Prediction of Contact Angle for Oriented Hydrophobic Surface and Experimental Verification by Micro-Milling
Abstract
:1. Introduction
2. Establishment of Contact Angle Prediction Model
2.1. Theoretical Basis of Hydrophobicity
2.2. Establishment of the Non-Composite State Model
2.3. Establishment of the Composite State Model
3. Experimental Verification
3.1. Experimental Conditions and Methods
3.2. Characterization and Measurement
3.3. Results and Analysis
3.3.1. Surface Morphology and Geometry Dimension
3.3.2. Surface Wettability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.H.; Cheng, I.C.; Chen, J.Z. Facile method to convert petal effect surface to lotus effect surface for superhydrophobic polydimethylsiloxane. Surf. Interfaces 2022, 30, 101901. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Cao, Z.Y.; Ding, W.Y.; Ma, Z.W.; Wang, B.F.; Wang, Z.W. Research on the hydrophobicity of square column structures on monocrystalline silicon fabricated using micro-machining. Micromachines 2019, 10, 763. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Hua, Y.Q.; Chen, R.F.; Xu, P.; Yang, J. Fabrication of superhydrophobic nickel-aluminum bronzes using picosecond laser for enhancing anti-corrosion property. Mater. Lett. 2020, 268, 127570. [Google Scholar] [CrossRef]
- Sun, J.F.; Wang, W.Q.; Liu, Z.; Li, B.; Xing, K.F.; Yang, Z. Study on selective laser melting 316L stainless steel parts with superhydrophobic surface. Appl. Surf. Sci. 2020, 533, 147445. [Google Scholar] [CrossRef]
- Bixler, G.D.; Theiss, A.; Bhushan, B.; Lee, S.C. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. J. Colloid Interface Sci. 2014, 419, 114–133. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.L.; Li, D.H.; Zhang, X.R.; Li, Q.H.; Liu, Z.H.; Fang, Y.J.; Zhang, S.; Man, J. In vivo blood-repellent performance of a controllable facile-generated superhydrophobic surface. ACS Appl. Mater. Interfaces 2021, 13, 29021–29033. [Google Scholar] [CrossRef]
- Luo, Y.H.; Wang, X.D.; Liu, G.; Wang, J.S.; Song, W. Anisotropic wetting and fluidic phenomena on biological texture and hydrodynamic experiments testing on different low viscous resistance surfaces. Adv. Eng. Mater. 2016, 18, 869–876. [Google Scholar] [CrossRef]
- Tuo, Y.J.; Zhang, H.F.; Rong, W.T.; Jiang, S.Y.; Chen, W.P.; Liu, X.W. Drag reduction of anisotropic superhydrophobic surfaces prepared by laser etching. Langmuir 2019, 35, 11016–11022. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Ganguly, R.; Schutzius, T.M.; Megaridis, C.M. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms. Lab Chip. 2014, 14, 1538–1550. [Google Scholar] [CrossRef]
- De Marco, C.; Eaton, S.M.; Suriano, R.; Turri, S.; Levi, M.; Ramponi, R.; Cerullo, G.; Osellame, R. Surface properties of femtosecond laser ablated PMMA. ACS Appl. Mater. Interfaces 2010, 2, 2377–2384. [Google Scholar] [CrossRef]
- Bartlet, K.; Movafaghi, S.; Dasi, L.P.; Kota, A.K.; Popat, K.C. Antibacterial activity on superhydrophobic titania nanotube arrays. Colloids Surf. B Biointerfaces 2018, 166, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xue, W.; Liu, W.; Zhu, D.; Cao, Y. Quadri-directionally anisotropic droplets sliding surfaces fabricated by selective laser texturing of aluminum alloy plates. Appl. Surf. Sci. 2020, 509, 145406. [Google Scholar] [CrossRef]
- Lian, Z.; Xu, J.; Yu, Z.; Yu, P.; Yu, H. A simple two-step approach for the fabrication of bio-inspired superhydrophobic and anisotropic wetting surfaces having corrosion resistance. J. Alloy. Compd. 2019, 793, 326–335. [Google Scholar] [CrossRef]
- Fang, Y.; Yong, J.L.; Chen, F.; Huo, J.L.; Yang, Q.; Zhang, J.Z.; Hou, X. Bioinspired fabrication of bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser. Adv. Mater. Interfaces 2018, 5, 1701245. [Google Scholar] [CrossRef]
