Chemical Composition, Structure, and Physical Properties of AlN Films Produced via Pulsed DC Reactive Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muralt, P. AlN Thin Film Processing and Basic Properties. In Piezoelectric MEMS Resonators; Bhugra, H., Piazza, G., Eds.; Springer Nature: Berlin, Germany, 2017; pp. 3–37. [Google Scholar]
- Assylbekova, M.; Chen, G.; Pirro, M.; Michetti, G.; Rinaldi, M. Aluminum nitride combined overtone resonator for millimeter wave 5G applications. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Virtual Conference, 25–29 January 2021; pp. 202–205. [Google Scholar]
- Zhou, J.; Pang, H.F.; Garcia-Gancedo, L.; Iborra, E.; Clement, M.; De Miguel-Ramos, M.; Jin, H.; Luo, J.K.; Smith, S.; Dong, S.R.; et al. Discrete microfluidics based on aluminum nitride surface acoustic wave devices. Microfluid. Nanofluidics 2015, 18, 537–548. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, X.; Shu, L.; Li, Y. AlN–based surface acoustic wave resonators for temperature sensing applications. Mater. Express. 2015, 5, 367–370. [Google Scholar] [CrossRef]
- Torgash, T.N.; Kozlov, A.G. Influence of Spacer in Acoustic Reflector on Parameters of Microelectronic BAW Resonators. In Proceedings of the 2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), Petersburg, Russia, 3–7 June 2020; pp. 1–4. [Google Scholar]
- Sorokin, B.P.; Novoselov, A.S.; Kvashnin, G.M.; Luparev, N.V.; Asafiev, N.O.; Shipilova, A.B.; Aksyonenkov, V.V. Development and Study of Composite Acoustic Resonators with Al/(Al, Sc)N/Mo/Diamond Structure with a High Q Factor in the UHF Range. Acoust. Phys. 2019, 65, 263–268. [Google Scholar] [CrossRef]
- Baranova, L.V.; Strunin, V.I.; Chirikov, N.A. Influence of magnetron sputtering modes of aluminum and aluminum nitride films on their surface, structure and composition. J. Phys. Conf. Ser. 2020, 1870, 012023. [Google Scholar] [CrossRef]
- Felmetsger, V.V. Sputter technique for deposition of AlN ScAlN and Bragg reflector thin film in mass production. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–5. [Google Scholar]
- Fei, C.; Liu, X.; Zhu, B.; Li, D.; Yang, X.; Yang, Y.; Zhou, Q. AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy 2018, 51, 146–161. [Google Scholar] [CrossRef]
- Dollet, A.; Casaux, Y.; Chaix, G.; Dupuy, C. Chemical vapour deposition of polycrystalline AlN films from AlCl3–NH3 mixtures.: Analysis and modelling of transport phenomena. Thin Solid Film. 2002, 406, 118–131. [Google Scholar] [CrossRef]
- Sánchez, G.; Wu, A.; Tristant, P.; Tixier, C.; Soulestin, B.; Desmaison, J.; Bologna Alles, A. Polycrystalline AlN films with preferential orientation by plasma enhanced chemical vapor deposition. Thin Solid Film. 2008, 516, 4868–4875. [Google Scholar] [CrossRef]
- Matta, S.; Brault, J.; Korytov, M.; Vuong, P.; Chaix, C.; Al Khalifioui, M.; Vennegues, P.; Massies, J.; Gil, B. Properties of AlN layers grown on c–sapphire substrate using ammonia assisted MBE. J. Cryst. Growth 2018, 499, 40–46. [Google Scholar] [CrossRef]
- Yin, J.; Chen, D.; Yang, H.; Liu, Y.; Talwar, D.N.; He, T.; Ferguson, I.T.; He, K.; Wan, L.; Feng, Z.C. Comparative spectroscopic studies of MOCVD grown AlN films on Al2O3 and 6H–SiC. J. Alloys Compd. 2020, 857, 157487. [Google Scholar] [CrossRef]
