Microstructure Evolution of CET-Free Epitaxial Growth NiCoCrAlYTa Coating by Electron Beam Cladding
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material and Processing
2.2. Materials Characterization
3. Results and Discussion
3.1. Characterization of the Initial Powder
3.2. Characterization of the Deposited Coating
3.3. EBSD Results
3.4. Grain Growth of Electron Beam Cladding Multiple Tracks
3.5. Grain Growth of Electron Beam Cladding Multiple Tracks
4. Conclusions
- (1)
- Electron beam cladding prepared a Cack-free, dense and CET-free epitaxially grown coating on the nickel-based single-crystal superalloy.
- (2)
- From the bottom to the top of the coating, the average primary dendrite spacing of the columnar dendrite in the coating increased from 2.0 μm to 2.7 μm.
- (3)
- The crystal orientation of grains on the section parallel to the scanning direction of the electron beam was consistent with the substrate crystal orientation [001]. On the section perpendicular to the scanning direction of the electron beam, the microstructure could be divided into three regions: a [001] orientation region, a [010] orientation area in the overlap area of the track and a transition region. On the vertical section, a stripe structure composed of columnar grains in both the [001] and [100] orientations were observed in the samples.
- (4)
- After 100 h oxidation, the oxidation gain of the MCrAlY coating is about 0.83 mg/cm2, and that of the substrate is 2.2 mg/cm2. The high temperature oxidation resistance of the coating is about 3 times higher than that of the substrate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Y.-J.; Cheng, X.; Li, J.; Wang, H.-M. Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys: New processing–microstructure maps involving powder feeding. Mater. Des. 2017, 130, 197–207. [Google Scholar] [CrossRef]
- Kalfhaus, T.; Schaar, H.; Thaler, F.; Ruttert, B.; Sebold, D.; Frenzel, J.; Steinbach, I.; Theisen, W.; Guillon, O.; Clyne, T.W.; et al. Path to single-crystalline repair and manufacture of Ni-based superalloy using directional annealing. Surf. Coat. Technol. 2021, 405, 126494. [Google Scholar] [CrossRef]
- Xuan, W.; Zhang, X.; Zhao, Y.; Li, J.; Wang, B.; Ren, X.; Ren, Z. Mechanism of improved intermediate temperature plasticity of nickel-base single crystal superalloy with hot isostatic pressing. J. Mater. Res. Technol. 2021, 14, 1609–1617. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Wang, Z.; Lu, X.-G.; Avdeev, M.; Shi, S.; Wang, C.; Yu, T. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Mater. 2020, 195, 454–467. [Google Scholar] [CrossRef]
- Pollock, T.M.; Tin, S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Yao, W.J.; Zheng, Y.P. Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys. Acta Mater. 2015, 88, 283–292. [Google Scholar] [CrossRef]
- Lee, Y.; Nordin, M.; Babu, S.S.; Farson, D.F. Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition. Metall. Mater. Trans. B 2014, 45, 1520–1529. [Google Scholar] [CrossRef]
- Liu, S.B.; Li, W.; Sun, J.; Fu, L.B.; Wang, T.G.; Jiang, S.M.; Gong, J.; Sun, C. Preparation and oxidation behaviour of NiCrAlYSc coatings on a Ni-based single crystal superalloy. Corros. Sci. 2020, 171, 108703. [Google Scholar] [CrossRef]
- Di Girolamo, G.; Alfano, M.; Pagnotta, L.; Taurino, A.; Zekonyte, J.; Wood, R.J.K. On the Early Stage Isothermal Oxidation of APS CoNiCrAlY Coatings. J. Mater. Eng. Perform. 2012, 21, 1989–1997. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, R. Gas turbine coatings—An overview. Eng. Fail. Anal. 2012, 26, 355–369. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, M. Epitaxial MCrAlY coating on a Ni-base superalloy produced by electrospark deposition. Surf. Coat. Technol. 2006, 201, 3564–3570. [Google Scholar] [CrossRef]
