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Abstract: A silicon-nanostructured array coating on silicon film (SAS film) is designed based on the
plasmonic optical tweezer and demonstrated for optical trapping and manipulation of nanospheres
with negligible impact on the local thermal conditions. The electric field enhancement, optical force,
and trapping potential of the SAS film are investigated by the finite element method. The trapping
position is affected by the incident light wavelength, structure of the nanoarray, and refractive index
of the nanospheres. The presence of four energy wells around the nanoarray suggests that it is
possible to trap multiple nanoparticles. Moreover, the circularly polarized light, Gaussian beam, and
silicon nanoarray facilitate the trapping of nanoparticles. This study showcases the potential of SAS
film as optical tweezers to capture nanoparticles for the development of nanophotonic devices.

Keywords: optical tweezers; electric field enhancement; trapping potential; silicon-nanostructured
array coatings on silicon film; circularly polarized light

1. Introduction

The optical tweezer has emerged as an important device for the noninvasive ma-
nipulation of mesoscopic objects since the pioneering work of Ashkin [1] and has led to
fascinating applications such as DNA stretching [2], photonic force microscopy [3], and
DNA dynamics analysis [4]. The conventional method of optical tweezing involves the use
of a tightly focused laser beam to produce a gradient force that can be utilized to manipulate
particles [5]. However, traditional optical tweezers for high-precision particle manipulation
typically require a high laser power which may irreversibly destroy heat-sensitive materials
like DNA and proteins [6]. Moreover, the diffraction limit restricts light propagation in free
space below the sub-wavelength range, making the trapping position uncertain. Recent
developments in fabrication methods and nano-optics have spurred the development of
plasmonic optical tweezers (POTs), where the plasmonic waves amplify the optical forces
exerted by the device [7]. The current technique involves imposing a gradient force on the
particles by the amplified electromagnetic field that arises from localized surface plasmon
resonance (LSPR). Therefore, the amplification and localization of an electromagnetic field
at a specific location, which is referred to as a plasmonic hotspot [8,9], result in a stronger
trapping potential well that enhances the efficacy of nanoparticle trapping.

Metallic nanostructures have the characteristics of LSPR which stems from the col-
lective electron oscillations on the surface of plasmonic nanoparticles. POTs primarily
rely on the amplified and confined electromagnetic fields around nanostructures, such
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as nanoapertures [10], tetramers [11], disk-ring pairs [12], and nanoholes [13]. Gao et al.
have shown that the optical pulling force exerted on active plasmonic nanoparticles due
to Fano resonance can be enhanced by two orders of magnitude compared to a single
active nanoparticle [14] and Jiang et al. have used metal disks to generate resonance at
specific wavelengths to control the trapping positions [15]. However, the strong POT
consisting of plasmonic nanoparticles produced by LSPR is prone to thermal damage due
to the relatively large absorption loss at the optical frequency [16]. Hence, all-dielectric
nanostructures comprising silicon and germanium structures have been investigated as
they offer appealing features such as low losses and high refractive indexes.

High-refractive-index dielectric nanostructures have attracted extensive attention
and play a crucial role in enhancing the local fields. In addition, the optical resonance
observed from all-Si nanoantennas has the potential to surpass the diffraction limit, thus
enabling control of the incident light on the subwavelength scale [17]. Experimental
evidence has demonstrated that all-Si nanoantennas indeed possess the capability of
capturing individual particles, and their interactions with confined light fields have been
examined [18–20]. Nevertheless, the investigation of optical manipulation utilizing all-
dielectric nanoantennas is still in the early stage with regard to optical trapping and
manipulation of nanostructures. Since these functionalities can be achieved by plasmonic
techniques, there is a growing interest in all-dielectric nanostructures, especially from the
perspective of precise manipulation.

