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Abstract: In this study, different concentrations of lithium perchlorate (LiClO4) and various types of
nanocarbons were applied to form poly(ethylene oxide) (PEO)-based electrochemical double-layer
(EDL) supercapacitors. For samples doped with various concentrations of LiClO4, 1 g/L of LiClO4

was prepared and mixed with PEO solution in different ratios for different concentrations of PEO:Li+

mixtures for further solution casting. It was found that the maximum current density and specific
capacitance of the sample prepared under the ratio of 100:1 of PEO:Li+ were 1.84 µA/cm2 with a
scanning rate of 100 mV/s and 33.56 nF/cm2 at 40 Hz, respectively. These were 10 times and nearly
18 times better than the control capacitor prepared without LiClO4. In addition, nanocarbons with
four different structures, including mesoporous carbon nanopowders (Meso) and multi-walled (MW),
double-walled (DW) and single-walled (SW) carbon nanotubes, were mixed with PEO solution to
prepare samples via solution casting. The comparison of four types of nanocarbons showed that
DW contributed the highest maximum current density and the specific capacitance at 10.51 µA/cm2

under a scanning rate of 100 mV/s and 32.798 nF/cm2 at 40 Hz, 60 times and 17 times higher than
that of the control sample casted without any dopants.

Keywords: supercapacitors; polymer electrolytes; electrochemical properties; ionic conductivity;
carbon nanotubes; poly(ethylene oxide); solution casting

1. Introduction

In the last few decades, substantial effort has been made for the development of
different energy accommodation/alteration devices with promising energy and power
densities, in order to address the rapid increase in ecological issues and the running out of a
hydrocarbon deposit. Being part of a transitional system, dielectric capacitors, batteries and
supercapacitors have drawn researchers’ attention because compared to secondary batteries,
their power densities are higher. In addition, supercapacitors are free-for-maintenance,
avoiding the memory effect, and can easily deal with a basic charging circuit. They are
mostly safer than other devices because energy is stored in a physical form instead of a
chemical form. This is the important reason why they can survive under a longer life cycle,
and they can sustain a high rate of changing and discharging. As a result, supercapacitors
have been largely applied in consumer electronics, vehicles operated under hybrid energy
sources and energy management in different industries [1–5].

There are two energy storage mechanisms in supercapacitors: electrical double-layer
(EDL) capacitance and pseudocapacitance. Recently, researchers have improved EDL
capacitor performance by using activated carbon (AC) as the electrode material, which can
provide a higher surface area; the capacitance benefits by the charge accumulated at the
electrode/electrolyte interface. On the other hand, conducting polymers or metal oxides
were used as the electrode material in pseudocapacitors, which facilitate reversible faradaic
redox reactions. For example, polyanilines, a commonly used type of conducting polymer,
have demonstrated high pseudocapacitance [6–8]. In specific energy, supercapacitors are
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several orders of magnitude higher than traditional capacitors like electrostatic capacitors
and electrolytic capacitors. Moreover, the specific energy of supercapacitors is relatively
lower than that of batteries, but the specific power of supercapacitors is higher than that of
most batteries [4].

Furthermore, electro-textiles (e-textiles) like conducting fibres have become favourable
materials in wearable and flexible applications due to being lightweight, bendable and
durable. Textile products are now widely applied in manufacturing to produce functional
clothes like medical monitoring accessories with variable sensors. Jost et al. have demon-
strated the charge capability of carbon materials on various types of fabrics such as cotton
lawn, polyester microfibre and nylon neoprene [9]. Additionally, Huang et al. have shown
the viability of industrially weavable and knitted highly conductive yarns to become wear-
able textiles [10]. Moreover, Dong et al. have investigated the performance of activated
carbon fibre cloth with carbon nanotubes and manganese dioxide under different bending
conditions [11].

Currently, there are various techniques of coating metals on fabrics that are being
used, like sputter coating, flame and arc spraying, vacuum deposition, conductive paints
and lacquers and electroless plating. Among these methods, electroless plating is the
most promising method for the metallisation of textiles due to its excellent conductivity,
coherent metal deposition and compatibility with complex-shaped materials or insulators,
and therefore this method can be applied for nearly all kinds of fibres. Moreover, it
can be applied in various textile manufacturing stages like fibre, yarn, fabric and even
garments [12].

With different conducting substrates like indium tin oxide (ITO) and conducting
fabrics, stabilised polymeric electrolytes such as PEO and Poly(acrylonitrile) (PAN), and
effective dopants like nanocarbons and lithium salts, researchers have constructed different
types of EDL supercapacitors to explore the viability of different energy-storing devices.
Some of this research has been summarised in Table 1 below.

Table 1. Recent research works about polymeric EDL supercapacitors doped with nanocarbons or
lithium salts.

Research
Groups

Electrode
Materials

Electrolytes
Used

Dopants
Applied

Liu et al. [13] HDC
PEO/PMMA/PAN

mixed with EC
and PC

LiClO4

Lim et al. [14] WO3 on ITO glass
LiClO4-LiMC,
LiClO4-PEO,

LiClO4-LiSMC
LiClO4

Hashmi et al. [15]
(1) High-density

graphite sheets
(2) Activated carbon fabrics

PVA-H3PO4,
(PEO)9-LiCF3SO3

LiCF3SO3

Jost et al. [9]

Various types of activated
carbon impregnation on
polyester microfibre and

cotton lawn

Na2SO4-Li2SO4
CXV, YP17,

carbon onions

Borges et al. [16] DWCNT-COOH/PE-b-PEO-
LiTFSI PE-b-PEO-LiTFSI DWCNT-COOH

Lust et al. [17] Nanoporous carbon on
Al foil

LiClO4, LiBF4,
Et4NBF4, Et3MeNBF4,

EtMe3NBF4

Nanoporous
carbon

To achieve the wearable and energy storage functions together, the electrode materials
should be flexible and tough enough to sustain multiple bending. However, studies into
polymeric EDL supercapacitors using wearable conducting fabrics as electrodes to collect
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energy are rarely found. To combine the advantages of supercapacitors and electro-textiles,
in this study, electroless copper-plated flexible polyester fabrics were used, to be doped
with various concentrations of LiClO4 and different forms of nanocarbons to form a series of
stretchable and bendable supercapacitors, their electrical performances were then examined,
and their electrical properties in different frequency ranges were studied. This fabric-based
supercapacitor system is proposed to be used in the field of electro-textiles, which may
be closely applied to human skin. Therefore, a solvent-free environment is safe to human
users. In this study, water was used to dissolve LiClO4 and nanocarbons instead of using
volatile organic solvents such as alcohols or ketones.