- Li, W.; Xue, W. Structural characterization of AlN thin films grown on sapphire by atomic layer deposition. Thin Solid Film. 2023, 773, 139826. [Google Scholar] [CrossRef]
- Sharma, N.; Ilango, S.; Dash, S.; Tyagi, A.K. X-ray photoelectron spectroscopy studies on AlN thin films grown by ion beam sputtering in reactive assistance of N+/N2+ ions: Substrate temperature induced compositional variations. Thin Solid Film. 2017, 636, 626–633. [Google Scholar] [CrossRef]
- Xie, W.; Zhao, Y.; Chen, S.; Liao, B.; Zhang, S.; Hua, Q.; He, G. Corrosion resistance of AlN monolayer and Al/AlN multilayer deposited by filtered cathodic vacuum arc. Thin Solid Film. 2023, 772, 139762. [Google Scholar] [CrossRef]
- Duta, L.; Stan, G.E.; Stroescu, H.; Gartner, M.; Anastasescu, M.; Fogarassy, Z.; Mihailescu, N.; Szekeres, A.; Bakalova, S.; Mihailescu, I.N. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. Appl. Surf. Sci. 2016, 374, 143–150. [Google Scholar] [CrossRef]
- Ababneh, A.; Albataineh, Z.; Dagamseh, A.M.K.; Al-kofahi, I.S.; Schäfer, B.; Zengerle, T.; Bauer, K.; Seidel, H. Optical characterization of sputtered aluminum nitride thin films—Correlating refractive index with degree of c-axis orientation. Thin Solid Film. 2020, 693, 137701. [Google Scholar] [CrossRef]
- Sharma, V.; Walia, A.; Kumar, M.; Shukla, V.N. Solid particle erosion of aluminium nitride thin film deposited by radio frequency magnetron sputtering technique on AA6061. Mater. Today Proc. 2021, 46, 6673–6677. [Google Scholar] [CrossRef]
- Iqbal, A.; Faisal, M.Y. Reactive Sputtering of Aluminum Nitride (002) Thin Films for Piezoelectric Applications: A Review. Sensors 2018, 18, 1797. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.Q.; Luo, J.K.; Nguyen, N.T.; Walton, A.J.; Flewitt, A.J.; Zu, X.T.; Li, Y.; McHale, G.; Matthews, A.; Iborra, E.; et al. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci. 2017, 89, 31–91. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.A.; Muralt, P. Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering. J. Appl. Phys. 2001, 89, 6389–6395. [Google Scholar] [CrossRef]
- Gudmundsson, J.T. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. 2020, 29, 113001. [Google Scholar] [CrossRef]
- Belkind, A.; Freilich, A.; Lopez, J.; Zhao, Z.; Zhu, W.; Becker, K. Characterization of pulsed DC magnetron sputtering plasmas. New J. Phys. 2005, 7, 90. [Google Scholar] [CrossRef]
- Molleja, J.G.; Gomez, B.J.; Ferron, J.; Gautron, E.; Burgi, J.; Abdallah, B.; Djouadi, M.A.; Feugeas, J.; Jouan, P.-Y. AlN thin films deposited by DC reactive magnetron sputtering: Effect of oxygen on film growth. EPJ Appl. Phys. 2013, 64, 20302. [Google Scholar] [CrossRef]
- Vergara, L.; Clement, M.; Iborra, E.; Sanz-Hervas, A.; Garcıa Lopez, J.; Morill, Y.; Sangrador, J.; Respaldiza, M.A. Influence of oxygen and argon on the crystal quality and piezoelectric response of AlN sputtered thin films. Diamond Rel. Mater. 2004, 13, 839–842. [Google Scholar] [CrossRef]
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Kawahara, N. Influence of oxygen concentration in sputtering gas on piezoelectric response of aluminum nitride thin films. Appl. Phys. Lett. 2008, 93, 021903. [Google Scholar] [CrossRef]