Herein, optical trapping by a single dielectric nanosphere (NS) in a silicon-nanostructured
array coating on silicon film is demonstrated upon illumination by polarized light. In
contrast to resonances observed from individual plasmonic structures, the nanoparticle
array exhibits higher resonance peaks due to the interactions between particles. The local
field enhancement and optical force generated by the nanostructured array are investigated,
including the dependence of the force on the height and width of the nanostructured
array as well as the radius and refractive properties of the nanosphere. Nanoparticles can
be captured by two traps simultaneously using circularly polarized illumination and a
Gaussian beam. The results reveal that the nonperturbative all-Si tweezer can be generated
by strong exciton–plasmon coupling. It has a large practical potential with respect to optical
manipulation and optical assembly of strong-coupling systems on Si chips, boding well for
life science and biological research as well as commercial applications.

2. Model and Method
2.1. Method of Multipole Decomposition

The process of light scattering can be understood as the re-emission of light as a
consequence of the polarized charge current in the scattering medium [21]. In the context of
classical electrodynamics, the distributions of the polarized charge current can be divided
into three categories of dynamic multipoles: electric multipoles, magnetic multipoles, and
toroidal multipoles [22]. The method of multipole decompositions, including electric dipole
moment Pα (ED), magnetic dipole moment Mα (MD), toroidal dipole moment Tα (TD),
electric quadrupole moment Qε

αβ (EQ), and magnetic quadrupole moment Qm
αβ (MQ), are

typically utilized to analyze the scattering cross-section (SCS) and near-field characteristics
of nanosystems. The general expressions are described as follows [21,23]:

Pα =
1

iω

ˆ
Jαd3r (1)

Mα =
1
2c

ˆ
[r× J]αd3r (2)

Tα =
1

10c

ˆ [
(r× J)rα

− 2r2 Jα

]
d3r (3)
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Qε
αβ = − 1

iω

ˆ [
rα Jβ −

2
3

δαβ(r·J)
]

d3r (4)

Qm
αβ =

1
3c

ˆ
[[r·J]αrβ + rα[r× J]α]d

3r (5)

where r, J, and the subscripts α, β = x, y, z denote the position vector, polarization current
density excited in the antenna, and the components of EQ and MQ, respectively. The
radiation power I comprising the aforementioned multipole moments can be calculated by
Equation (6) [24]:

I =
1

8πε0

[
2ω4

3c3 |P|
2 +

2ω4

3c3 |M|
2 +

4ω5

3c4 Im(P ∗ T) +
2ω6

3c5 |T|
2 +

ω6

20c5 ∑|T|2 +
ω6

20c5 ∑|Qε|2 + ω6

20c5 ∑|Qm|2
]

(6)

where ω, c, and ε0 represent the angular frequency, speed of light, and vacuum dielectric
constant, respectively. The scattering cross-section Csca is described as follows [24]:

Csca =
I

Iinc
(7)

where Iinc is the radiation power of the incident light wave.

2.2. Maxwell Stress Tensor Method

The electromagnetic field exerts optical forces on the particle, namely the scattering
force and gradient force. These forces can be calculated or summarized by the Maxwell
stress tensor (MST) [25]. The optical forces exerted on particles are more intricate when
plasmon enhancement is incorporated, as opposed to conventional optical tweezers. In this
situation, the stress tensor around the target surface can be expressed as [26]:

T =

[
ε0EE + µ0HH − 1

2

(
ε0E2 + µ0H2

)
I
]

(8)

where E is the electric field intensity, H is the magnetic field intensity, ε0 is the permittivity
of the medium, µ0 is the magnetic permeability of the medium, and I is the third-order unit
tensor. The stress tensor is a symmetric tensor represented as follows [26]:

T =

ε0E2
1 + µ0H2

1 −
1
2
(
ε0E2 + µ0H2) ε0E1E2 + µ0H1H2 ε0E1E3 + µ0H1H3

ε0E2E1 + µ0H2H1 ε0E2
2 + µ0H2

2 −
1
2
(
ε0E2 + µ0H2) ε0E1E3 + µ0H1H3

ε0E3E1 + µ0H3H1 ε0E3E2 + µ0H3H2 ε0E2
3 + µ0H2

3 −
1
2
(
ε0E2 + µ0H2)

