Assessment of New Imidazol Derivatives and Investigation of Their Corrosion-Reducing Characteristics for Carbon Steel in HCl Acid Solution
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Electrochemical Analysis
2.3. SEM Analysis
2.4. UV–Visible Analysis
2.5. DFT and MD Details
3. Results and Discussion
3.1. PDP Investigation
3.2. EIS Investigation
3.3. Temperature Effect and Kinetic Parameters
3.4. Adsorption Model
3.5. SEM/EDS Analysis
3.6. UV–Visible Investigation
3.7. DFT Results
3.8. Local Reactivity Descriptors (LRD)
3.9. Dynamics Simulation Study
3.9.1. Inhibitors/Fe(110)
3.9.2. RDF Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fajobi, M.; Loto, R.; Oluwole, O. Corrosion in crude distillation overhead system: A review. J. Bio. Tribo Corros. 2019, 5, 67. [Google Scholar] [CrossRef]
- Goyal, M.; Kumar, S.; Bahadur, I.; Verma, C.; Ebenso, E.E. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. J. Mol. Liq. 2018, 256, 565–573. [Google Scholar]
- El Faydy, M.; Benhiba, F.; Warad, I.; Saoiabi, S.; Alharbi, A.; Alluhaybi, A.A.; Lakhrissi, B.; Abdallah, M.; Zarrouk, A. Bisquinoline analogs as corrosion inhibitors for carbon steel in acidic electrolyte: Experimental, DFT, and molecular dynamics simulation approaches. J. Mol. Struct. 2022, 1265, 133389. [Google Scholar]
- Yaktini, A.E.L.; Lachiri, A.; Faydy, M.E.L.; Benhiba, F.; Zarrok, H.; Azzouzi, M.E.L.; Zertoubi, M.; Azzi, M.; Lakhrissi, B.; Zarrouk, A. Practical and theoretical study on the inhibitory influences of new azomethine derivatives containing 8-hydroxyquinoline moiety for the corrosion of carbon steel in 1 M HCl. Orient. J. Chem. 2018, 34, 3016–3029. [Google Scholar]
- Abdallah, M.; Soliman, K.; Al Jahdaly, B.; Al-Fahemi, J.H.; Hawsawi, H.; Altass, H.; Motawea, M.; Al-Juaid, S.S. Natural parsley oil as a green and safe inhibitor for corrosion of X80 carbon steel in 0.5 MH2SO4 solution: A chemical, electrochemical, DFT and MC simulation approach. RSC Adv. 2022, 12, 2959–2971. [Google Scholar]
- Laadam, G.; El Faydy, M.; Benhiba, F.; Titi, A.; Amegroud, H.; Al-Gorair, A.S.; Hawsawi, H.; Touzani, R.; Warad, I.; Bellaouchou, A.; et al. Outstanding anti-corrosion performance of two pyrazole derivatives on carbon steel in acidic medium: Experimental and quantum-chemical examinations. J. Mol. Liq. 2023, 375, 121268. [Google Scholar]
- Ben Hmamou, D.; Salghi, R.; Zarrouk, A.; Zarrok, H.; Hammouti, B.; Al-Deyab, S.S.; Bouachrine, M.; Chakir, A.; Zougagh, M. Alizarin red: An efficient Inhibitor of C38 Steel Corrosion in Hydrochloric Acid. Int. J. Electrochem. Sci. 2012, 7, 5716–5733. [Google Scholar]
- Ghazoui, A.; Saddik, R.; Benchat, N.; Hammouti, B.; Guenbour, M.; Zarrouk, A.; Ramdani, M. The Role of 3-Amino-2-Phenylimidazo [1,2-a]Pyridine as Corrosion Inhibitor for C38 Steel in 1M HCl. Der. Pharma. Chem. 2012, 4, 352–364. [Google Scholar]
- Bouassiria, M.; El Faydy, M.; Benhiba, F.; Laabaissi, T.; Fakhry, H.; Saoiabi, S.; Touir, R.; Warad, I.; Guenbour, A.; Lakhrissi, B. Corrosion Effectiveness of 5-(4-Phenylpiperazin-1-yl) methyl) quinolin-8-ol for Carbon Steel in 1.0 M HCl. J. Bio. Tribo Corros. 2022, 8, 43. [Google Scholar] [CrossRef]
- Zarrouk, A.; Hammouti, B.; Dafali, A.; Zarrok, H. L-Cysteine methyl ester hydrochloride: A new corrosion inhibitor for copper in nitric acid. Der. Pharma. Chem. 2011, 3, 266–274. [Google Scholar]
- Zarrouk, A.; Chelfi, T.; Dafali, A.; Hammouti, B.; Al-Deyab, S.S.; Warad, I.; Benchat, N.; Zertoubi, M. Comparative Study of new Pyridazine Derivatives Towards Corrosion of Copper in Nitric Acid: Part-1. Int. J. Electrochem. Sci. 2011, 5, 696–705. [Google Scholar]
- Zarrok, H.; Zarrouk, A.; Salghi, R.; Oudda, H.; Hammouti, B.; Ebn Touhami, M.; Bouachrine, M.; Pucci, O.H. A Combined Experimental and Theoretical Study on the Corrosion Inhibition and Adsorption Behaviour of Quinoxaline Derivative During Carbon Steel Corrosion in Hydrochloric Acid. Port. Electrochim. Acta 2012, 30, 405–417. [Google Scholar]