- Taylor, M.B.; Partridge, J.G.; McCulloch, D.G.; Bilek, M.M.M.; McKenzie, D.R. The influence of deposition rate on the stress and microstructure of AlN films deposited from a filtered cathodic vacuum arc. Thin Solid Film. 2011, 519, 3573–3577. [Google Scholar] [CrossRef]
- Penza, M.; De Riccardis, M.F.; Mirenghi, L.; Tagliente, M.A.; Verona, E. Low temperature growth of rf reactively planar magnetron–sputtered AlN films. Thin Solid Film. 1995, 259, 154–162. [Google Scholar] [CrossRef]
- Harris, J.H.; Youngman, R.A.; Teller, R.G. On the nature of the oxygen–related defect in aluminum nitride. J. Mater. Res. 1990, 5, 1763–1773. [Google Scholar] [CrossRef]
- García–Méndez, M.; Morales–Rodríguez, S.; Shaji, S.; Krishnan, B.; Bartolo–Pérez, P. Structural properties of AlN films with oxygen content deposited by reactive magnetron sputtering: XRD and XPS characterization. Surf. Rev. Lett. 2011, 18, 23–31. [Google Scholar] [CrossRef]
- Fang, L.; Jiang, Y.; Zhu, S.; Ding, J.; Zhang, D.; Yin, A.; Chen, P. Substrate Temperature Dependent Properties of Sputtered AlN:Er Thin Film for In–Situ Luminescence Sensing of Al/AlN Multilayer Coating Health. Materials 2018, 11, 2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomoto, J.; Tsuchiya, T.; Yamamoto, T. Well-defined (0001)-oriented aluminum nitride polycrystalline films on amorphous glass substrates deposited by ion plating with direct-current arc discharge. Appl. Surf. Sci. 2019, 478, 998–1003. [Google Scholar] [CrossRef]
- Anjum, F.; Fryauf, D.M.; Gold, J.; Ahmad, R.; Cormia, R.D.; Kobayashi, N.P. Study of optical and structural properties of sputtered aluminum nitride films with controlled oxygen content to fabricate Distributed Bragg Reflectors for ultraviolet A. Opt. Mater. 2019, 98, 109405. [Google Scholar] [CrossRef]
- Golosov, D.A.; Eungsun, B.; Zavadski, S.M. Joint functioning of a magnetron sputtering system and an end-hall ion source. Tech. Phys. 2014, 59, 1326–1333. [Google Scholar] [CrossRef]
- Kubart, T.; Aijaz, A. Evolution of sputtering target surface composition in reactive high power impulse magnetron sputtering. J. Appl. Phys. 2017, 17, 171903. [Google Scholar] [CrossRef] [Green Version]
- Ayupov, B.M.; Zarubin, A.; Labusov, V.A.; Sulyaeva, V.S.; Shayapov, V.R. Search for an Initial Approximation in Solving Inverse Problems in Ellipsometry and Spectrophotometry. J. Opt. Technol. 2011, 78, 350–354. [Google Scholar] [CrossRef]
- Okunev, A.G.; Mashukov, M.Y.; Nartova, A.V.; Matveev, A.V. Nanoparticle Recognition on Scanning Probe Microscopy Images Using Computer Vision and Deep Learning. Nanomaterials 2020, 10, 1285. [Google Scholar] [CrossRef]
- Lee, W.W.Y.; Oblas, D. Argon entrapment in metal films by de triode sputtering. J. Appl. Phys. 1975, 46, 1728–1732. [Google Scholar] [CrossRef]
- Drouin, D.; Couture, A.R.; Joly, D.; Tastet, X.; Aimez, V.; Gauvin, R. CASINO V2.42—A Fast and Easy–to–use Modeling Tool for Scanning Electron Microscopy and Microanalysis User. Scanning 2007, 29, 92–101. [Google Scholar] [CrossRef]
- Prokofyeva, T.; Seon, M.; Vanbuskirk, J.; Holtz, M.; Nikishin, S.A.; Faleev, N.N.; Temkin, H.; Zollner, S. Vibrational properties of AlN grown on (111)–oriented silicon. Phys. Rev. B 2001, 63, 125313. [Google Scholar] [CrossRef] [Green Version]
- Hobert, H.; Dunken, H.H.; Meinschien, J.; Stafast, H. Infrared and Raman spectroscopic investigation of thin films of AlN and SiC on Si substrates. Vib. Spectrosc. 1999, 19, 205–211. [Google Scholar] [CrossRef]