 (9)

Hence, the optical force exerted on particles in the electromagnetic field can be written
as [27,28]:

F =

‹
〈T〉 · ndS (10)

where n is the unit normal vector to the particle surface. When the optical force distribution
of a particular particle is determined, the optical potential well depth at r0 can be calculated
by [29]:

U(r0) =

ˆ r0

∞
F(r)dr (11)

The potential well depth used in the investigations characterizes the capture stability of
particles. In order to suppress the Brownian motion of the nanoparticle, it is typically necessary
for the depth of the potential well to satisfy the condition: exp(−U/kBT) << 1 [30].

2.3. Structure and Modeling

Figure 1a presents the schematic of the Si-nanostructured array consisting of four
nanocuboids linearly arranged on the Si film. Each nanocuboid has a length of l = 100 nm,
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width of W = 40 nm, and height of h = 40 nm, and the gap between two adjacent
nanocuboids is G = 20 nm. The top view (X-Y) and front view (X-Z) of the nanoantenna
are depicted in Figure 1b,c. The Si-nanostructured array coating on silicon film (SAS film)
was designed by numerical simulations using the finite element method (FEM). With the
development of microfabrication technologies, the SAS film can usually be fabricated by
film deposition, photolithography, and ion-beam etching, among other techniques [31]. The
plane wave is linearly polarized along the x-axis and propagates parallel to the negative
direction of the y-axis. The SAS film is placed in water with a permittivity of 1.33. The
refractive index of Si was extracted from Palik’s handbook [32] and the target spherical
nanoparticle was set as n = 2 with a diameter D = 50 nm.

Figure 1. Schematic diagrams of the SAS film: (a) Three-dimensional (3D) view, (b) top view, and
(c) front view.

The entire numerical simulation process was performed in COMSOL Multiphysics [33]
(COMSOL, Inc., Burlington, MA, USA). The finite element method used in the simulations
involves certain assumptions and simplifications to model the behavior of the SAS film
accurately. The type and size of the mesh can affect the calculation results to different
degrees. In addition, the type of coordinate system and the setting of boundary conditions
for simulating the infinite space are also factors affecting the calculation results. With
perfectly matched layer (PML) boundary conditions applied in all three dimensions to
simulate a finite structure size, the spherical coordinate system is chosen as the simulation’s
reference coordinate system type. To reduce potential reflection, a scattering boundary
condition (SBC) was applied to the outermost border. To capture the scattering energy, PML
and SBC are used to end the simulation domain. SAS films use a finer mesh depending
on the model’s elemental order. The total number of elements in the mesh is 19,726, along
with 3240 boundary and 424 edge elements, with a step of incidence wavelength of 21
from 750 nm to 2000 nm. In addition, the proposed SAS films can be completely fabricated
by existing technology, which mainly consists of the following steps: cleaning the SOI
substrate, using low-pressure chemical vapor deposition (LPCVD), spin-coating resist,
utilizing electron beam lithography (EBL), developing and employing inductively coupled
plasma (ICP) etching, and removing resist.

3. Results and Discussion

In order to explore the scattering features of the Si-nanostructured array coating on
silicon film (SAS film), the scattering cross-section and electric field enhancement of the SAS
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film were derived (Figure 2). As shown in Figure 2a, the SAS film shows significant scatter-
ing and extinction cross-sections, rendering it a promising candidate for surface-enhanced
spectroscopies. The peaks of ECS and SCS are located at 1020 nm and 1480 nm and the SAS
film has a negligible absorption cross-section in the near-infrared spectrum, resulting in
ultra-low localized thermal energy generation during optical trapping. Consequently, the
SAS film exhibits a broad spectrum of working wavelengths with negligible thermal effects.
Figure 2b depicts the contributions of various multipoles to the scattering cross-section
(SCS) in the wavelength range between 900 nm and 1800 nm. The SCS is dominated by the
electric dipole moment (ED), whereas the other multipoles are negligible in comparison.
The EQ, MD, and MQ contributions to the scattering cross-section is approximately zero
and so the resonant peak at λ = 1020 nm in the total scattering spectrum is caused by the
combination of ED and TD, while the resonant peak at 1480 nm in the total scattering re-
sponse is attributed to the contributions of ED. The electric field enhancements for different
incident light wavelengths are presented in Figure 2c. The electric field enhancement at
point B is greater than those at points A, C, and D when the wavelength is shorter than
1100 nm. When the wavelength is longer than 1100 nm, the electric field enhancement at
point B is comparatively lower than that at point A. Figure 2d–f displays the electric field
enhancement for different wavelengths. The hotspot can be identified around the outer
nanoparticles when the light wavelength is shorter than 1027 nm, while the enhancement
of the local field around the inner nanoparticles is more obvious when λ = 1240 nm.