- Thoume, A.; Benhiba, F.; Elmakssoudi, A.; Benmessaoud Left, D.; Benzbiria, N.; Warad, I.; Dakir, M.; Azzi, M.; Zertoubi, M.; Zarrouk, A. Corrosion inhibition behavior of chalcone oxime derivatives on carbon steel in 0.5 M H2SO4. J. Appl. Electrochem. 2021, 51, 1755–1770. [Google Scholar]
- El Faydy, M.; Benhiba, F.; Warad, I.; About, H.; Saoiabi, S.; Guenbour, A.; Bentiss, F.; Lakhrissi, B.; Zarrouk, A. Experimental and theoretical investigations of two quinolin-8-ol derivatives as inhibitors for carbon steel in 1 M HCl solution. J. Phys. Chem. Solids 2022, 165, 110699. [Google Scholar]
- Jasim, A.S.; Rashid, K.H.; AL-Azawi, K.F.; Khadom, A.A. Synthesis of a novel pyrazole heterocyclic derivative as corrosion inhibitor for low-carbon steel in 1M HCl: Characterization, gravimetrical, electrochemical, mathematical, and quantum chemical investigations. Results Eng. 2022, 15, 100573. [Google Scholar]
- Ramachandran, A.; Anitha, P.; Gnanavel, S. Structural and electronic impacts on corrosion inhibition activity of novel heterocyclic carboxamides derivatives on mild steel in 1 M HCl environment: Experimental and theoretical approaches. J. Mol. Liq. 2022, 359, 119218. [Google Scholar]
- Prasad, D.; Dagdag, O.; Safi, Z.; Wazzan, N.; Guo, L. Cinnamoum tamala leaves extract highly efficient corrosion bio-inhibitor for low carbon steel: Applying computational and experimental studies. J. Mol. Liq. 2022, 347, 118218. [Google Scholar]
- Hsissou, R.; Benassaoui, H.; Benhiba, F.; Hajjaji, N.; Elharfi, A. Application of A New Tri-Functional Epoxy Prepolymer, Triglycidyl Ethylene Ether Of Bisphenol A, in The Coating Of E24 Steel In 3.5% NaCl. J. Chem. Technol. Metall. 2017, 52, 431–438. [Google Scholar]
- Prasad, D.; Singh, R.; Safi, Z.; Wazzan, N.; Guo, L. De-scaling, experimental, DFT, and MD-simulation studies of unwanted growing plant as natural corrosion inhibitor for SS-410 in acid medium. Colloids Surf. A 2022, 649, 129333. [Google Scholar]
- Hsissou, R.; Abbout, S.; Benhiba, F.; Seghiri, R.; Safi, Z.; Kaya, S.; Briche, S.; Serdaroğlu, G.; Erramli, H.; Elbachiri, A. Insight into the corrosion inhibition of novel macromolecular epoxy resin as highly efficient inhibitor for carbon steel in acidic mediums: Synthesis, characterization, electrochemical techniques, AFM/UV–Visible and computational investigations. J. Mol. Liq. 2021, 337, 116492. [Google Scholar]
- Kumar, U.P.; Albrakaty, R.H.; Wazzan, N.; Obot, I.; Safi, Z.S.; Shanmugan, S.; Liang, T. Insight into the nature of the ionic interactions between some aldehydes and Ni-W alloy: A theoretical study. Mater. Today Commun. 2020, 22, 100693. [Google Scholar]
- Obot, I.; Kaya, S.; Kaya, C.; Tüzün, B. Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches. Res. Chem. Intermed. 2016, 42, 4963–4983. [Google Scholar]
- Obot, I.; Macdonald, D.; Gasem, Z. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corros. Sci. 2015, 99, 1–30. [Google Scholar]
- Obi-Egbedi, N.; Obot, I.; El-Khaiary, M.; Umoren, S.; Ebenso, E.E. Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some phenanthroline derivatives on mild steel surface. Int. J. Electrochem. Sci. 2011, 6, 5649–5675. [Google Scholar]
- Costa, S.N.; Almeida-Neto, F.W.; Campos, O.S.; Fonseca, T.S.; de Mattos, M.C.; Freire, V.N.; Homem-de-Mello, P.; Marinho, E.S.; Monteiro, N.K.; Correia, A.N.; et al. Carbon steel corrosion inhibition in acid medium by imidazole-based molecules: Experimental and molecular modelling approaches. J. Mol. Liq. 2021, 326, 115330. [Google Scholar]
- Toghan, A.; Khairy, M.; Huang, M.; Farag, A.A. Electrochemical, chemical and theoretical exploration of the corrosion inhibition of carbon steel with new imidazole-carboxamide derivatives in an acidic environment. Int. J. Electrochem. Sci. 2023, 18, 100072. [Google Scholar]
- Hany, M.; Abd El-Lateef, K.; Shalabi Antar, A. Abdelhamid. One-pot synthesis of novel triphenyl hexyl imidazole derivatives catalyzed by ionic liquid for acid corrosion inhibition of C1018 steel: Experimental and computational perspectives. J. Mol. Liq. 2021, 334, 116081. [Google Scholar]
- ASTM G1; Standard Practice for Preparing, Cleaning, and Evaluation Corrosion Test Specimens. ASTM International: West Conshohocken, PA, USA, 2003.