2. Experimental Methods
2.1. Polyester Fabric Metallisation

To prepare flexible conductive fabrics, commercial polyester fabrics with a density
of 75 × 75 threads per sq. inch (poly(ethylene terephthalate), PET, as major component,
by Lai Tak Enterprises Limited, Hong Kong, China) were down-sized into small pieces of
15 × 15 cm. Then, they were cleaned by Diadavin EWN 200% (by Bayer AG, Leverkusen,
Germany), a non-ionic detergent diluted to 2% for 30 min at 30 ◦C and pH 7, to remove
grease and make the fabric surface clean for chemical processes in later procedures. The
metallisation of polyester fabrics is a four-step process: (a) surface modification; (b) activa-
tion; (c) electroless plating with Ni and (d) electroless plating with (Cu). After metallisation,
plain polyester fabrics become conducting fabrics for further experimentation [12,18–23].

For surface modification, fabric pieces were dipped into sodium hydroxide (NaOH)
solution at 50 ◦C, with a concentration of 4M, for 20 min. Chemical bonding in the
backbone and branches of polyester on fabric surfaces were opened via the strong alkaline
solution in this alkaline etching process. Therefore, surface roughness was enhanced
and fabric surface area was increased, which could further benefit metal ion adhesion
processes including palladium (Pd) coating and electroless Ni-plating. After alkaline
etching, samples underwent acidification by dipping them into hydrochloric acid (HCl) at
25◦C, with a concentration of 1%, for 30 s. In this stage, samples should not be washed with
any solvents to keep the sample surface in an acidic state for further activation processes.
Figure 1. has illustrated the flow of this surface activation process.
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Figure 1. An illustration summarising the surface activation process.

To activate and metallise the fabric surface, nucleation with catalytic treatment was
carried out to facilitate the adhesion of the Pd atoms on the sensitised polyester fabric
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surface. In Figure 1, fabric samples were dipped into an acidic bath including Macuplex®

activate D-34C (by MacDermid, Suwanee, GA, USA), Macuplex® 78 Sensitizer (by Mac-
Dermid, Suwanee, GA, USA), 37% HCl and deionised water with a volume percent of
0.59:1.96:21.57:75.88 for 3 min at room temperature. D-34C contains colloidal suspension
of palladium particles in a stannous chloride (SnCl2) medium, which is an activating so-
lution. The sensitiser is a formulated commercial product containing potassium iodate
(KIO3) and potassium iodine (KI); with this combination, the bivalent tin (Sn2+) in this
acidic environment can be preserved. Via this palladium–tin bath, surface sensitisation
and activation take place; thus, tin (Sn) ions are transformed from Sn2+ to Sn4+, and further
react with carboxylate functional groups which are negatively charged. Because of their
ability regarding high metal ion adsorption, Pd ions can attach to Sn ions and function as
a catalyst. To remove excess tin ions and those surrounding palladium ions on the fabric
surfaces, fabric pieces were dipped into a sulphuric acid (H2SO4) bath at 50 ◦C, with a
concentration of 50 g/L for 1 min.

A layer of nickel was plated on fabric surfaces via electroless Ni-plating, and an
electroless Cu-plating process was later conducted on this Ni-plated fabric. To achieve this
goal, the Pd-plated fabric pieces were dipped into a Ni-rich solution mixture consisting of
ammonium hydroxide (NH4OH) with a concentration of 28%, Macuplex® J-61, Macuplex®

J-60 and DI water with a volume percent of 0.5:3.0:10.0:86.5 for 3 min at 35 ◦C. J-61 is a
reducing agent containing nickel and J-60 mainly consists of nickel chloride (NiCl2). In
this Ni-rich solution mixture, Ni ions were attached to fabric surfaces with the Pd ions by
recombining them with electrons; hence, these Ni ions were deposited and formed a thin
conducting layer.

Nickel layer formation: Ni2+ + 2e− → Ni

After Ni-plating, fabric samples were connected to the cathode of the electrolytic
bath for electroless Cu-plating, and a constant current source set at 3 ampere per square
decimetre (ASD, A/dm2) was applied for 1 min at 50 ◦C for degreasing before electroless
Cu-plating. After degreasing, the samples were dipped into a H2SO4 bath for 30 s at 50 ◦C
to detach remnants of the oxide film and to activate fabric sample surfaces at the same time,
and deionised water was used to rinse them afterwards. Eventually, fabrics were Cu-plated
under 2 ASD at 50 ◦C, with non-cyanide alkaline copper strike for 6 min.

2.2. Fabrication of EDL Capacitors with Various Dopants
2.2.1. Preparation of Flexible Current-Collecting Polyester Fabrics

In this study, Cu-plated polyester fabrics were used to become current collectors in
the EDL supercapacitor, and they were down-sized to 7.5 × 20 mm. Afterwards, these
current-collecting substrates underwent solution casting with various PEO or PEO/dopant
mixtures to form PEO active layers, by aligning them on the poly(tetrafluoroethylene)
(PTFE) panel (provided by Goodfellow, Huntingdon, UK) uniformly.

2.2.2. Preparation of PEO Dielectric Spacer

To avoid thermal degradation and to make sure that PEO powder could be dissolved
in the solution completely, 50 mL of deionised water was mixed with 1 g of PEO powder
(Mv: 600,000, by Sigma-Aldrich, St. Louis, MA, USA) and stirred at room temperature.
Afterwards, the dissolved PEO was spread on a glass panel and dried for 24 h under
ambient temperature, and a 15 µm thick PEO layer was formed. This PEO layer was
skinned off from the glass panel and this layer was trimmed into pieces of size 10 × 10 mm
to be used as PEO spacers. These spacers were used as a dielectric material, which could
isolate two active layers in this EDL supercapacitor.

2.2.3. Preparation of PEO:Li+ EDL Capacitors with Different LiClO4 Concentrations

The electrical properties of the PEO:Li+ EDL system with different concentrations of
LiClO4 were determined in this study. Thus, solutions with different ratios of PEO and
LiClO4 were formulated to prepare different EDL capacitors afterwards.
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To prepare LiClO4 stock solution, 250 ml of deionised water was mixed with 250 mg
of LiClO4 (99.99% trace metal basis, by Sigma-Aldrich, St. Louis, MA, USA). Additionally,
to prepare different concentrations of PEO:Li+ solution, 50 ml of deionised water was
mixed with 1 g PEO powder (Mv: 600,000, by Sigma-Aldrich, St. Louis, MA, USA) at room
temperature. Afterwards, different amounts of LiClO4 stock solution were mixed into these
PEO solutions with the ratio listed in Table 2 below.

Table 2. PEO and LiClO4 ratio of various concentrations of PEO:Li+ solutions.

Solution PEO Amount
(in g)

LiClO4 Amount
(in mg)

LiClO4 Amount
(in mL)

PEO to LiClO4
(Ratio in Weight)

A 1.0 1.0 1.0 1000:1

B 1.0 1.5 1.5 ~667:1

C 1.0 2.0 2.0 500:1

D 1.0 2.5 2.5 400:1

E 1.0 3.0 3.0 ~333:1

F 1.0 10.0 10.0 100:1

R 1.0 N.A. N.A. Control

Similarly to the preparation of PEO spacers, to avoid thermal degradation and to
ensure that PEO powder would be dissolved completely in solutions, they were stirred thor-
oughly without heating. Subsequently, solutions were poured on the metallised polyester
fabrics (Figure 2). To cast a uniform PEO:Li+ layer, the casted fabrics were put in an isolated
box to dry for 24 h, which was connected to a low-throughput ventilation system with
negative pressure. To guarantee that this layer could be formed with workable thickness
and good adhesion, this process was replicated three times.
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Figure 2. Illustration showing various PEO:Li+ and PEO:nanocarbon electrolytic material solutions
casted on Cu-plated polyester substrates.