- Sanz–Hervás, A.; Iborra, E.; Clement, M.; Sangrador, J.; Aguilar, M. Influence of crystal properties on the absorption IR spectra of polycrystalline AlN thin films. Diam. Relat. Mater. 2003, 12, 1186–1189. [Google Scholar] [CrossRef]
- Stavola, M. Infrared spectrum of interstitial oxygen in silicon. Appl. Phys. Lett. 1984, 44, 514–516. [Google Scholar] [CrossRef]
- Motamedi, P.; Cadien, K. XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Appl. Surf. Sci. 2014, 315, 104–109. [Google Scholar] [CrossRef]
- Ababneh, A.; Dagamseh, A.M.K.; Albataineh, Z.; Tantawi, M.; Al-Bataineh, Q.M.; Telfah, M.; Zengerle, T.; Seidel, H. Optical and structural properties of aluminium nitride thin-films synthesized by DC-magnetron sputtering technique at different sputtering pressures. Microsyst. Technol. 2021, 27, 3149–3159. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Peng, D.-C.; Han, J.; Ren, F.-B.; Jiang, S.-C.; Tseng, M.-C.; Ruan, Y.-J.; Zuo, J.; Wu, W.-Y.; Wuu, D.-S.; et al. Effect of substrate temperature on properties of AlN buffer layer grown by remote plasma ALD. Surf. Interfaces 2023, 36, 102589. [Google Scholar] [CrossRef]
- Riah, B.; Camus, J.; Ayad, A.; Rammal, M.; Zernadji, R.; Rouag, N.; Djouadi, M.A. Hetero-Epitaxial Growth of AlN Deposited by DC Magnetron Sputtering on Si(111) Using a AlN Buffer Layer. Coatings 2021, 11, 1063. [Google Scholar] [CrossRef]
Method | Element Concentration, at. % | ||||
---|---|---|---|---|---|
Aluminum | Nitrogen | Oxygen | Carbon | Argon | |
XPS, Etching Time = 0 min | 39 | 24 | 18 | 19 | 0 |
XPS, Etching Time ≥ 21 min | 54.2–54.5 | 38–38.3 | 5.1–5.3 | 0.4–0.7 | 1.9–2.1 |
SEM EDS, before Etching | 42–43 | 47–48 | 6–7 | 0–3 | 0–2 |
SEM EDS, after Etching | 43 | 48 | 7 | 2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shayapov, V.R.; Bogoslovtseva, A.L.; Chepkasov, S.Y.; Asanov, I.P.; Maksimovskiy, E.A.; Kapishnikov, A.V.; Mironova, M.I.; Lapega, A.V.; Geydt, P.V. Chemical Composition, Structure, and Physical Properties of AlN Films Produced via Pulsed DC Reactive Magnetron Sputtering. Coatings 2023, 13, 1281. https://doi.org/10.3390/coatings13071281
Shayapov VR, Bogoslovtseva AL, Chepkasov SY, Asanov IP, Maksimovskiy EA, Kapishnikov AV, Mironova MI, Lapega AV, Geydt PV. Chemical Composition, Structure, and Physical Properties of AlN Films Produced via Pulsed DC Reactive Magnetron Sputtering. Coatings. 2023; 13(7):1281. https://doi.org/10.3390/coatings13071281
Chicago/Turabian StyleShayapov, Vladimir R., Alena L. Bogoslovtseva, Sergey Yu. Chepkasov, Igor P. Asanov, Evgeny A. Maksimovskiy, Aleksandr V. Kapishnikov, Maria I. Mironova, Alina V. Lapega, and Pavel V. Geydt. 2023. "Chemical Composition, Structure, and Physical Properties of AlN Films Produced via Pulsed DC Reactive Magnetron Sputtering" Coatings 13, no. 7: 1281. https://doi.org/10.3390/coatings13071281
APA StyleShayapov, V. R., Bogoslovtseva, A. L., Chepkasov, S. Y., Asanov, I. P., Maksimovskiy, E. A., Kapishnikov, A. V., Mironova, M. I., Lapega, A. V., & Geydt, P. V. (2023). Chemical Composition, Structure, and Physical Properties of AlN Films Produced via Pulsed DC Reactive Magnetron Sputtering. Coatings, 13(7), 1281. https://doi.org/10.3390/coatings13071281