- Al Garadi, W.; Jrajri, K.; El Faydy, M.; Benhiba, F.; El Ghayati, L.; Sebbar, N.K.; Essassi, E.M.; Warad, I.; Guenbour, A.; Bellaouchou, A.; et al. 4-phenyl-decahydro-1H-1,5-benzodiazepin-2-one as novel and effective corrosion inhibitor for carbon steel in 1 M HCl solution: A combined experimental and empirical studies. J. Indian Chem. Soc. 2022, 99, 100742. [Google Scholar]
- Abd El-Lateef, H.M.; Abo-Riya, M.A.; Tantawy, A.H. Empirical and quantum chemical studies on the corrosion inhibition performance of some novel synthesized cationic gemini surfactants on carbon steel pipelines in acid pickling processes. Corros. Sci. 2016, 108, 94–110. [Google Scholar]
- Fergachi, O.; Benhiba, F.; Rbaa, M.; Touir, R.; Ouakki, M.; Galai, M.; Lakhrissi, B.; Oudda, H.; Ebn Touhami, M. Experimental and Theoretical Study of Corrosion Inhibition of Mild Steel in 1.0 M HCl Medium by 2(-4(chloro phenyl-1H- benzo[d]imidazol)-1-yl)phenyl)methanone). Mater. Res. 2018, 21. [Google Scholar] [CrossRef]
- Becke, A. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5662. [Google Scholar]
- Parr, R.G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 1984, 106, 4049–4050. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Yang, W.; Parr, R.G.; Pucci, R. Electron density, Kohn–Sham frontier orbitals, and Fukui functions. J. Chem. Phys. 1984, 8, 2862–2863. [Google Scholar]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar]
- Parr, R.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Petersson., G. Gaussian 09 Revision D. 01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Roy, D.; Keith, T.A.; Millam, J.M. Current Version: GaussView, Version 6; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Young, D.C. A practical guide for applying techniques to real-world problems. Comput. Chem. N. Y. 2001, 9, 390. [Google Scholar]
- Verma, D.K. Density functional theory (DFT) as a powerful tool for designing corrosion inhibitors in aqueous phase. Adv. Eng. Test. 2018. [Google Scholar] [CrossRef]
- Oubaaqa, M.; Ouakki, M.; Rbaa, M.; Ashraf, S.; Abousalem, M.; Benhiba, F.; Jarid, A.; Ebn Touhami, M.; Zarrouk, A. Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations. J. Mol. Liq. 2021, 334, 116520. [Google Scholar]
- Guo, L.; Safi, Z.S.; Kaya, S.; Shi, W.; Tüzün, B.; Altunay, N.; Kaya, C. Anticorrosive effects of some thiophene derivatives against the corrosion of iron: A computational study. Front. Chem. 2018, 6, 155. [Google Scholar] [CrossRef]
- Erdoğan, Ş.; Safi, Z.S.; Kaya, S.; Işın, D.Ö.; Guo, L.; Kaya, C. A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. J. Mol. Struct. 2017, 1134, 751–761. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 89th ed.; CRC Press: Bocca Raton, FL, USA, 2008. [Google Scholar]
- Gómez, B.; Likhanova, N.V.; Domínguez-Aguilar, M.A.; Martínez-Palou, R.; Vela, A.; Gazquez, J.L. Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles. J. Phys. Chem. B. 2006, 110, 8928–8934. [Google Scholar] [CrossRef]
- Ralph, G. Pearson Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740. [Google Scholar]
- Yang, W.; Parr, R.G. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. USA 1985, 82, 6723–6726. [Google Scholar] [CrossRef]
- Parr, R.G.; Chattaraj, P.K. Principle of maximum hardness. J. Am. Chem. Soc. 1991, 113, 1854–1855. [Google Scholar] [CrossRef]
- Özlem, U.; Gümüş, M.; Yusuf, S.; İrfan, K.; Atıf, K. Utilization of pyrazole-perimidine hybrids bearing different substituents as corrosion inhibitors for 304 stainless steel in acidic media. J. Mol. Struct. 2022, 1262, 133025. [Google Scholar]
- Bondarev, N.V.; Katin, K.P.; Merinov, V.B.; Kochaev, A.I.; Kaya, S.; Maslov, M.M. Probing of Neural Networks as a Bridge from Ab Initio Relevant Characteristics to Differential Scanning Calorimetry Measurements of High-Energy Compounds. Phys. Status Solidi RRL 2022, 16, 2100191. [Google Scholar] [CrossRef]
- Safi, Z.S.; Wazzan, N.; Aqel, H. Calculation of vertical and adiabatic ionization potentials for some benzaldehydes using hybrid DFT, multilevel G3B3 and MP2 methods. Chem. Phys. Lett. 2022, 791, 139349. [Google Scholar] [CrossRef]
- Saleh, Z.A.; Taha, D.K. Calculation of Ionization energies, electron affinities, hardnesses and electro negativites, using many bases set of many methods. Int. J. Sci. Eng. 2014, 5, 727–4729. [Google Scholar]
- Yang, W.; Mortier, W.J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J. Am. Chem. Soc. 1986, 108, 5708–5711. [Google Scholar] [CrossRef]
- Fukui, K. Role of frontier orbitals in chemical reactions. Science 1982, 218, 747–754. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar]
- De Proft, F.; Martin, J.M.; Geerlings, P. Calculation of molecular electrostatic potentials and Fukui functions using density functional methods. Chem. Phys. Lett. 1996, 256, 400–408. [Google Scholar]
- Geerlings, P.; Ayers, P.W.; Toro-Labbé, A.; Chattaraj, P.K.; De Proft, F. The Woodward–Hoffmann rules reinterpreted by conceptual density functional theory. Acc. Chem. Res. 2012, 45, 683–695. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Local softness and chemical reactivity in the molecules CO, SCN− and H2CO. J. Mol. Struct. Theochem. 1988, 163, 305–313. [Google Scholar] [CrossRef]
- Materials Studio; Accelrys Inc.: San Diego, CA, USA, 2016.