Once the polyester fabric surface had been casted with the PEO:Li+ layer, a previously
prepared PEO spacer was sandwiched together with two pieces of casted fabric, as illus-
trated in Figure 3, to form an EDL capacitor. A capacitive effect was seen in the overlapping
area of two PEO:Li+-casted fabrics. Then, the laminated supercapacitor was connected with
wires on two metallised surfaces for further measurements.
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2.2.4. Preparation of PEO:nanocarbon EDL Capacitors with Different Types
of Nanocarbons

Electrical properties of PEO:nanocarbon EDL capacitors with various types of nanocar-
bons were determined in this study. To achieve this goal, different types of nanocarbons
were mixed with PEO to form solutions for further sample fabrication.

Four types of nanocarbons were used in this study: (a) mesoporous carbon nanopow-
ders (Meso); (b) multi-walled carbon nanotubes (MW); (c) double-walled carbon nanotubes
(DW) and (d) single-walled carbon nanotubes (SW) (all nanopowders came from Sigma-
Aldrich, St. Louis, MA, USA). Their specifications are listed in Table 3 below. For various
nanocarbon solutions, 10 ml of deionised water was mixed with 40 mg of each type of
nanocarbon to form solutions. Using an ultrasonic generator, these nanocarbon solutions
were ultrasonically vibrated for two hours, to help these nanocarbons to be dispersed
in solutions.

Table 3. Specifications of different nanocarbons examined in this study.

Item Dimension of Nanocarbons Density (g/cm3) at 25 ◦C

Meso <500 nm particle size 1.887

MW Length: 2.5–20 µm, O.D.: 6–13 nm 2.1

DW Length: 50 µm, I.D.: 1.3–2.0 nm, O.D.: 5 nm 1.7–2.1

SW Diameter: 0.7–1.3 nm 1.7–1.9

Once these solutions had been ultrasonically treated, 200 mg PEO powder in 10 mL
of deionised water was mixed with various nanocarbon solutions and the proportion of
PEO:nanocarbons in each solution was 5:1. To avoid thermal degradation, these solutions
were comprehensively blended without heating, to make sure that the nanocarbons and
PEO powder were dissolved uniformly in solutions. As shown in Figure 2, solutions were
spread on metallised polyester fabrics attached to the PTFE panel. Samples were placed
in an isolated box to dry for 24 h, which was connected to a low-throughput ventilation
system with negative pressure. After the PEO:nanocarbon active layers had been casted, a
previously prepared PEO spacer was sandwiched together with two pieces of casted fabric
to form an EDL capacitor. A capacitive effect was seen in the stack of two casted pieces and
the spacer in the overlapping area. Then, the laminated supercapacitor was connected with
wires on two metallised surfaces for further measurements.

3. Results and Discussion

Recently, researchers have proposed various methods that can be used for preparing a
capacitive coating layer on a conductive fabric surface, which is effective, thin and uniform
for energy-storing purposes. Nevertheless, in the case of woven fabrics, deposition methods
such as spin coating and chemical vapour deposition (CVD) will become less effective,
owing to the fabric surface morphology. As the structure of woven fabrics consists of a
number of horizontal and vertical yarns woven together to build up a large continuous
plane, from a microscopic view, this woven surface consists of numbers of repeating peaks
and troughs, and sometimes defects are found between junctions of yarns. These surface
features usually worsen the uniformity of capacitive layer formation, since conductive
materials may not be well deposited on the fabric surface due to the filling up of the
pits. As a result, a discontinuous layer may be formed, which degrades the efficiency and
effectiveness of the charge and discharging processes [24–28]. In this study, solution casting
becomes a good candidate to apply on the metallised polyester fabric surface, to prepare a
continuous PEO capacitive layer, due to its good adhesion and high flexibility.

3.1. Surface Morphology of Metallised Polyester Fabrics

Polyester fabrics were metallised via different chemical processes; via scanning elec-
tron microscopy (SEM), changes in the polyester fabric surfaces in different stages, starting
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from the untreated sample to the Cu-plating sample, were examined, and they are sum-
marised in Figure 4.
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Figure 4. SEM image of (a) the untreated polyester fabric (with 50×); (b) the Pd-coated polyester
fabric (with 500×); (c) the Ni-coated polyester fabric (with 500×); and (d) the Cu-coated polyester
fabric (with 500×).

In Figure 4a, the untreated polyester fabric has a uniform and clean surface, and as
found via SEM estimation, the fibre diameter was 15 µm on average. Figure 4b shows that
the fabric sample was Pd-coated, a layer of Pd/Sn mixture was uniformly layered on the
fibre surface and the diameter of the Pd-coated fibre was observed to be more or less the
same as the untreated fibre, on average. After Ni-plating, as observed in Figure 4c, the fibre
surface became shiny, as a layer of Ni had been plated on the fibre surface, and the average
diameter of the fibre increased to about 17 µm. The SEM image shows that the estimated
thickness of Ni-plating is in the range of the sub-micron (with a few hundred nm). Further,
for electroless Cu-plating, a glossy metal coating is noticed on the fibre surface. This Cu
coating formed around the fibre surface, as presented in Figure 4d. Via estimation, the
Cu-plated polyester fibre diameter and the thickness of the Cu layer were about 20 µm and
1 µm, respectively. The estimated average fibre diameters in each stage are tabulated in
Table 4.
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Table 4. Summary of changes in fibre diameter in different stages of plating processes.

Stages of Treatment Average Diameter of the Fibre

Untreated 15 µm

Palladium-coated 15 µm

Nickel-coated 17 µm

Copper-coated 20 µm

After a series of fabric metallisation processes, a PEO layer was casted on the metallised
fabric surface. Figure 5 shows that a pure PEO layer was solution casted on the metallised
polyester surface without any dopants. In the PEO layer, some particles of a white colour
were found, which were crystallised PEOs that could be associated with different ionic
dopants like lithium ions in a later part of the experiments, and therefore an efficient
response of charging and discharging could be provided in different samples.
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Commonly, the transportation of ions is usually related to ion hopping between ranges
of adjacent sites in solid polymers. Via the motion of polymer chains, ions within the
polymeric electrolyte in the amorphous phase can migrate in a dynamic environment
at a temperature above the glass transition (Tg). Suitable coordination sites adjacent to
ions are generated due to piston-like movement associated with short fragments of the
polymer chains, and hence, the spontaneous hopping of ions can occur. However, if lots
of atom motion in the polymer chain occurs in these segmental modes, their motions are
usually slow. Therefore, the rate of ion hopping will be limited, and hence, the conductivity
of the material will be affected. This mechanism becomes ineffective when crystallinity
increases [29–31].