Figure 2. (a) Extinction, absorption, and scattering cross-sections of the Si-nanostructured array
coating on silicon film (SAS film), (b) contributions of different multipoles to the scattering cross-
sections, (c) electric field enhancement for different incident wavelengths. Electric field distributions:
(d) λ = 944 nm, (e) λ = 1027 nm, and (f) λ = 1240 nm.

Structural parameters as well as surface topography play a crucial role in the electric
field strength, which in turn leads to differences in the ability to capture nanoparticles [33,34].
The parameters are optimized by examining the electric field enhancement at different
incident wavelengths, as shown in Figure 3. Two different plasmon resonance peaks appear
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from the electric field enhancement curve at 944 nm and 1240 nm for points A and D, while
two peaks at 1027 nm and 1240 nm are observed from points B and C. As shown in Figure 3,
the field enhancement exhibits an upward trend as the gap distance decreases from 20 nm to
80 nm. Based on this observation, the gap distance was set as 20 nm in the subsequent study.
The field enhancement can be improved by operating at a longer wavelength up to 1240 nm,
but the enhancement diminishes at wavelengths longer than 1240 nm. Accordingly, taking
into account the popular 1064 nm infrared laser, the wavelengths of the incident light are
set at 1064 nm and 1240 nm.

Figure 3. Field enhancement for different gap distances and wavelengths: (a) Point A, (b) point B,
(c) point C, and (d) point D.

The optical forces generated by the Si-nanostructured array coating on silicon film
(SAS film) as a nanotweezer were determined for the optical trapping of a nanosphere for
λ = 1064 nm. Numerical analysis was performed to determine the relationship between the
center position of the nanoparticle (xc, yc, zc) and the optical forces (Fx, Fy, Fz), where Fx, Fy,
and Fz represent the x, y, and z components of the optical force vector, respectively. The
optical force distribution surrounding the SAS film is acquired by moving the nanosphere
along the x and y axes. By determining the optical forces Fx and Fz as well as the poten-
tial well shown in Figure 4a,c, there exist a total of four stable capture points along the
x-axis. The stable trapping equilibrium point (zero force in a certain direction) is found
at xc = −235 nm, −119 nm, 119 nm, and 235 nm, respectively. As shown in Figure 4b, the
y-component of the force for x = 120 nm and x = 240 nm consistently exhibits a negative
value, implying an attractive interaction with the nanosphere situated above it. In addition,
Fy is negative for yc < 0 and positive for yc > 0 because the Brownian motion causes the
nanosphere to deviate from the equilibrium point [35]. These results suggest that the gaps
of the SAS film result in forces to enable optical trapping of nanoparticles along the x-, y-,
and z-axis.

A comparative analysis was conducted to determine the optical forces and potential
well distributions for λ = 1200 nm and 1240 nm. As shown in Figure 5, Fx rises gradually to a
maximum as the nanosphere moves along the x-axis, and then decreases to zero at x = 0 nm.
The potential Ux exhibits a valley-like energy profile, indicating trapping at xc = 0 nm, as
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shown in Figure 5a,b. However, the optical force Fz in Figure 5c,d indicates small repulsion
between the nanoparticles located in the central region of the Si-nanostructured array
coating on silicon film (SAS film). In contrast to results observed at 1064 nm, there is no
stable capturing point for λ = 1200 nm and λ = 1240 nm.