- Goyal, M.; Vashisht, H.; Kumar, A.; Kumar, S.; Bahadur, I.; Benhiba, F.; Zarrouk, A. Isopentyl triphenylphosphonium bromideionic liquid as a newly effective corrosion inhibitor on metal-electrolyte interface in acidic medium: Experimental, surface morphological (SEM-EDX & AFM) and computational analysis. J. Mol. Liq. 2020, 316, 113838. [Google Scholar]
- Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393. [Google Scholar]
- Hsissou, R.; Benzidia, B.; Rehioui, M.; Berradi, M.; Berisha, A.; Assouag, M.; Hajjaji, N.; Elharfi, A. Anticorrosive property of hexafunctional epoxy polymer HGTMDAE for E24 carbon steel corrosion in 1.0 M HCl: Gravimetric, electrochemical, surface morphology and molecular dynamic simulations. Polym. Bull. 2020, 77, 3577–3601. [Google Scholar]
- Benhiba, F.; Missioui, M.; Lamghafri, S.; Hsissou, R.; Bellaouchou, A.; Oudda, H.; Lamhamdi, A.; Warad, I.; Ramli, Y.; Zarrouk, A. Theoretical and Experimental Studies of 1-Dodecyl-3-phenylquinoxalin-2(1H)-one as a Sustainable Corrosion Inhibitor for Carbon Steel in Acidic Electrolyte. Coatings 2023, 13, 1109. [Google Scholar] [CrossRef]
- Attou, A.; Tourabi, M.; Benikdes, A.; Benali, O.; Ouici, H.B.; Benhiba, F.; Zarrouk, A.; Jama, C.; Bentiss, F. Experimental studies and computational exploration on the 2-amino-5-(2-methoxyphenyl)-1,3,4-thiadiazole as novel corrosion inhibitor for mild steel in acidic environment. Colloids Surf. A 2020, 604, 125320. [Google Scholar]
- Hsissou, R.; Benhiba, F.; Dagdag, O.; El Bouchti, M.; Nouneh, K.; Assouag, M.; Briche, S.; Zarrouk, A.; Elharfi, A. Development and potential performance of prepolymer in corrosion inhibition for carbon steel in 1.0 M HCl: Outlooks from experimental and computational investigations. J. Colloid Interface Sci. 2020, 574, 43–60. [Google Scholar]
- About, H.; El Faydy, M.; Benhiba, F.; Kerroum, Y.; Kaichouh, G.; Oudda, H.; Guenbour, A.; Lakhrissi, B.; Warad, I.; Zarrouk, A. Experimental and empirical assessment of two new 8-hydroxyquinoline analogs as effective corrosion inhibitor for C22E steel in 1 M HCl. J. Mol. Liq. 2021, 325, 114644. [Google Scholar] [CrossRef]
- Hsissou, R.; Abbout, S.; Safi, Z.; Benhiba, F.; Wazzan, N.; Guo, L.; Nouneh, K.; Briche, S.; Erramli, H.; Ebn Touhami, M.; et al. Synthesis and anticorrosive properties of epoxy polymer for CS in [1 M] HCl solution: Electrochemical, AFM, DFT and MD simulations. Constr. Build. Mater. 2021, 270, 121454. [Google Scholar]
- Thoume, A.; Elmakssoudi, A.; Left, D.B.; Benzbiria, N.; Benhiba, F.; Dakir, M.; Zahouily, M.; Zarrouk, A.; Azzi, M.; Zertoubi, M. Amino acid structure analog as a corrosion inhibitor of carbon steel in 0.5 M H2SO4: Electrochemical, synergistic effect and theoretical studies. Chem. Data Collect. 2020, 30, 100586. [Google Scholar]
- Abbout, S.; Chebabe, D.; Zouarhi, M.; Rehioui, M.; Lakbaibi, Z.; Hajjaji, N. Ceratonia Siliqua L seeds extract as eco-friendly corrosion inhibitor for carbon steel in 1 M HCl: Characterization, electrochemical, surface analysis, and theoretical studies. J. Mol. Struct. 2021, 1240, 130611. [Google Scholar] [CrossRef]
- El yaktini, A.; Lachiri, A.; El Faydy, M.; Benhiba, F.; Zarrok, H.; El Azzouzi, M.; Zertoubi, M.; Azzi, M.; Lakhrissi, B.; Zarrouk, A. Inhibitor effect of new azomethine derivative containing an 8-hydroxyquinoline moiety on corrosion behavior of mild carbon steel in acidic media. Int. J. Corros. Scale Inhib. 2018, 7, 609–632. [Google Scholar]
- Hsissou, R.; Benhiba, F.; El Aboubi, M.; Abbout, S.; Benzekri, Z.; Safi, Z.; Rafik, M.; Bahaj, H.; Kaba, M.; Galai, M.; et al. Synthesis and performance of two ecofriendly epoxy resins as a highly efficient corrosion inhibition for carbon steel in 1 M HCl solution: DFT, RDF, FFV and MD approaches. Chem. Phys. Lett. 2022, 806, 139995. [Google Scholar]
- Vengatesh, G.; Sundaravadivelu, M. Non-toxic bisacodyl as an effective corrosion inhibitor for mild steel in 1 M HCl: Thermodynamic, electrochemical, SEM, EDX, AFM, FT-IR, DFT and molecular dynamics simulation studies. J. Mol. Liq. 2019, 287, 110906. [Google Scholar] [CrossRef]
- Laadam, G.; Benhiba, F.; El Faydy, M.; Titi, A.; Al-Gorair, A.S.; Mubark Alshareef, H.; Hawsawi, R.; Touzani, I.; Warad, A.; Bellaouchou, A.; et al. Anti-corrosion performance of novel pyrazole derivative for carbon steel corrosion in 1 M HCl: Computational and experimental studies. Inorg. Chem. Commun. 2022, 145, 109963. [Google Scholar]
- Boumhara, K.; Harhar, H.; Tabyaoui, M.; Bellaouchou, A.; Guenbour, A.; Zarrouk, A. Corrosion inhibition of mild steel in 0.5 MH2SO4 solution by artemisia herba-alba oil. J. Bio. Tribo Corros. 2019, 5, 8. [Google Scholar] [CrossRef]
- Anusuya, N.; Saranya, J.; Sounthari, P.; Zarrouk, A.; Chitra, S. Corrosion inhibition and adsorption behaviour of some bis-pyrimidine derivatives on mild steel in acidic medium. J. Mol. Liq. 2017, 225, 406–417. [Google Scholar] [CrossRef]
- Benhiba, F.; Hsissou, R.; Benzekri, Z.; Belghiti, M.E.; Lamhamdi, A.; Bellaouchou, A.; Guenbour, A.; Boukhris, S.; Oudda, H.; Warad, I.; et al. Nitro substituent effect on the electronic behavior and inhibitory performance of two quinoxaline derivatives in relation to the corrosion of mild steel in 1M HCl. J. Mol. Liq. 2020, 312, 113367. [Google Scholar] [CrossRef]