- Xu, J.K.; Hou, Y.G.; Lian, Z.X.; Yu, Z.J.; Wang, Z.B.; Yu, H.D. Bio-inspired design of bi/tridirectionally anisotropic sliding superhydrophobic titanium alloy surfaces. Nanomaterials 2020, 10, 2140. [Google Scholar] [CrossRef]
- Long, J.Y.; Fan, P.X.; Jiang, D.F.; Han, J.P.; Lin, Y.; Cai, M.Y.; Zhang, H.J.; Zhong, M.L. Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures. Adv. Mater. Interfaces 2016, 3, 1600641. [Google Scholar] [CrossRef]
- Zhu, D.F.; Li, X.; Zhang, G.; Zhang, X.; Zhang, X.M.; Wang, T.Q.; Yang, B. Mimicking the rice leaf-from ordered binary structures to anisotropic wettability. Langmuir 2010, 26, 14276–14283. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Sun, G.Y.; Kim, C.J. Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 2014, 747, 722–734. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.Y.; Xie, W.; Ye, Z.H. Preparation of corrosion-resisting superhydrophobic surface on aluminium substrate. Surf. Eng. 2019, 35, 411–417. [Google Scholar] [CrossRef]
- Tan, J.Y.; Hao, J.J.; An, Z.Q.; Liu, C.S. Simple fabrication of superhydrophobic nickel surface on steel substrate via electrodeposition. Int. J. Electrochem. Sci. 2017, 12, 40–49. [Google Scholar] [CrossRef]
- Lin, C.W.; Chung, C.J.; Chou, C.M.; He, J.L. Morphological effect governed by sandblasting and anodic surface reforming on the super-hydrophobicity of AISI 304 stainless steel. Thin Solid Films 2016, 620, 88–93. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhao, X.Y.; Ke, C.J.; Yu, J.; Wang, R. Nanosecond laser fabrication of superhydrophobic Ti6Al4V surfaces assisted with different liquids. Colloid Interface Sci. Commun. 2020, 35, 100256. [Google Scholar] [CrossRef]
- Bae, W.G.; Song, K.Y.; Rahmawan, Y.; Chu, C.N.; Kim, D.; Chung, D.K.; Suh, K.Y. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining. ACS Appl. Mater. Interfaces 2012, 4, 3685–3691. [Google Scholar] [CrossRef]
- Rahman, M.A.; Jacobi, A.M. Wetting behavior and drainage of water droplets on microgrooved brass surfaces. Langmuir 2012, 28, 13441–13451. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.S.; Wang, J.G.; Liu, Y.; Wang, D.W.; Li, S.Y.; Wang, H.Y. Controllable superhydrophobic surfaces with tunable adhesion on Mg alloys by a simple etching method and its corrosion inhibition performance. Chem. Eng. J. 2021, 404, 126444. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhu, Y.X.; Hu, Z.Y.; Zhang, X.G.; Wu, S.Q.; Wang, R.; Zhu, Y.J. A novel electrodeposition route for fabrication of the superhydrophobic surface with unique self-cleaning, mechanical abrasion and corrosion resistance properties. Chem. Eng. J. 2016, 303, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, S.; Karimzadeh, F.; Abbasi, M.H.; Raeissi, K. Development of super-hydrophobic surface on Al 6061 by anodizing and the evaluation of its corrosion behavior. Surf. Coat. Technol. 2017, 324, 99–105. [Google Scholar] [CrossRef]
- Volpe, A.; Covella, S.; Gaudiuso, C.; Ancona, A. Improving the laser texture strategy to get superhydrophobic aluminum alloy surfaces. Coatings 2021, 11, 369. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, Z.J.; Zhou, H.B.; Han, F.L.; Zhao, L.H.; Yan, H.Z. One-step fabrication of the wear-resistant superhydrophobic structure on SiCp/Al composite surface by WEDM. Surf. Coat. Technol. 2021, 409, 126876. [Google Scholar] [CrossRef]
- Sun, R.Y.; Li, Z.; Zhao, J.; Mo, J.L.; Pan, Y.J.; Luo, D.B. Facile fabrication of durable superhydrophobic aluminum alloy surfaces by HS-WEDM and chemical modification. Nano 2021, 16, 2150133. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, Y.; Ren, B.; Wang, H.W.; Yu, M.Z.; Liu, A.Q.; Liu, Z.Q. Preparation of superhydrophobic surface on titanium alloy via micro-milling, anodic oxidation and fluorination. Micromachines 2020, 11, 316. [Google Scholar] [CrossRef] [Green Version]