Figure 4. MST optical forces and trapping potentials for a nanosphere for λ = 1064 nm: (a) Optical
forces Fx and potential well U vs. NS center position along the x-axis, (b) optical forces Fy vs. NS
center position along the y-axis, and (c) optical forces Fz vs. NS center position along the x-axis.

Figure 5. MST optical forces and trapping potentials for a nanosphere: (a,c) λ = 1240 nm and
(b,d) 1200 nm.

In order to discuss the upper limits of nanoparticle sizes that the SAS film can ef-
fectively trap and manipulate, Figure 6 depicts the optical forces and trapping potentials
in the x-direction for different nanosphere radius. It can be seen from Figure 6a that the
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optical force Fx exerted on the nanosphere exhibits a significant variation as the radius of
the nanosphere increases. There exist four stable capture points in the x-direction when the
radius (r) is equal to 25 nm, while the number of stable capture points decreases to zero
when the radius is increased to 50 nm. Figure 6b illustrates the presence of multiple energy
wells as the radius increases to 45 nm around the SAS film in the gap, which implies that it
should be possible to trap multiple nanoparticles. Hence, nanoparticle sizes with an upper
limit of r = 45 nm are able to be effectively trapped and manipulated within the SAS film.

Figure 6. (a) Optical forces and (b) trapping potentials in the x-direction for different nanosphere
radius (r).

The optical force Fz acting on the nanosphere and Si-nanostructured array coating
on silicon film (SAS film) was evaluated for different parameters. Figure 7a–d shows the
optimization process for the four different parameters of array height (h), nanosphere
refractive index (n), array width (W), and nanosphere radius (r). As shown in Figure 7a,b,
the optical force Fz decreases gradually with increasing array height (h) and width (W).
Moreover, Fz shows minimal repulsion between nanospheres on both sides of the central
region for h = 45 nm and W = 60 nm. The z-component of the optical force exerted on
the nanoparticles with different refractive index (n) and radius (r) is determined when the
nanoparticles are 10 nm above the SAS film. According to Figure 7c,d, the optical force
acting on the nanosphere shows subtle change with increasing refractive index (n), while
the optical force Fz increases gradually with the nanosphere radius (r).

To investigate the impact of the thermophoresis force on particle capture, numerical
analysis was conducted regarding the increase in the temperature in the proximity of
the Si-nanostructured array coating on silicon film (SAS film), as shown in Figure 8. The
thermal conductivity in the simulation was set to be KSi = 148 WK−1m−1 for Si. Figure 8a
shows the power dissipation density of the SAS film, and a majority of the power dissipation
is close to the surface of the SAS film. The steady-state temperature profile of the SAS
film in Figure 8b indicates a peak of approximately 0.02 K. As a result, the relatively
low steady-state temperature gives rise to minimal thermal energy generation during
optical trapping.

The optical force distributions of the particles for different refractive indexes are
displayed in Figure 9. The optical force Fy is determined by analyzing the variations at
the equilibrium points as a function of the refractive index of the nanosphere between
1.5 and 2 in the trapping region. As shown in Figure 9a, the structure comprises three
rows of nanoarrays, each with gradually increasing gap distances of G = 20 nm, G = 30 nm,
and G = 40 nm, respectively. The incident wavelength is 1064 nm. The distribution of
the optical force around the Si-nanostructured multiple array coatings on silicon film is
obtained by manipulating the position of the nanosphere along the y-axis. As displayed
in Figure 9b, the nanosphere can be captured at distinct gaps when subjected to different
forces. In cases where the captured nanosphere experiences a deviation from the gap center



Coatings 2023, 13, 1388 9 of 14

in the x-direction, it will be subjected to the optical force and ultimately return to the gap
center. The optical force exerted on the nanosphere also increases with increasing refractive
index. Moreover, the optical force experienced by the particles for a specific refractive index
increases through the three rows of nanoarrays. The results indicate the function of an
optical tweezer for particle sorting.