- Bezençon, C. Epitaxial deposition of MCrAlY coatings on a Ni-base superalloy by laser cladding. Scr. Mater. 2003, 49, 705–709. [Google Scholar] [CrossRef]
- Vilar, R.; Santos, E.C.; Ferreira, P.N.; Franco, N.; Da Silva, R.C. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding. ACTA Mater. 2009, 57, 5292–5302. [Google Scholar] [CrossRef]
- Wang, D.; Gao, J.; Zhang, R.; Deng, S.; Jiang, S.; Cheng, D.; Liu, P.; Xiong, Z.; Wang, W. Effect of TaC particles on the microstructure and oxidation behavior of NiCoCrAlYTa coating prepared by electrospark deposition on single crystal superalloy. Surf. Coat. Technol. 2021, 408, 126851. [Google Scholar] [CrossRef]
- Wang, D.; Wang, W.; Wang, M.; Li, Y.; Chen, X.; Chi, C.; Xie, Y. Effect of operating voltage on microstructure and microhardness of NiCoCrAlYTa-Y2O3 composite coatings on single crystal superalloy produced by electrospark deposition. Surf. Coat. Technol. 2019, 358, 628–636. [Google Scholar] [CrossRef]
- David, S.A.; Vitek, J.M.; Babu, S.S.; Boatner, L.A.; Reed, R.W. Welding of nickel base superalloy single crystals. Sci. Technol. Weld. Join. 1997, 2, 79–88. [Google Scholar] [CrossRef]
- Anderson, T.D.; Dupont, J.N.; Debroy, T. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling. Acta Mater. 2010, 58, 1441–1454. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, H. Mathematical Modeling of Crystal Growth and Microstructure Formation in Multi-layer and Multi-track Laser Powder Deposition of Single-crystal Superalloy. Phys. Procedia 2014, 56, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liang, J.; Zhou, Y.; Zhao, L.; Jin, T.; Sun, X. Variation of crystal orientation during epitaxial growth of dendrites by laser deposition. J. Mater. Sci. Technol. 2018, 34, 732–735. [Google Scholar] [CrossRef]
- Wang, M.-C.; Wang, W.F.; Xie, Y.-J.; Zhang, J. Electro-spark epitaxial deposition of NiCoCrAlYTa alloy on directionally solidified nickel-based superalloy. Trans. Nonferrous Met. Soc. China 2010, 20, 795–802. [Google Scholar] [CrossRef]
- Roostaei, M.; Aghajani, H.; Abbasi, M.; Abasht, B. Formation of Al2O3/MoS2 nanocomposite coatings by the use of electro spark deposition and oxidation. Ceram. Int. 2021, 47, 11644–11653. [Google Scholar] [CrossRef]
- Koptyug, A.; Popov, V.V., Jr.; Vega, C.A.B.; Jiménez-Piqué, E.; Katz-Demyanetz, A.; Rännar, L.E.; Bäckström, M. Compositionally-tailored steel-based materials manufactured by electron beam melting using blended pre-alloyed powders. Mater. Sci. Eng. A 2020, 771, 138587. [Google Scholar] [CrossRef]
- Feng, G.; Wang, Y.; Luo, W.; Hu, L.; Deng, D. Comparison of welding residual stress and deformation induced by local vacuum electron beam welding and metal active gas arc welding in a stainless steel thick-plate joint. J. Mater. Res. Technol. 2021, 13, 1967–1979. [Google Scholar] [CrossRef]
- Slobodyan, M. Resistance, electron- and laser-beam welding of zirconium alloys for nuclear applications: A review. Nucl. Eng. Technol. 2021, 53, 1049–1078. [Google Scholar] [CrossRef]
- Liu, Z.; Shu, J. Control of the microstructure formation in the near-net-shape laser additive tip-remanufacturing process of single-crystal superalloy. Opt. Laser Technol. 2021, 133, 106537. [Google Scholar] [CrossRef]
- Basak, A.; Acharya, R.; Das, S. Epitaxial deposition of nickel-based superalloy René 142 through scanning laser epitaxy (SLE). Addit. Manuf. 2018, 22, 665–671. [Google Scholar] [CrossRef]
- Ci, S.; Liang, J.; Li, J.; Zhou, Y.; Sun, X. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming. J. Mater. Sci. Technol. 2020, 45, 23–34. [Google Scholar] [CrossRef]
- Hunt, J.D.; Lu, S.Z. Numerical modeling of cellular/dendritic array growth: Spacing and structure predictions. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1996, 27, 611–623. [Google Scholar] [CrossRef]