- Otitoju, T.A.; Ahmad, A.L.; Ooi, B.S. Superhydrophilic (superwetting) surfaces: A review on fabrication and application. J. Ind. Eng. Chem. 2017, 47, 19–40. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Tieu, A.K.; Wan, S.H.; Zhu, H.T.; Pham, S.T.; Johnston, B. Surface characteristics and wettability of superhydrophobic silanized inorganic glass coating surfaces textured with a picosecond laser. Appl. Surf. Sci. 2021, 537, 147808. [Google Scholar] [CrossRef]
- Wang, H.; Chi, G.X.; Li, L.; Gong, S.R.; Zhu, J.L.; Tian, C.; Wang, Y.K.; Wang, Z.L. Numerical calculation of apparent contact angles on the hierarchical surface with array microstructures by wire electrical discharge machining. Langmuir 2021, 37, 1768–1778. [Google Scholar] [CrossRef] [PubMed]
- Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Quéré, D. Non-sticking drops. Rep. Prog. Phys. 2005, 68, 2495. [Google Scholar] [CrossRef]
- Extrand, C.W. Criteria for ultralyophobic surfaces. Langmuir 2004, 20, 5013–5018. [Google Scholar] [CrossRef]
- Martellotti, M.E. An analysis of the milling process, part ii—Down milling. J. Fluids Eng. 1945, 67, 233–251. [Google Scholar] [CrossRef]
- Thevenot, V.; Arnaud, L.; Dessein, G.; Cazenave-Larroche, G. Integration of dynamic behaviour variations in the stability lobes method: 3D lobes construction and application to thin-walled structure milling. Int. J. Adv. Manufact. Technol. 2006, 27, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.B.; Cheung, C.F.; To, S.; Cheng, C.T. Modeling and characterization of generation of 3D micro-structured surfaces with self-cleaning and optical functions. Optik 2013, 124, 2848–2853. [Google Scholar] [CrossRef]
- Neuhaus, S.; Spencer, N.D.; Padeste, C. Anisotropic wetting of microstructured surfaces as a function of surface chemistry. ACS Appl. Mater. Interfaces 2012, 4, 123–130. [Google Scholar] [CrossRef]
- Hajiahmadi, S. Burr size investigation in micro milling of stainless steel 316L. Int. J. Lightweight Mater. Manufact. 2019, 2, 296–304. [Google Scholar] [CrossRef]
Spindle Speed (r/min) | Feed Speed (mm/min) | Depth of Cut (μm) |
---|---|---|
17,000 | 25 | 10 |
Sample Number | Convex Platform Width c (μm) | Theoretical Value of Non-Composite State θWP (Parallel) | Theoretical Value of Composite State θCP (Parallel) | Theoretical Value of Composite State θCV (Vertical) | Measured Value θP (Parallel) | Measured Value θV (Vertical) |
---|---|---|---|---|---|---|
1 | 60 | 64.2° | 144.2° | 72.5° | 146.5° | 92.4° |
2 | 80 | 64.6° | 139.4° | 72.5° | 141.1° | 90.3° |
3 | 100 | 65.0° | 135.5° | 72.5° | 137.3° | 87.9° |
4 | 130 | 65.5° | 130.5° | 72.5° | 134.7° | 86.7° |
5 | 160 | 66.0° | 126.5° | 72.5° | 127.2° | 85.3° |
6 | 200 | 66.5° | 122.1° | 72.5° | 126.2° | 82.8° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Xu, W.; Cao, Z.; Meng, W.; Ni, J.; Pan, J.; Wei, D. Prediction of Contact Angle for Oriented Hydrophobic Surface and Experimental Verification by Micro-Milling. Coatings 2023, 13, 1305. https://doi.org/10.3390/coatings13081305
Zhu Y, Xu W, Cao Z, Meng W, Ni J, Pan J, Wei D. Prediction of Contact Angle for Oriented Hydrophobic Surface and Experimental Verification by Micro-Milling. Coatings. 2023; 13(8):1305. https://doi.org/10.3390/coatings13081305
Chicago/Turabian StyleZhu, Yiwen, Wei Xu, Ziyang Cao, Wenlu Meng, Jiawei Ni, Jie Pan, and Dong Wei. 2023. "Prediction of Contact Angle for Oriented Hydrophobic Surface and Experimental Verification by Micro-Milling" Coatings 13, no. 8: 1305. https://doi.org/10.3390/coatings13081305
APA StyleZhu, Y., Xu, W., Cao, Z., Meng, W., Ni, J., Pan, J., & Wei, D. (2023). Prediction of Contact Angle for Oriented Hydrophobic Surface and Experimental Verification by Micro-Milling. Coatings, 13(8), 1305. https://doi.org/10.3390/coatings13081305