Figure 7. Optical forces in the z-direction for (a) array height (h), (b) nanosphere refractive index (n),
(c) array width (W), and (d) nanosphere radius (r).

Figure 8. (a) Heat power dissipation density around the Si-nanostructured array coating on silicon
film (SAS film) and (b) temperature profile around the SAS film.

The Si-nanostructured array coating on silicon film (SAS film) is irradiated with left
circularly polarized (LCP) light, right circularly polarized (RCP) light, and a Gaussian beam
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as shown Figure 10a. Figure 10b shows the schematic in which the nanosphere illuminated
by the Gaussian beam propagates along the z-axis with polarization along the x-axis for a
beam width of 1200 nm. The optical force exerted on a trapped nanoparticle is shown in
Figure 10c–e. Upon irradiation by the circularly polarized light and Gaussian beam, two
stable capturing points appear along the x-axis, and the nanosphere is able to move freely
between gaps in the nanoarray due to the loose potential well. Compared with circularly
polarized illumination and the Gaussian beam, the optical trapping features of a nanosphere
are superior during linearly polarized light exposure. The use of circularly polarized
illumination and the Gaussian beam augments the trapping region and probability of a
moving nanoparticle to be pulled into the SAS film, which is suitable for applications in
optical tweezers and plasma coatings.

Figure 9. (a) Schematic diagram of the Si-nanostructured multiple array coatings on silicon film and
(b) optical force distributions of the particles with different refractive indexes.

Figure 10. Cont.
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Figure 10. Schematic diagram of the Si-nanostructured array coating on silicon film: (a) Circularly
polarized illumination, (b) Gaussian beam, and (c–e) optical force distributions of the particles under
different polarization conditions.

A comparative analysis of representative optical trapping techniques or materials is
presented in Table 1 and our structure indeed delivers excellent performance.

Table 1. Comparison of the properties of optical trapping structures.

References Characteristics Wavelength Range (nm) Optical Force Structure Diagram

[35]
Si nanotrimer on a Si

substrate
Particle r = 10–15 nm

600–1200 One capture point

[36]
Si nanononamer on a glass

substrate
Nanowire r = 15 nm

1064 Trapping of multiple
nanowires

[37]

Coupled T-shaped Cu
nanoantenna on a glass

substrate
Particle r = 15 nm

1064 One capture point

[38]

Au bowtie aperture and
Au thin film

on a glass substrate
Particle r = 50 nm

1100–1200 One capture point
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Table 1. Cont.

References Characteristics Wavelength Range (nm) Optical Force Structure Diagram

[7]

Coaxial plasmonic aperture
(a dielectric ring embedded

in a noble metal)
Particle r = 5 nm

400–800 Two capture point

[39]

Gold bowtie structure and
ITO film on a glass

substrate
Particle r = 2 nm

532 Two capture point

This work

Si-nanostructured array
coating on silicon film

(SAS film)
Particle r = 25–45 nm

900–1800 Four capture point

4. Conclusions

A silicon-nanostructured array coating on silicon film (SAS film) was designed and
demonstrated for the optical trapping of single dielectric nanoparticles and the related
plasmonic and optical properties were determined. The SAS film shows stable optical
trapping of nanoparticles as small as 25 nm, and the four energy wells around the nanoar-
ray enable capturing of multiple nanoparticles at a wavelength of 1064 nm. The electric
field enhancement increases with decreasing gap distance and the optical force exhibits a
correlation with the structural parameters of the silicon nanoarray, as well the refractive
index and radius of the captured nanoparticles. When the nanoarray is excited by circularly
polarized light and the Gaussian beam, two optical traps are observed, indicating the
possibility of trapping nanoparticles. The Si-nanostructured array coating on silicon film
exhibits excellent enhancement of the near-field electric field and optical trapping charac-
teristics, and our results provide theoretical guidance for the research and development of
lab-on-a-chip devices and optical information processing.
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