- Hsissou, R.; Benzidia, B.; Hajjaji, N.; Elharfi, A. Elaboration and electrochemical studies of the coating behavior of a new pentafunctional epoxy polymer: Pentaglycidyl ether pentabisphenol A phosphorus on E24 carbon Steel in 3.5% NaCl. J. Chem. Technol. Metall. 2018, 53, 898–905. [Google Scholar]
- Hssissou, R.; Benzidia, B.; Hajjaji, N.; Elharfi, A. Elaboration, Electrochemical Investigation and morphological Study of the Coating Behavior of a new Polymeric Polyepoxide Architecture: Crosslinked and Hybrid Decaglycidyl of Phosphorus Penta methylene Dianiline on E24 Carbon Steel in 3.5% NaCl. Port. Electrochim. Acta 2019, 37, 179–191. [Google Scholar] [CrossRef]
- Abdallah, M.; Al Bahir, A.; Altass, H.M.; Fawzy, A.; El Guesmi, N.; Al-Gorair, A.S.; Benhiba, F.; Warad, I.; Zarrouk, A. Anticorrosion and adsorption performance of expired antibacterial drugs on Sabic iron corrosion in HCl solution: Chemical, electrochemical and theoretical approach. J. Mol. Liq. 2021, 33015, 115702. [Google Scholar]
- Benhiba, F.; Hsissou, R.; Benzekri, Z.; Echihi, S.T.; El-Blilak, J.; Boukhris, S.; Bellaouchou, A.; Guenbour, A.; Oudda, H.; Warad, I.; et al. DFT/electronic scale, MD simulation and evaluation of 6-methyl-2-(p-tolyl)-1,4-dihydroquinoxaline as a potential corrosion inhibition. J. Mol. Liq. 2021, 335, 116539. [Google Scholar] [CrossRef]
- Molhi, A.; Hsissou, R.; Damej, M.; Berisha, A.; Bamaarouf, M. Performance of two epoxy resins against corrosion of C38 steel in 1M HCl: Electrochemical, thermodynamic and theoretical assessment. Int. J. Corros. Scale Inhib. 2021, 10, 812–837. [Google Scholar]
- Hsissou, R.; Lachhab, R.; El Magri, A.; Echihi, S.; Vanaei, H.R.; Galai, M.; Ebn Touhami, M.; Rafik, M. Synthesis Characterization and Highly Protective Efficiency of Tetraglycidyloxy Pentanal Epoxy Prepolymer as a Potential Corrosion Inhibitor for Mild Steel in 1 M HCl Medium. Polymers 2022, 14, 3100. [Google Scholar] [CrossRef]
- Rbaa, M.; Fardioui, M.; Verma, C.; Abousalem, A.S.; Galai, M.; Ebenso, E.E.; Guedira, T.; Lakhrissi, B.; Warad, I.; Zarrouk, A. 8-Hydroxyquinoline based chitosan derived carbohydrate polymer as biodegradable and sustainable acid corrosion inhibitor for mild steel: Experimental and computational analyses. Int. J. Biol. Macromol. 2020, 155, 645–655. [Google Scholar]
- Fakhry, H.; El Faydy, M.; Benhiba, F.; Laabaissi, T.; Bouassiria, M.; Allali, M.; Lakhrissi, B.; Oudda, H.; Guenbour, A.; Warad, I.; et al. A newly synthesized quinoline derivative as corrosion inhibitor for mild steel in molar acid medium: Characterization (SEM/EDS), experimental and theoretical approach. Colloids Surf. A 2021, 6105, 125746. [Google Scholar]
- El-Aouni, N.; Hsissou, R.; Safi, Z.; Abbout, S.; Benhiba, F.; El Azzaoui, J.; Haldhar, R.; Wazzan, N.; Guo, L.; Erramli, H. Performance of two new epoxy resins as potential corrosion inhibitors for carbon steel in 1MHCl medium: Combining experimental and computational approaches. Colloids Surf. A 2021, 626, 127066. [Google Scholar]
- Echihi, S.; Hsissou, R.; Benzbiria, N.; Afrokh, M.; Boudalia, M.; Bellaouchou, A.; Guenbour, A.; Azzi, M.; Tabyaoui, M. Performance of Methanolic Extract of Artemisia herba alba as a Potential Green Inhibitor on Corrosion Behavior of Mild Steel in Hydrochloric Acid Solution. Biointerface Res. Appl. Chem. 2021, 11, 14751–14763. [Google Scholar]
- Hsissou, R.; Abbout, S.; Seghiri, R.; Rehioui, M.; Berisha, A.; Erramli, H.; Assouag, M.; Elharfi, A. Evaluation of corrosion inhibition performance of phosphorus polymer for carbon steel in [1 M] HCl: Computational studies (DFT, MC and MD simulations). J. Mater. Res. Technol. 2020, 9, 2691–2703. [Google Scholar]
- Berrissoul, A.; Ouarhach, A.; Benhiba, F.; Romane, A.; Guenbour, A.; Outada, H.; Dafali, A.; Zarrouk, A. Exploitation of a new green inhibitor against mild steel corrosion in HCl: Experimental, DFT and MD simulation approach. J. Mol. Liq. 2022, 349, 118102. [Google Scholar]
- Saady, A.; Ech-chihbi, E.; El-Hajjaji, F.; Benhiba, F.; Zarrouk, A.; Rodi, Y.K.; Taleb, M.; El Biache, A.; Rais, Z. Molecular dynamics, DFT and electrochemical to study the interfacial adsorption behavior of new imidazo[4,5-b] pyridine derivative as corrosion inhibitor in acid medium. J. Appl. Electrochem. 2021, 51, 245–265. [Google Scholar] [CrossRef]
- Benhiba, F.; Benzekri, Z.; Kerroum, Y.; Timoudan, N.; Hsissou, R.; Guenbour, A.; Belfaquir, M.; Boukhris, S.; Bellaouchou, A.; Oudda, H.; et al. Assessment of inhibitory behavior of ethyl 5-cyano-4-(furan-2-yl)-2-methyl-6-oxo-1,4,5,6-tetrahydropyridine3-carboxylate as a corrosion inhibitor for carbon steel in molar HCl: Theoretical approaches and experimental investigation. J. Indian Chem. Soc. 2023, 100, 100916. [Google Scholar]
- Cherinka, B.; Andrews, B.H.; Sánchez-Gallego, J.; Brownstein, J.; Argudo-Fernández, M.; Blanton, M.; Bundy, K.; Jones, A.; Masters, K.; Law, D.R. Marvin: A tool kit for streamlined access and visualization of the SDSS-IV MaNGA data set. Astron. J. 2019, 158, 74. [Google Scholar]
- Chemaxon. pKa Plugin. Available online: https://docs.chemaxon.com/display/docs/pka-plugin.md (accessed on 1 February 2019).