Nevertheless, the presence of crystallised sites in some linear polymers such as PEO
can exhibit enhancement in ion transport efficiency in the polymer matrix if ionic dopants
are present, as both mechanisms are concurrently present and competing in the PEO matrix.
Therefore, the amorphous phase of the material will no longer dominate the conductivity
of the PEO matrix [32,33].

3.2. Thickness Estimation of Different PEO-Casted Polyester Fabric Samples

Since PEO is an elastic and soft polymeric material, using the conventional mechanical
contacting method to measure its thickness may not be the best way. Therefore, in this study,
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a non-contacting laser triangulation method was applied to measure various PEO-based
spacers and electrolytic layers. Their thicknesses are presented in Table 5.

Table 5. Thickness estimation of different PEO-based spacers and electrolytic layers.

Samples Thickness (µm)

Metallised polyester fabrics with copper 65

Pure PEO spacer and control sample 25

Samples casted with different concentrations of PEO:Li+ 20

Samples casted with different types of PEO:nanocarbons 50

3.3. Frequency Responses of PEO-Based EDL Capacitors with Various LiClO4 Concentrations

Other than surface morphology, electrical properties of various EDL capacitors with
different LiClO4 concentrations were examined. An impedance analyser ranging from
40 to 110 MHz was used to investigate the electrical properties of PEO-based samples,
parameters involving series capacitance (Cs), the dissipation factor (D), series resistance
(R), series reactance (X) and absolute impedance (|Z|), and the phase difference between
the resistance and reactance (θ) was measured.

Various PEO-based supercapacitor samples were connected to the impedance anal-
yser, their Cs were measured and their corresponding specific capacitance values were
determined. Their specific capacitances at several testing frequencies (40, 1 K, 100 K and
100 MHz) are tabulated in Table 6, while the changes in specific capacitance are illustrated
in Figure 6.

Table 6. Specific capacitances of PEO-based EDL capacitors with various LiClO4 concentrations at 40,
1 K, 100 K and 100 MHz.

Frequency (in Hz)

Li+ Added (in mL) 40 1 K 100 K 100 MHz

Nil 1.89 0.05 0.02 0.03

1.0 6.86 0.12 0.03 0.05

1.5 17.32 0.44 0.02 0.03

2.0 27.92 0.64 0.03 0.06

2.5 24.23 0.77 0.02 0.02

3.0 29.67 1.02 0.04 0.05

10.0 33.56 2.00 0.04 0.02

All units are in nF/cm2.

At a lower frequency range (<1 kHz), the increase in Li+ ions determines the increase
in specific capacitance of PEO-based samples. The control sample without any lithium ions
exhibited a specific capacitance of 1.89 nF/cm2 at 40 Hz, and it was significantly increased
by 263% to 6.86 nF/cm2 when the Li+ amount had raised to 1.0 ml; then, it eventually
raised to 33.56 nF/cm2 after the Li+ amount was increased to 10.0 ml. When the frequency
reached 1 kHz, the specific capacitances of the samples rose with the Li+ amount from
0.05 nF/cm2 (no Li+ added) to 0.12 nF/cm2 (1.0 ml) and reached 2.00 nF/cm2 (10.0 mL).
Nevertheless, when the frequency was raised to 100 kHz or even higher, the effect from
different amounts of LiClO4 became less significant, and the specific capacitance of the
samples with different Li+ concentrations stayed at around 0.05 nF/cm2. Generally, PEO
is a polymer that is neutral and non-charged. The polymer chains in it are well aligned,
or in other words, it is highly crystalline. However, high crystallinity is not favourable
for charges to migrate in the polymer matrix. Therefore, when dopants like Li+ ions are
added into the PEO matrix, these ions will reduce the crystallinity of the matrix and the
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ionic conductivity will increase; hence, the charge storage capability will increase. When
the Li+ concentration increased from 0.001 to 0.01, more ions were found in the PEO matrix,
which contributed more to the conductivity of the ions, and the competence of the energy
storage in the EDL capacitor system was enhanced. Therefore, the specific capacitance of
the capacitor can be increased [34,35]. As moieties are the main constitutive units in the
oligoether structure, they are beneficial for the dissolving of alkali salts such as LiClO4, and
they can be found in the backbone of polymer chains or their side branches. Additionally,
the total lithium salt concentration in the PEO cast ruled the dissociation degree of the
salt dissolved in it. Generally speaking, an increase in salt concentration gives a decrease
in the dissociation degree. In some of the latest reports, an optimal salt concentration
has been suggested by researchers, and lithium ions have been said to form complexes
in linear oligo(ethylene oxide), such as PEO with oxygen (of ethylene oxide units) in a
molar ratio of around 0.04. Moreover, some researchers have reported that molecular
dynamic simulations show that in a PEO chain, approximately five ether oxygen molecules
bond with a Li+ ion to form complexes, and this combination of molecules may hinder the
mobility of cations. Therefore, Li+ ions’ mobility is highly dependent on the motions of
Li+-containing complexation sites with PEO chains. The lithium ion motions between these
complexation sites which are maintained by PEO matrix segmental motion are illustrated
in Figure 7 [36].
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On the other hand, in the capacitor, the dissipation factor (D) can be stated as follows:

D =
Req

|Xc|
(1)

where Xc is the capacitive reactance and Req is the equivalent resistance of the electrochemi-
cal system. Req signifies the capacitor loss which can be derived with physical origins in
both dipole relaxation phenomena and the dielectric’s conduction electrons. The connection
can be stated as follows:

Req =
σ

εω2C
(2)

where ε is the lossless permittivity of the dielectric, C is the lossless capacitance of the
dielectric material, σ is the dielectric material’s conductivity and ω is the angular frequency
of the voltage applied into the electrochemical system. Meanwhile, Xc is related to

Xc =
1

2π f C
=

1
ωC

(3)

where f is the sinusoid signal implemented into the measured EDL system. If Equations (2)
and (3) are substituted into Equation (1), D can be expressed as follows:

D =
σ

εω
(4)

where D is a variable that is frequency-dependent. Table 7 summarises the D values of
various EDL samples measured at several testing frequencies (40, 1 K, 100 K and 100 MHz),
and Figure 8 illustrates these changes. After the testing signal was raised to 10 kHz, the
dissipation factor of all of the samples decreased to below 1, and reached the lowest point
at around 10 MHz. This implies that the PEO-based Li+-doped samples perform with
higher efficiency in a higher frequency range than in a lower frequency range.



Coatings 2023, 13, 1373 12 of 29

Table 7. Dissipation factors of PEO-based EDL capacitors with various LiClO4 concentrations at 40,
1 K, 100 K and 100 MHz.

