi.org/10.3390/coatings13071182
Chicago/Turabian StyleKrebs, Fabien, Oliver Höfft, and Frank Endres. 2023. "Interaction of Aluminum and Platinum Surfaces with the Ionic Liquids 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide" Coatings 13, no. 7: 1182. https://doi.org/10.3390/coatings13071182
APA StyleKrebs, F., Höfft, O., & Endres, F. (2023). Interaction of Aluminum and Platinum Surfaces with the Ionic Liquids 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Coatings, 13(7), 1182. https://doi.org/10.3390/coatings13071182