- Abdel-Mottaleb, M.; Ali, S.N. A new approach for studying bond rupture/closure of a spiro benzopyran photochromic material: Reactivity descriptors derived from frontier orbitals and DFT computed electrostatic potential energy surface maps. Int. J. Photoenergy 2016, 2016, 6765805. [Google Scholar] [CrossRef]
- Panwar, U.; Singh, S.K. Aom-based 3D-QSAR, molecular docking, DFT, and simulation studies of acylhydrazone, hydrazine, and diazene derivatives as IN-LEDGF/p75 inhibitors. Struct. Chem. 2021, 32, 337–352. [Google Scholar]
- Ajebli, S.; Kaichouh, G.; Khachani, M.; Babas, H.; El Karbane, M.; Warad, I.; Safi, Z.; Berisha, A.; Mehmeti, A.V.; Guenbour, A. The adsorption of Tenofovir in aqueous solution on activated carbon produced from maize cobs: Insights from experimental, molecular dynamics simulation, and DFT calculations. Chem. Phys. Lett. 2022, 801, 139676. [Google Scholar]
- Abbout, S.; Hsissou, R.; Chebabe, D.; Erramli, H.; Safi, Z.; Wazzan, N.; Berisha, A.; Reka, A.; Hajjaji, N. Investigation of Two Corrosion Inhibitors in Acidic Medium Using Weight Loss, Electrochemical Study, Surface Analysis, and Computational Calculation. J. Bio. Tribo Corros. 2022, 8, 86. [Google Scholar] [CrossRef]
- Yu, J.; Su, N.Q.; Yang, W. Describing Chemical Reactivity with Frontier Molecular Orbitalets. JACS Au 2022, 2, 1383–1394. [Google Scholar]
- Mehmeti, V.V.; Berisha, A.R. Corrosion study of mild steel in aqueous sulfuric acid solution using 4-methyl-4H-1, 2, 4-Triazole-3-Thiol and 2-mercaptonicotinic acid—An experimental and theoretical study. Front. Chem. 2017, 5, 61. [Google Scholar] [CrossRef]
- Abouchane, M.; Dkhireche, N.; Rbaa, M.; Benhiba, F.; Ouakki, M.; Galai, M.; Lakhrissi, B.; Zarrouk, A.; Ebn Touhami, M. Insight into the corrosion inhibition performance of two quinoline-3-carboxylate derivatives as highly efficient inhibitors for mild steel in acidic medium: Experimental and theoretical evaluations. J. Mol. Liq. 2022, 360, 119470. [Google Scholar]
- Benhiba, F.; Hsissou, R.; Abderrahim, K.; Serrar, H.; Rouifi, Z.; Boukhris, S.; Kaichouh, G.; Bellaouchou, A.; Guenbour, A.; Oudda, H.; et al. Development of New Pyrimidine Derivative Inhibitor for Mild Steel Corrosion in Acid Medium. J. Bio. Tribo Corros. 2022, 8, 36. [Google Scholar] [CrossRef]
- Benhiba, F.; Sebbar, N.K.; Bourazmi, H.; Belghiti, M.E.; Hsissou, R.; Hökelek, T.; Bellaouchou, A.; Guenbour, A.; Warad, I.; Oudda, H.; et al. Corrosion inhibition performance of 4-(prop-2-ynyl)-[1,4]-benzothiazin-3-one against mild steel in 1M HCl solution: Experimental and theoretical studies. Int. J. Hydrogen Energy 2022, 465, 25800–25818. [Google Scholar]
- Abd Allah, M.; Hegazy, M.A.; Ahmed, H.; Arej, S.; Al-Gorair, H.; Hawsawi, M.; Benhiba, F.; Warad, I.; Zarrouk, A. Appraisal of synthetic cationic Gemini surfactants as highly effi cient inhibitors for carbon steel in the acidization of oil and gas wells: An experimental and computational approach. RSC Adv. 2022, 12, 17050–17064. [Google Scholar]
- Dutta, A.; Saha, S.K.; Banerjee, P.; Sukul, D. Correlating Electronic Structure with Corrosion Inhibition Potentiality of Some Bis-Benzimidazole Derivatives for Mild Steel in Hydrochloric Acid: Combined Experimental and Theoretical Studies. Corros. Sci. 2015, 98, 541–550. [Google Scholar]
- Huong, D.Q.; Huong, N.T.L.; Nguyet, T.T.A.; Duong, T.; Tuan, D.; Thong, N.M.; Nam, P.C. Pivotal Role of Heteroatoms in Improving the Corrosion Inhibition Ability of Thiourea Derivatives. ACS Omega 2020, 5, 27655–27666. [Google Scholar] [CrossRef]