Frequency (in Hz)

Li+ Added (in mL) 40 1 K 100 K 100 MHz

Nil 3.87 0.52 0.15 0.03

1.0 5.86 0.89 0.24 0.22

1.5 6.54 2.19 0.27 0.11

2.0 6.69 1.73 0.31 0.18

2.5 5.40 2.34 0.28 0.10

3.0 6.49 2.04 0.37 0.09

10.0 6.05 3.00 0.39 0.14
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Other than Cs and D, the values of X and R were also obtained. The measured R and
X of the various EDL samples measured at several testing frequencies (40, 1 K, 100 K and
100 MHz) are summarised in Tables 8 and 9, respectively. Moreover, Figure 9 illustrates
the changes in series resistance from 40 to 100 MHz. For reactance changes, the absolute
reactance (|X|) instead of reactance (X) from 40 to 100 MHz is illustrated in Figure 10,
as the negative magnitude is used to show that the measured reactance is dominated by
capacitive elements.
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Table 8. Resistances (R) of PEO-based EDL capacitors with various LiClO4 concentrations at 40, 1 K,
100 K and 100 MHz.

Frequency (in Hz)

Li+ Added (in mL) 40 1 K 100 K 100 MHz

Nil 46,373.67 2712.78 23.18 0.01

1.0 10,099.36 2054.68 25.06 0.01

1.5 10,156.82 5105.76 39.65 0.02

2.0 7110.52 1620.95 27.25 0.01

2.5 2346.95 1442.97 28.81 0.01

3.0 3387.20 1377.66 26.02 0.01

10.0 7070.60 3303.59 34.84 0.02
All units are in kΩ.

Table 9. Reactance (X) of PEO-based EDL capacitors with various LiClO4 concentrations at 40, 1K,
100K and 100M Hz (negative magnitudes show the tendency of capacitive reactance).

Frequency (in Hz)

Li+ Added (in mL) 40 1 K 100 K 100 MHz

Nil −31,325.38 −6471.99 −152.31 −0.11

1.0 −2581.87 −2608.91 −105.89 −0.07

1.5 −1849.45 −3888.73 −210.13 −0.20

2.0 −1569.23 −1842.49 −93.09 −0.07

2.5 −316.90 −812.02 −83.64 −0.10

3.0 −522.57 −1084.45 −78.46 −0.06

10.0 −850.10 −2692.39 −138.93 −0.15
All units are in kΩ.

Theoretically, the sample measurement of total impedance (Z) should involve a pair
of elements: the real and imaginary part, which represent the resistive element (R) and
reactive element (X), respectively. For the control sample with no doped Li+, when the
testing frequency increases from 40 to 100 MHz, the resistance (R) decreases from 46 MΩ to
only a few Ω. In terms of reactance (X), it changes from −31 MΩ to about 110 Ω when the
frequency increases from 40 to 100 MHz.

Additionally, for Li+-ion-doped samples, the resistance decreases from a few MΩ to
less than 20 Ω when the frequency increases from 40 to 100 MHz. In terms of reactance (X),
it slightly increases from a lower frequency range and touches the highest value at about 1
kHz, and at 100 MHz, it decreases to less than 200 Ω. A negative magnitude is measured,
which indicates that the capacitive reactance is dominated in the impedance.

In electrochemical impedance spectroscopy, a sinusoidal signal E(ω,t) = Eo sin ωt is
injected into the sample during measurement, where Eo is the amplitude of signal and f is
the variable frequency (provided that ω is the angular frequency, and hence ω = 2πf ). At
the same frequencies, the comparable current I(ω,t) is recorded. Hence, the comparable
impedance Z(ω,t) with respect to the examined samples can be acquired from Ohm’s law,
as follows:

Z(ω, t) =
V(ω, t)
I(ω, t)

(5)
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Sinusoidal current recorded from samples at a certain angular frequency ω can appear
in the same or opposite phase to the comparable periodic sine wave injected, meaning the
current can be written as I(ω,t) = Io sin (ωt − θ), where θ is the phase angle between the
potential and current and Io is the current amplitude. In the expression of complex number
notation, the AC potential can be rewritten as E(ω,t) = Eo ejωt and the current signal can be
expressed as I(ω,t) = Io ej(ωt − θ), where j is the imaginary unit. Through these conversions,
Equation (5) can be rewritten as follows:

Z(ω, t) =
E(ω, t)
I(ω, t)

=
Eo

Io
ejθ = |Z(ω)|ejθ (6)

where θ is the impedance phase angle and |Z| is the impedance modulus. By using Euler’s
formula, Equation (6) can be further rewritten as follows:

Z(ω, t) = |Z(ω)|(cosθ + jsinθ) = Z′(ω) + jZ′′ (ω) (7)

where Z′ = |Z| cosθ and Z′′ = |Z| sinθ are the real and imaginary part of the impedance,
respectively. Therefore, from Equation (7), the modulus |Z(ω)| and the phase angle of
impedance θ(ω) can be obtained by the following:

|Z(ω)| =
√

Z′2(ω) + Z′′ 2(ω) (8)

θ(ω) = tan−1[Z′′ (ω)/Z′(ω)] (9)

With the relation of Equations (8) and (9), the connection between the resistance and
reactance of the EDL system can be derived, and the phase angle (θ) between R and X and
|Z| can be found throughout the experiment. Hence, |Z| and θ measured from various
Li+-doped EDL samples at several testing frequencies (40, 1 K, 100 K and 100 MHz) are
summarised in Tables 10 and 11. Moreover, their changes in |Z| and θ from 40 to 100 MHz
are illustrated in Figures 11 and 12.

Table 10. Absolute impedances (|Z|) of PEO-based EDL capacitors with various LiClO4 concentra-
tions at 40, 1 K, 100 K and 100 MHz.

Frequency (in Hz)

Li+ Added (in mL) 40 1 K 100 K 100 MHz

Nil 56,727.70 7149.97 154.26 0.11

1.0 10,384.77 3341.51 108.60 0.07

1.5 10,328.40 6454.05 215.02 0.20

2.0 7318.01 2543.76 97.63 0.07

2.5 2368.53 1669.78 88.93 0.10

3.0 3428.50 1783.19 82.95 0.06

10.0 7124.34 4294.57 144.79 0.16
All units are in kΩ.

Table 11. Phase angles (θ) of PEO-based EDL capacitors with various LiClO4 concentrations at 40,
1 K, 100 K and 100 MHz.

Frequency (in Hz)

Li+ Added (in mL) 40 1 K 100 K 100 MHz

Nil −23.11 −63.55 −81.34 −88.06

1.0 −11.40 −50.26 −76.78 −77.80
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Table 11. Cont.