- Wang, G.; Liang, J.; Yang, Y.; Shi, Y.; Zhou, Y.; Jin, T.; Sun, X. Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis. J. Mater. Sci. Technol. 2018, 34, 1315–1324. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Y.; Li, J.; Zhou, Y.; Sun, X. Epitaxial growth and oxidation behavior of an overlay coating on a Ni-base single-crystal superalloy by laser cladding. J. Mater. Sci. Technol. 2019, 35, 344–350. [Google Scholar] [CrossRef]
- Liu, G.; Du, D.; Wang, K.; Pu, Z.; Chang, B. Epitaxial growth behavior and stray grains formation mechanism during laser surface re-melting of directionally solidified nickel-based superalloys. J. Alloys Compd. 2021, 853, 157325. [Google Scholar] [CrossRef]
- Trivedi, R. Interdendritic Spacing: Part II. A Comparison of Theory and Experiment. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1984, 15, 977–982. [Google Scholar] [CrossRef]
- Hu, X.W.; Li, S.M.; Chen, W.J.; Gao, S.F.; Liu, L.; Fu, H.Z. Primary dendrite arm spacing during unidirectional solidification of Pb–Bi peritectic alloys. J. Alloys Compd. 2009, 484, 631–636. [Google Scholar] [CrossRef]
- Raghavan, N.; Simunovic, S.; Dehoff, R.; Plotkowski, A.; Turner, J.; Kirka, M.; Babu, S. Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing. Acta Mater. 2017, 140, 375–387. [Google Scholar] [CrossRef]
- Sreeramagiri, P.; Bhagavatam, A.; Alrehaili, H.; Dinda, G. Direct laser metal deposition of René 108 single crystal superalloy. J. Alloys Compd. 2020, 838, 155634. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, M. Isothermal oxidation behavior of electrospark deposited MCrAlX-type coatings on a Ni-based superalloy. J. Alloys Compd. 2009, 480, 454–461. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H. Origin of stray-grain formation and epitaxy loss at substrate during laser surface remelting of single-crystal nickel-base superalloys. Mater. Des. 2016, 102, 297–302. [Google Scholar] [CrossRef]
- Meng, X.B.; Lu, Q.; Zhang, X.L.; Li, J.G.; Chen, Z.Q.; Wang, Y.H.; Zhou, Y.Z.; Jin, T.; Sun, X.F.; Hu, Z.Q. Mechanism of competitive growth during directional solidification of a nickel-base superalloy in a three-dimensional reference frame. Acta Mater. 2012, 60, 3965–3975. [Google Scholar] [CrossRef]
- Yang, J.; Li, F.; Pan, A.; Yang, H.; Zhao, C.; Huang, W.; Wang, Z.; Zeng, X.; Zhang, X. Microstructure and grain growth direction of SRR99 single-crystal superalloy by selective laser melting. J. Alloys Compd. 2019, 808, 151740. [Google Scholar] [CrossRef]
Sample | Element | ||||||||
---|---|---|---|---|---|---|---|---|---|
Co | Cr | Al | Ta | Ti | W | Y | Ni | C | |
PWA1483 | 9.0 | 12.2 | 3.6 | 5.0 | 4.1 | 3.8 | — | Bal. | 0.07 |
NiCoCrAlYTa | 25.0 | 20.0 | 8.0 | 4.0 | — | — | 0.8 | Bal. | — |
Sample | Lattice Constant (Å) | |||
---|---|---|---|---|
a (Å) | b (Å) | c (Å) | V (Å3) | |
Coating | 3.56 | 3.56 | 7.19 | 91.12 |
Substrate | 3.54 | 3.54 | 3.54 | 44.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Xiao, S.; Luo, D.; Zeng, X.; Wang, W. Microstructure Evolution of CET-Free Epitaxial Growth NiCoCrAlYTa Coating by Electron Beam Cladding. Coatings 2023, 13, 1303. https://doi.org/10.3390/coatings13081303
Zhang P, Xiao S, Luo D, Zeng X, Wang W. Microstructure Evolution of CET-Free Epitaxial Growth NiCoCrAlYTa Coating by Electron Beam Cladding. Coatings. 2023; 13(8):1303. https://doi.org/10.3390/coatings13081303
Chicago/Turabian StyleZhang, Pu, Sheng Xiao, Dan Luo, Xian Zeng, and Wenqin Wang. 2023. "Microstructure Evolution of CET-Free Epitaxial Growth NiCoCrAlYTa Coating by Electron Beam Cladding" Coatings 13, no. 8: 1303. https://doi.org/10.3390/coatings13081303
APA StyleZhang, P., Xiao, S., Luo, D., Zeng, X., & Wang, W. (2023). Microstructure Evolution of CET-Free Epitaxial Growth NiCoCrAlYTa Coating by Electron Beam Cladding. Coatings, 13(8), 1303. https://doi.org/10.3390/coatings13081303