- Mehmeti, V.; Podvorica, F.I. Experimental and theoretical studies on corrosion inhibition of niobium and tantalum surfaces by Carboxylated graphene oxide. Materials 2018, 11, 893. [Google Scholar]
- El Faydy, M.; Benhiba, F.; About, H.; Kerroum, Y.; Guenbour, A.; Lakhrissi, B.; Warad, I.; Verma, C.; Sherif, E.-S.M.; Ebenso, E.E.; et al. Experimental and computational investigations on the anti-corrosive and adsorption behavior of 7-N,N’-dialkyaminomethyl-8-Hydroxyquinolines on C40E steel surface in acidic medium. J. Colloid Interface Sci. 2020, 576, 330–344. [Google Scholar] [PubMed]
- Goyal, M.; Vashist, H.; Kumar, S.; Bahadur, I.; Benhiba, F.; Zarrouk, A. Acid corrosion inhibition of ferrous and non-ferrous metal by nature friendly Ethoxycarbonylmethyltriphenylphosphonium Bromide (ECMTPB): Experimental and MD simulation evaluation. J. Mol. Liq. 2020, 3151, 113705. [Google Scholar]
Imidazole Analogue Derivatives | Anticorrosive Properties (%) | References |
---|---|---|
91.87 | [25] | |
92.21 | [25] | |
89.00 | [26] | |
91.80 | [27] |
Inhibitors and Corrosive Solution | Conc. (M) | −Ecorr (mV/SCE) | icorr (µA cm−2) | −βc (mV dec−1) | βa (mV dec−1) | |
---|---|---|---|---|---|---|
HCl | 1 | 456.3 | 1104.1 | 155.4 | 112.2 | - |
TIMQ | 10−6 | 430.4 | 239 | 82.5 | 53.5 | 78.3 |
10−5 | 442.6 | 90.5 | 78.1 | 123.9 | 91.8 | |
10−4 | 417.8 | 81.2 | 111.2 | 62.0 | 92.6 | |
10−3 | 389.4 | 57.2 | 111.3 | 52.8 | 94.8 | |
CDIQ | 10−6 | 430.3 | 166.1 | 166.1 | 91.9 | 68.6 |
10−5 | 423.2 | 135.3 | 55.8 | 51.8 | 87.7 | |
10−4 | 427.7 | 104.2 | 77.5 | 69.6 | 90.5 | |
10−3 | 433.4 | 52.1 | 62.0 | 76.6 | 95.2 |
Medium | Conc. (M) | Rs (Ω cm2) | Rp (Ω cm2) | 106 × Q (µF sn−1 cm−2) | n | Cdl (µF cm−2) | χ2 | |
---|---|---|---|---|---|---|---|---|
HCl | 1 | 0.83 | 21.57 | 293.9 | 0.845 | 116.2 | 0.002 | - |
TIMQ | 10−3 | 1.45 | 343.3 | 77.7 | 0.871 | 45.5 | 0.008 | 93.8 |
10−4 | 1.25 | 283.3 | 91.9 | 0.868 | 52.8 | 0.008 | 92.4 | |
10−5 | 2.13 | 218.8 | 101.2 | 0.860 | 54.4 | 0.009 | 90.1 | |
10−6 | 1.31 | 90.54 | 90.5 | 0.851 | 84.7 | 0.009 | 76.2 | |
CDIQ | 10−3 | 1.64 | 390.1 | 66.7 | 0.871 | 38.8 | 0.009 | 94.4 |
10−4 | 1.66 | 240.7 | 80.4 | 0.861 | 42.6 | 0.009 | 91.1 | |
10−5 | 1.39 | 175.1 | 103.2 | 0.852 | 51.4 | 0.009 | 87.7 | |
10−6 | 1.17 | 62.1 | 251.7 | 0.846 | 118.0 | 0.009 | 65.3 |
Inhibitors | Temp (K) | −Ecorr (mV/SCE) | icorr (µA/cm2) | βa (mV dec−1) | −βc (mV dec−1) | ηPDP (%) |
---|---|---|---|---|---|---|
1 M HCl | 303 | 456.3 | 1104.1 | 112.8 | 155.4 | - |
313 | 423.5 | 1477.4 | 91.3 | 131.3 | - | |
323 | 436.3 | 2254.0 | 91.4 | 117.8 | - | |
333 | 433.3 | 3944.9 | 103.9 | 134.6 | - | |
TIMQ | 303 | 389.4 | 57.2 | 52.8 | 111.3 | 94.8 |
313 | 405.5 | 110.2 | 65.7 | 159.9 | 92.5 | |
323 | 418.9 | 286.1 | 86.4 | 154.7 | 87.3 | |
333 | 434.9 | 673.8 | 105.2 | 186.1 | 82.9 | |
CDIQ | 303 | 433.4 | 52.1 | 76.6 | 62.0 | 95.2 |
313 | 429.3 | 122.1 | 78.4 | 116.5 | 91.7 | |
323 | 421.4 | 235.8 | 84.3 | 163.6 | 89.5 | |
333 | 438.4 | 720.4 | 107.2 | 162.2 | 81.7 |
Inhibitors | R2 | Eacv (kJ/mol) | ΔHacv (J/mol) | ΔSacv (J/mol K) |
---|---|---|---|---|
HCl | 0.967 | 35.4 | 32.77 | −79.2 |
TIMQ | 0.986 | 69.8 | 67.22 | 98.05 |
CDIQ | 0.971 | 71.3 | 68.76 | 14.37 |
Inhibitors | R2 | Kads (L mol−1) | (kJ mol−1) |
---|---|---|---|
TIMQ | 1 | 1.312.106 | −45.58 |
CDIQ | 0.9999 | 5.927.105 | −43.58 |
Chemical Species | C (%) | N (%) | Cr (%) | Mn (%) | O (%) | Cl (%) | Fe (%) |
---|---|---|---|---|---|---|---|
CS Only | 1.43 | 0.81 | 0.33 | 0.77 | - | - | 96.66 |
1 M HCl | 1.40 | - | - | - | 21.24 | 3.70 | 73.66 |
10−3 M of TIMQ | 1.62 | - | - | - | 9.45 | 0.78 | 88.16 |
10−3 M of CDIQ | 1.27 | - | - | - | 16.10 | 1.76 | 80.87 |