Frequency (in Hz)

Li+ Added (in mL) 40 1 K 100 K 100 MHz

1.5 −9.15 −29.15 −74.81 −83.89

2.0 −10.07 −39.51 −72.84 −79.77

2.5 −6.15 −16.49 −52.12 −62.10

3.0 −9.31 −31.57 −70.06 −85.13

10.0 −10.54 −24.92 −69.39 −81.99
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The control sample without doped Li+ ions shows the highest magnitude of |Z| and
θ at 40 Hz. It seems that the absence of Li+ ions causes poor charge mobility, and the
capacitive element in the reactance causes a large phase difference between the resistive
and reactive elements. When the testing frequency increases, the magnitude of |Z| and θ

drops and responses are similar to other Li+-doped samples.
A dramatic decrease in R, X and |Z| in different lithium-ion-doped samples can be

observed; in a low frequency range, these values dropped to 25% or less of the samples
without any dopants. This phenomenon indicates that an enrichment in charge mobility in
the electrolyte can occur via the existence of lithium ions in the PEO matrix and establishes
an enhancement in the charge storage capability. Furthermore, at around 1 kHz, the
existence of lithium ions initiates a particular influence on reactance.
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3.4. Cyclic Voltammetry of PEO-Based EDL Capacitors with Various LiClO4 Concentrations

Theoretically, the charging–discharging behaviour of an ideal double-layer capacitor
can be illustrated via voltammetry characteristics in a rectangular form (Figure 13). In
the diagram, when the potential direction was reversed, the current flow was reversed
immediately. In the system, electrostatic potential can be seen as part of the charge storage
mechanism, and generally, the potential and current are mostly independent of each other.
If materials with pseudocapacitance properties are used as electrodes, the form of the
voltammetry curve changes, and redox peaks due to pseudofaradaic reactions are noticed
in some cases. In contrast, the electrode potential dominated charges accumulated in the
capacitor in this experiment. As the charging of pseudocapacitance involves kinetically
slow processes, during the reverse in potential, a delay in potential change occurs [37]. In
the following Table 12, the maximum current densities of different scan rates are tabulated.

In general, all samples of the PEO-based supercapacitor give voltammograms in an
olive shape, and the maximum current densities can be found at 0.5 V and −0.5 V, with
respect to the positive or negative potential. In the experiment, a faster scan rate gives a
higher value of current density, and vice versa, so that a slower scan rate gives a lower value,
and for all samples, no matter how the scan rate is changed, the cyclic voltage–current
density responses are quite similar. This can be described in terms of the time taken to
record the scan and the size of the diffusion layer. Since the applied potential gradually
increases, the current follows the potential to rise correspondingly from its initial value at
the negative side, and then shifts to the positive side. Hence, a greater number of reactants
in the electrolyte are transformed, and the diffusion layer sufficiently grows above the
Cu-plated polyester fabrics.



Coatings 2023, 13, 1373 18 of 29Coatings 2023, 13, x FOR PEER REVIEW 20 of 32 
 

 

 
Figure 13. Conventional cyclic voltammetry of electrochemical capacitors. 

Table 12. The maximum current densities obtained from PEO-based EDL capacitors with various 
LiClO4 concentrations via cyclic voltammetry under different scanning rates (voltage applied: ±0.5 
V). 

 Scan Rate (in mV/s) 
Li+ Added (in mL) 100 50 20 10 

Nil 177 172 87 71 
1.0 243 191 136 102 
1.5 351 279 205 189 
2.0 562 475 347 186 
2.5 883 538 385 377 
3.0 924 695 510 313 

10.0 1844 1304 876 330 
All units are in nA/cm2. 

In general, all samples of the PEO-based supercapacitor give voltammograms in an 
olive shape, and the maximum current densities can be found at 0.5 V and −0.5 V, with 
respect to the positive or negative potential. In the experiment, a faster scan rate gives a 
higher value of current density, and vice versa, so that a slower scan rate gives a lower 
value, and for all samples, no matter how the scan rate is changed, the cyclic voltage–
current density responses are quite similar. This can be described in terms of the time 
taken to record the scan and the size of the diffusion layer. Since the applied potential 
gradually increases, the current follows the potential to rise correspondingly from its ini-
tial value at the negative side, and then shifts to the positive side. Hence, a greater number 
of reactants in the electrolyte are transformed, and the diffusion layer sufficiently grows 
above the Cu-plated polyester fabrics. 

In practice, the efficiency of charges moving from one active site to another in the 
PEO matrix is ruled by the diffusion layer formation. The potential applied to the super-
capacitor samples is longer when a slower scan rate is used, and therefore, in contrast to 
using a faster scan rate measurement, the diffusion layer can develop far away from the 
metallised fabric surface towards the electrolyte, resulting in the potential occurrence of 
an ineffective charge transfer. In addition, a faster scan rate allows for a relatively larger 
current flux to pass through the metallised fabric surface than a slower one. As the current 
density applied to the testing sample during the measurement is proportionate to the cur-
rent flux towards the metallised surface, at a faster scan rate, a larger magnitude of current 
density is triggered by a higher flux. This is a fast response process and this electron trans-
fer reaction is usually regarded as being reversible. 

Ic 

Ic 

i 

iv iii 

V 

I 

ΔV 

ii 

i—Ideal capacitor 

ii—Capacitor with resistivity 

iii—Influence of redox reactions 

iv—Capacitor with materials causing 

faradaic reaction 

 

 

IC—Capacitive current 

ΔV—Voltage delay 

Figure 13. Conventional cyclic voltammetry of electrochemical capacitors.

Table 12. The maximum current densities obtained from PEO-based EDL capacitors with vari-
ous LiClO4 concentrations via cyclic voltammetry under different scanning rates (voltage applied:
±0.5 V).

Scan Rate (in mV/s)

Li+ Added (in mL) 100 50 20 10

Nil 177 172 87 71

1.0 243 191 136 102

1.5 351 279 205 189

2.0 562 475 347 186

2.5 883 538 385 377

3.0 924 695 510 313

10.0 1844 1304 876 330

All units are in nA/cm2.

In practice, the efficiency of charges moving from one active site to another in the PEO
matrix is ruled by the diffusion layer formation. The potential applied to the supercapacitor
samples is longer when a slower scan rate is used, and therefore, in contrast to using a
faster scan rate measurement, the diffusion layer can develop far away from the metallised
fabric surface towards the electrolyte, resulting in the potential occurrence of an ineffective
charge transfer. In addition, a faster scan rate allows for a relatively larger current flux
to pass through the metallised fabric surface than a slower one. As the current density
applied to the testing sample during the measurement is proportionate to the current flux
towards the metallised surface, at a faster scan rate, a larger magnitude of current density is
triggered by a higher flux. This is a fast response process and this electron transfer reaction
is usually regarded as being reversible.

From the empirical results, the maximum current density of the control sample is
about 177 nA/cm2 under a scanning rate of 100 mV/s with applied voltage of± 0.5 V. Once
the Li+ ions have been added into the PEO matrix, the charge mobility becomes enhanced,
and when the Li+ ion concentration has been increased from 0.001 to 0.01, the maximum
current density dramatically increases from 243 nA/cm2 to 1844 nA/cm2. Lithium ions
can migrate among nearby active sites in the PEO backbone and branches when sufficient
Li+ ions are provided to the PEO matrix; hence, the current density flowing through the
EDL supercapacitor sample and the charge storage capability are enhanced. Taken from
Lim et al., around 0.1 mA/cm2 was obtained if the Li+ ion concentration was raised to
5 wt% LiClO4-PEO, with WO3-coated ITO as the electrode [14]. The cyclic voltammogram
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below (Figure 14) illustrates the responses of voltage–current in different PEO:Li+-based
EDL capacitors with various salt concentrations under a scanning rate of 100 mV/s.
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3.5. Frequency Responses of PEO-Based EDL Capacitors with Various Types of Nanocarbons

Other than lithium salt in a previous experiment, PEO-based EDL capacitors were
doped with various types of nanocarbons and their electrical properties were examined.
These nanocarbons have a similar density to (i) mesoporous nanocarbons (Meso); (ii) multi-
walled carbon nanotubes (MW); (iii) double-walled carbon nanotubes (DW) and (iv) single-
walled carbon nanotubes (SW). An impedance analyser ranging from 40 to 110 MHz was
used to investigate the electrical properties of PEO-based samples, parameters involving
series capacitance (Cs), the dissipation factor (D), series resistance (R), series reactance (X),
absolute impedance (|Z|) and the phase difference between the resistance and reactance (θ).

PEO-based supercapacitor samples doped with different types of nanocarbons were
connected to the impedance analyser, their Cs were measured and their corresponding
specific capacitance values were determined. Table 13 summarises their specific capacitance
at several testing frequencies (40, 1 K, 100 K and 100 MHz), and their change in specific
capacitance is illustrated in Figure 15.



Coatings 2023, 13, 1373 20 of 29

Table 13. Specific capacitances of PEO-based EDL capacitors with various types of nanocarbons at 40,
1 K, 100 K and 100 MHz.

Frequency (in Hz)

Nanocarbons Added 40 1 K 100 K 100 MHz

SW 1.353 0.046 0.019 0.030

DW 32.798 0.238 0.016 0.020

MW 17.806 0.206 0.014 0.006

Meso 8.238 0.066 0.009 0.010

No dopant 1.890 0.050 0.020 0.030

All units are in nF/cm2.
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Mostly, in the range of frequencies from 40 to 100 MHz, similar trends can be ob-
served in all four different types of nanocarbon samples. On the other hand, when the
frequency is below 1 kHz, all PEO:nanocarbon supercapacitors show higher values of
specific capacitance than the other frequency ranges.

Among all four nanocarbon samples, DW shows the best performance and gives a
specific capacitance of 32.798 nF/cm2 at 40 Hz, followed by MW, Meso and SW with values
of 17.806, 8.238 and 1.353 nF/cm2, respectively. However, the specific capacitances of all
samples drastically drop when the testing signal increases to 10 kHz, and they reach the
minimum throughout the high frequency range at 100 MHz.



Coatings 2023, 13, 1373 21 of 29

Table 14 summarises the dissipation factors (D) of all of the PEO:nanocarbon EDL
samples recorded at several testing frequencies (40, 1 K, 100 K and 100 MHz), and in
Figure 16, their dissipation factor changes are illustrated.

Table 14. Dissipation factors of PEO-based EDL capacitors with various types of nanocarbons at 40,
1 K, 100 K and 100 MHz.

Frequency (in Hz)

Nanocarbons Added 40 1 K 100 K 100 MHz

SW 4.45 0.64 0.10 1.71

DW 17.75 2.14 0.27 0.46

MW 11.70 1.87 0.24 0.46

Meso 14.06 1.58 0.17 0.21

No dopant 3.87 0.52 0.15 0.03
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Similarly to the Li+-doped samples, after the testing frequency was raised to 6 kHz, the
dissipation factor of all samples decreased to below 1, and the nanocarbon-doped samples
reached the lowest point in the range of 1 MHz to 10 MHz. However, after reaching
10 MHz, their efficiencies slightly bounced back to near 1. The empirical results showed
that the working bandwidth of the nanocarbon-doped samples was narrower than that of
the Li+-doped samples, and more frequency-dependent in this electrochemical system.

Charge accumulation in this EDL system increases greatly when various nanocarbons
are added into the PEO matrix, as these dopants can increase the total surface area in the
matrix, and free charges in this system can be easily captured. From the empirical results,
the specific capacitance of DW is the highest among the four nanocarbons. Physically, DW
consists of two SWs with inner and outer nanotubes, which is a simple form of MW. For
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nanotube walls, their electronic configurations can either be metallic (M) or semiconducting
(S). According to these phenomena, there are four possible combinations that can be
obtained in DW; they are M-M, M-S, S-M and S-S (outer nanotube–inner nanotube). These
four combinations improve the capability of charge trapping in the system by advancing the
electrical conductivity. Researchers have suggested that DW with an M-M configuration
can perform like SW in a metallic configuration, where the electrical properties of the
material are as good as the metal, and can also perform on an advanced surface for charge
trapping in the EDL system [38–40]. Other than Cs and D, the value of X and R were also
obtained. The measured R and X of various EDL samples measured at several testing
frequencies (40, 1K, 100K and 100M Hz) are summarised in Tables 15 and 16, respectively.
Moreover, the changes in series resistance from 40 to 100 MHz are illustrated in Figure 17.
For the change in reactance, the absolute reactance (|X|) instead of reactance (X) from 40
to 100 MHz is illustrated in Figure 18, and the negative magnitude is used to show that the
measured reactance is dominated by capacitive elements.

Table 15. Resistances (R) of PEO-based EDL capacitors with various types of nanocarbons at 40, 1 K,
100 K and 100 MHz.

Frequency (in Hz)

Nanocarbons Added 40 1 K 100 K 100 MHz

SW 23,241.52 4016.48 15.01 0.16

DW 4078.95 2694.65 46.00 0.08

MW 22,366.81 7258.65 51.32 0.23

Meso 12,060.08 7037.73 52.26 0.06

No dopant 46,373.67 2712.78 23.18 0.01
All units are in kΩ.

Table 16. Reactance (X) of PEO-based EDL capacitors with various types of nanocarbons at 40, 1 K,
100 K and 100 MHz (negative magnitudes show the tendency of capacitive reactance).

Frequency (in Hz)

Nanocarbons Added 40 1 K 100 K 100 MHz

SW −5239.97 −6302.44 −144.30 −0.09

DW −243.79 −1315.14 −169.59 −0.16

MW −2228.80 −7974.92 −275.94 −0.49

Meso −858.95 −4453.04 −311.58 −0.28

No dopant −31,325.38 −6471.99 −152.31 −0.11
All units are in kΩ.