Descriptors | Neutral | Protonated | ||
---|---|---|---|---|
TIMQ | CDIQ | TIMQ | CDIQ | |
E(N) (Ha) | −1434.75318 | −1894.3477 | −1435.6498 | −1895.2404 |
E(N + 1) (Ha) | −1434.82767 | −1894.4227 | −1435.7768 | −1895.3678 |
E(N − 1) (Ha) | −1434.54517 | −1894.1386 | −1435.4070 | −1894.9892 |
μ (Debye) | 6.5 | 7.1 | 13.9 | 12.6 |
Iv (eV) | 5.660 | 5.691 | 6.607 | 6.836 |
Av (eV) | 2.027 | 2.042 | 3.456 | 3.469 |
Eg (eV) | 3.633 | 3.648 | 3.151 | 3.367 |
χ (eV) | 3.844 | 3.866 | 5.031 | 5.152 |
η (eV) | 1.817 | 1.824 | 1.575 | 1.684 |
S (eV−1) | 0.550 | 0.548 | 0.635 | 0.594 |
ω (eV) | 4.066 | 4.098 | 8.034 | 7.884 |
ω+ (eV) | 2.372 | 2.393 | 5.716 | 5.518 |
ω− (eV) | 6.215 | 6.259 | 10.747 | 10.671 |
Δω (eV) | 8.587 | 8.652 | 16.463 | 16.189 |
ΔN | 0.269 | 0.261 | −0.067 | −0.099 |
ΔEb−d (eV) | −0.454 | −0.456 | −0.394 | −0.421 |
EHOMO (eV) | −5.792 | −5.822 | −6.734 | −6.956 |
ELUMO (eV) | −1.883 | −1.897 | −3.356 | −3.369 |
ΔE (eV) | 3.909 | 3.925 | 3.378 | 3.588 |
ΔE1 (eV) | 6.019 | 6.005 | 4.547 | 4.534 |
ΔE2 (eV) | 5.641 | 5.671 | 6.583 | 6.805 |
Neutral | Protonated | ||||||
---|---|---|---|---|---|---|---|
Sites | Atom | Atom | Atom | ||||
TIMQ | CDIQ | ||||||
C29 | 0.1063 | C3 | 0.0835 | C29 | 0.1255 | C15 | 0.0656 |
N3 | 0.1052 | C2 | 0.0791 | C31 | 0.1194 | C3 | 0.0605 |
C31 | 0.0908 | C1 | 0.0637 | N3 | 0.0846 | C2 | 0.0575 |
C30 | 0.0799 | C15 | 0.0523 | C30 | 0.0690 | C1 | 0.0444 |
C26 | 0.0611 | N1 | 0.0401 | C27 | 0.0572 | C9 | 0.0442 |
TIMQ | CDIQ | ||||||
C28 | 0.1046 | C3 | 0.0824 | C29 | 0.1251 | C15 | 0.0762 |
N3 | 0.1033 | C2 | 0.0782 | C31 | 0.1192 | C2 | 0.0668 |
C30 | 0.0894 | C1 | 0.0635 | N3 | 0.0844 | C3 | 0.0561 |
C29 | 0.0789 | C15 | 0.0519 | C30 | 0.0691 | C10 | 0.0524 |
C25 | 0.0607 | N1 | 0.0397 | C27 | 0.0569 | C1 | 0.0463 |
Systems | −Einteraction | Ebinding |
---|---|---|
TIMQ neutral/Fe(110) | 1146.28 | 1146.28 |
CDIQ neutral/Fe(110) | 1163.306 | 1163.306 |
TIMQ potonated/Fe(110) | 1100.82 | 1100.82 |
CDIQ protonated/Fe(110) | 1151.29 | 1151.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatah, A.; Timoudan, N.; Rbaa, M.; Benhiba, F.; Hsissou, R.; Safi, Z.S.; Warad, I.; AlObaid, A.A.; Al-Maswari, B.M.; Boutakiout, A.; et al. Assessment of New Imidazol Derivatives and Investigation of Their Corrosion-Reducing Characteristics for Carbon Steel in HCl Acid Solution. Coatings 2023, 13, 1405. https://doi.org/10.3390/coatings13081405
Fatah A, Timoudan N, Rbaa M, Benhiba F, Hsissou R, Safi ZS, Warad I, AlObaid AA, Al-Maswari BM, Boutakiout A, et al. Assessment of New Imidazol Derivatives and Investigation of Their Corrosion-Reducing Characteristics for Carbon Steel in HCl Acid Solution. Coatings. 2023; 13(8):1405. https://doi.org/10.3390/coatings13081405
Chicago/Turabian StyleFatah, Ahmed, Nadia Timoudan, Mohamed Rbaa, Fouad Benhiba, Rachid Hsissou, Zaki S. Safi, Ismail Warad, Abeer A. AlObaid, Basheer M. Al-Maswari, Amale Boutakiout, and et al. 2023. "Assessment of New Imidazol Derivatives and Investigation of Their Corrosion-Reducing Characteristics for Carbon Steel in HCl Acid Solution" Coatings 13, no. 8: 1405. https://doi.org/10.3390/coatings13081405
APA StyleFatah, A., Timoudan, N., Rbaa, M., Benhiba, F., Hsissou, R., Safi, Z. S., Warad, I., AlObaid, A. A., Al-Maswari, B. M., Boutakiout, A., Zarrok, H., Lakhrissi, B., Bellaouchou, A., Jama, C., Bentiss, F., Oudda, H., & Zarrouk, A. (2023). Assessment of New Imidazol Derivatives and Investigation of Their Corrosion-Reducing Characteristics for Carbon Steel in HCl Acid Solution. Coatings, 13(8), 1405. https://doi.org/10.3390/coatings13081405