Theoretically, the sample measurement of total impedance (Z) should involve a pair
of elements: the real and imaginary part, which represent the resistive element (R) and
reactive element (X), respectively. In the experiment, when the testing frequency increases
and reaches 100 MHz, the resistance of all of the PEO:nanocarbon samples decreases from
MΩ to a few tens of Ω. Among the four samples, DW shows the lowest R, which is one
order of magnitude less than the other samples. Additionally, when the testing frequency
rises, the reactance of all of the PEO:nanocarbon samples decreases from kΩ to tens to
hundreds of Ω at 100 MHz. DW shows the lowest X, which is one order of magnitude less
than the other samples, as the negative magnitude of X is used to show that the measured
reactance is dominated by the capacitive elements.

|Z| and θ data from the experiment taken from different nanocarbon-doped EDL
samples at several testing frequencies (40, 1 K, 100 K and 100 MHz) are summarised in
Tables 17 and 18, respectively. Moreover, their changes in |Z| and θ from 40 to 100 MHz
are illustrated in Figures 19 and 20, respectively.
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Table 17. Absolute impedances (|Z|) of PEO-based EDL capacitors with various types of nanocar-
bons at 40, 1 K, 100 K and 100 MHz.

Frequency (in Hz)

Nanocarbons Added 40 1 K 100 K 100 MHz

SW 23,826.51 7474.36 145.07 0.18

DW 4086.41 3004.90 175.79 0.18

MW 22,478.09 10,944.02 282.84 0.54

Meso 12,090.74 8328.22 315.93 0.29

No dopant 56,727.70 7149.97 154.26 0.11
All units are in kΩ.

Table 18. Phase angles (θ) of PEO-based EDL capacitors with various types of nanocarbons at 40, 1 K,
100 K and 100 MHz.

Frequency (in Hz)

Nanocarbons Added 40 1 K 100 K 100 MHz

SW −12.71 −57.56 −84.05 −30.47

DW −3.34 −25.64 −74.94 −65.55

MW −5.00 −34.30 −76.43 −65.23

Meso −4.08 −32.32 −80.48 −78.33

No dopant −23.11 −63.55 −81.34 −88.06
All units are in degrees.
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The magnitude of |Z| for all PEO:nanocarbon samples is more or less the same as the
series resistances at 100 Hz or below; it seems that the reactance of all samples exhibits a
negligible effect on |Z|. On the other hand, a negative value of θ in all readings shows
that capacitive elements dominate the reactance. These phenomena show that resistive
elements are largely governed by the frequency responses of an electrochemical system.
The reactive element begins to influence |Z| after the testing frequency increases to 1 kHz,
and beyond 1 kHz, the phase angle increases as |Z| is influenced by R and X at the same
time. When the frequency reaches 100 kHz, the phase angle of all of the nanocarbon-doped
samples increases rapidly to more than −75◦; this shows that capacitive reactance is the
major component affecting the magnitude of |Z|. However, the reactance response of SW
becomes different after the frequency is raised beyond 100 kHz. The phase angle decreases
along with the increase in frequency, and reaches −30.47◦ at 100 MHz.

A comparison of all four PEO:nanocarbon samples shows that the resistance, reactance
and impedance values of DW are much smaller than those of other PEO:nanocarbon
samples. The empirical results suggest that the charge mobility in the PEO electrolyte
can be enhanced if DW is doped into the PEO matrix, by providing a more advanced
environment than the other three types of nanocarbons, and further improve the charge
storage capability. Moreover, for the testing frequency at 1 kHz, the presence of nanocarbons
can trigger some effects on reactance.

3.6. Cyclic Voltammetry of PEO-Based EDL Capacitors with Various Types of Nanocarbons

Generally, all PEO:nanocarbon supercapacitors give voltammograms in an olive shape,
and the maximum current densities can be found at 0.5 V and −0.5 V with respect to the
positive or negative potential. In the experiment, a faster scan rate gives a higher value
of current density, and vice versa, whereby a slower scan rate gives a lower value, and
for all samples, no matter how the scan rate is changed, the cyclic voltage–current density
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responses are of a similar shape. In Table 19, the maximum current densities of different
scanning rates are summarised, and the cyclic voltammogram (Figure 21) illustrates the
responses of voltage–current in different PEO:nanocarbon EDL capacitors under a scanning
rate of 100 mV/s.

Table 19. Maximum current densities of different PEO:nanocarbon EDL capacitors obtained via cyclic
voltammetry under different scanning rates (voltage applied: ±0.5 V).

Scan Rate (in mV/s)

Nanocarbons Added 100 50 20 10

SW 1.11 1.01 0.50 0.41

DW 10.51 8.36 6.56 5.30

MW 5.56 4.91 2.36 0.99

Meso 4.68 3.32 1.57 1.32

No dopant 0.18 0.17 0.09 0.07

All units are in µA/cm2.
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The DW-doped PEO-based EDL capacitor shows a significantly higher value of current
density than the other dopants; it gives 10.51 µA/cm2 under a scanning rate of 100 mV/s
with applied voltage of ±0.5 V, which is nearly two times that compared to the values from
MW and mesoporous nanocarbons, and nearly ten times that of the samples doped with SW.
From the results, it is obvious that the electrical properties exhibited by DW are better than
the samples doped with other nanocarbons. As reported by Borges et al., the current density
of their sample with a similar structure, using copolymer polyethylene-b-poly(ethylene
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oxide) as the polymer electrolyte and DW as a nanocomposite, would give a value around
5 µA/cm2 under a scanning rate of 5 mV/s, with applied voltage of ±0.5 V [16].

4. Conclusions

In this study, LiClO4 and various types of nanocarbons were doped into active layers
of PEO-based EDL capacitors, and their electrical properties were examined using an
impedance analyser and cyclic voltammetry. For the experiment on LiClO4, different
concentrations of LiClO4 were doped into the active layer of the supercapacitor. At 40 Hz,
the sample prepared under the ratio of 100:1 of PEO:Li+ gives a specific capacitance
of 33.56 nF/cm2 and a maximum current density of 1844 nA/cm2 under a scanning
rate of 100 mV/s with applied voltage of ±0.5 V, which are 18 times and 10 times more
than those of the sample without LiClO4 doping. It is observed that a higher LiClO4
concentration can provide better charging capability. For the experiment on different
types of nanocarbons, nanocarbons with four different structures, including mesoporous
carbon nanopowders (Meso) and multi-walled (MW), double-walled (DW) and single-
walled (SW) carbon nanotubes, were doped into the active layer of the supercapacitor.
At 40 Hz, the sample doped with the double-walled carbon nanotube gives a specific
capacitance of 32.798 nF/cm2 and a maximum current density of 10.51 µA/cm2 under
a scanning rate of 100 mV/s with applied voltage of ±0.5 V, which are 17 times and
60 times more than those of the sample without LiClO4 doping. It is suggested that
compared to other types of nanocarbons, samples doped with double-walled carbon
nanotubes can provide better electrical properties. The empirical results demonstrate the
electrical properties of a solvent-free PEO-based EDL supercapacitor doped with LiClO4
and nanocarbons on flexible conducting fabrics. This system can provide some basic
information to help other researchers to design devices like wearable supercapacitors,
taking advantage of the flexibility and strength of metallised polyester fabrics, and hence
can further improve devices in terms of different electrical and mechanical properties, and
also geometrical configurations.
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