Proposal of New Natural Hydraulic Lime-Based Mortars for the Conservation of Historical Buildings
Abstract
:1. Introduction
2. Materials and Methods
Physical Behavior of the Hardened Samples
3. Results and Discussion
3.1. Results of Tests on Fresh Samples
3.2. Hardened Mortars Characterization
3.2.1. Hydric Behavior
3.2.2. Determination of Frost Resistance
3.2.3. Determination of Salt Resistance
3.2.4. Determination of Resistance to Compression of Hardened and Weathered Mortars
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NHL | natural hydraulic lime mortars as defined by UNI EN 459-1:2015Building lime—Part 1: Definitions, specifications and conformity criteria [67] |
MS | NHL Mortar Samples |
MSC | Cocciopesto (minced bricks) -NHL Mortar Samples |
C | Chitosan, specifically CL= chitosan in liquid solution at 0.5% or 0.25%, and CS= chitosan as solid powder |
D | DTPMP, diethylenetriamine penta(methylene phosphonic acid) |
05 | 0.5%. by binder weight |
025 | 0.25%. by binder weight |
RH | relative humidity |
WDD | density of moisture flow rate according to UNI-EN-1015/19 [61] |
µ | moisture resistance factor according to UNI-EN-1015/19 [61] |
sd | water vapor diffusion-equivalent air thickness according to UNI-EN-1015/19 [61] |
CA | capillary absorption coefficient according to UNI-EN 1015/18 and UNI 10859 [62,63] |
IC | capillary index IC according to UNI-EN 1015/18 and UNI 10859 [62,63], IC = ∫ f(Qi)*dt/(Qtf*tf) where Qi= quantity of water absorbed per surface unit at time i; t = time, tf = final time. |
TOP | total open porosity determined by the water volume intruded according to UNI-EN 1015/18 [62] |
References
- Juimo Tchamdjou, W.H.; Cherradi, T.; Abidi, M.L.; Pereira de Oliveira, L.A. Influence of different amounts of natural pozzolan from volcanic scoria on the rheological properties of portland cement pastes. Energy Procedia 2017, 139, 696–702. [Google Scholar] [CrossRef]
- Lea, F.M. The Chemistry of Cement and Concrete, 3rd ed.; Edward Arnold: London, UK, 1974. [Google Scholar]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Cemnet.com [Internet]. The Global Cement Report, 13th ed.; International Cement Review: Dorking, UK, 2019; Available online: https://www.cemnet.com/Publications/Item/182291/the-global-cement-report-13th-edition.html (accessed on 24 July 2021).
- Gursel, A.P.; Masanet, E.; Horvath, A.; Stadel, A. Life-cycle inventory analysis of concrete production: A critical review. Cem. Concr. Compos. 2014, 51, 38–48. [Google Scholar] [CrossRef]
- Robalo, K.; Costa, H.; do Carmo, R.; Julio, E. Experimental development of low cement content and recycled construction and demolition waste aggregates concrete. Constr. Build. Mater. 2021, 273, 121680. [Google Scholar] [CrossRef]
- Medina, C.; Banfill, P.F.G.; Sánchez de Rojas, M.I.; Frías, M. Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mater. 2013, 40, 822–831. [Google Scholar] [CrossRef]
- Medina, C.; Saez del Bosque, I.F.; Asensio, E.; Frías, M.; Sánchez de Rojas, M.I. Mineralogy and microstructure of hydrated phases during the pozzolanic reaction in the sanitary ware waste/Ca(OH)2 system. J. Am. Ceram. Soc. 2016, 99, 340–348. [Google Scholar] [CrossRef]
- Asensio, E.; Medina, C.; Frías, M.; Sánchez de Rojas, M.I. Fired clay-based construction and demolition waste as pozzolanic addition in cements. J. Clean. Prod. 2020, 265, 121610. [Google Scholar] [CrossRef]
- Amiri, M.; Hatami, F.; Golafshani, E.M. Evaluating the synergic effect of waste rubber powder and recycled concrete aggregate on mechanical properties and durability of concrete. Case Stud. Constr. Mater. 2021, 15, e00639. [Google Scholar] [CrossRef]
- Siddique, R.; Cachim, P. Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications; Woodhead Publishing Limited: Cambridge, UK, 2018. [Google Scholar]
- Rani, G.Y.; Krishna, T.J.; Murali, K. Strength studies on effect of glass waste in concrete. Mater. Today Proc. 2021, 46, 8817–8821. [Google Scholar] [CrossRef]
- Ibrahim, K.I.M. Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash. Case Stud. Constr. Mater. 2021, 15, e00630. [Google Scholar] [CrossRef]
- Abu-Saleem, M.; Zhuge, Y.; Hassanli, R.; Ellis, M.; Rahman, M.; Levett, P. Evaluation of concrete performance with different types of recycled plastica waste for kerb application. Constr. Build. Mater. 2021, 293, 123477. [Google Scholar] [CrossRef]
- Jain, A.; Siddique, S.; Gupta, T.; Jain, S.; Sharma, R.K.; Chaudhary, S. Evaluation of concrete containing waste plastic shredded fibers: Ductility properties. Struct. Concr. 2021, 22, 566–575. [Google Scholar] [CrossRef]
- Ojeda, J.P. A meta-analysis on the use of plastic waste as fibers and aggregates in concrete composites. Constr. Build. Mater. 2021, 295, 123420. [Google Scholar] [CrossRef]
- Kadir, A.A.; Salim, N.S.A.; Sarani, N.A.; Rahmat, N.A.I.; Abdullah, M.M.A.B. Properties of fired clay brick incoporating with sewage sludge waste. AIP Conf. Proc. 2017, 1885, 020150. [Google Scholar]
- Mathye, R.P.; Ikotun, B.D.; Fanourakis, G.C. The effect of dry wastewater sludge as sand replacement on concrete strengths. Mater. Today Proc. 2021, 38, 975–981. [Google Scholar] [CrossRef]
- Kumar, M.; Shreelaxmi, P.; Kamath, M. Review on characteristics of sewage sludge ash and its partial replacement as binder material in concrete. In Recent Trends in Civil Engineering; Das, B.B., Nanukuttan, S.V., Patnaik, A.K., Panandikar, N.S., Eds.; Springer: Singapore, 2021; pp. 65–78. [Google Scholar]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Muslim, F.; Wong, H.S.; Choo, T.H.; Buenfeld, N.R. Influences of supplementary cementitious materials on microstructure and transport properties of spacer-concrete interface. Cem. Concr. Res. 2021, 149, 106561. [Google Scholar] [CrossRef]
- Delgado Rodrigues, J.; Grossi, A. Indicators and ratings for the compatibility assessment of conservation actions. J. Cult. Herit. 2007, 8, 32–43. [Google Scholar] [CrossRef]
- EUROPEAN QUALITY PRINCIPLES for EU-Funded Interventions with Potential Impact upon Cultural Heritage, 2020; ICOMOS International Secretariat: Charenton-le-Pont, France, 2020; ISBN 978-2-918086-36-9.
- Bertolin, C.; Loli, A. Sustainable interventions in historic buildings: A developing decision making tool. J. Cult. Herit. 2018, 34, 291–302. [Google Scholar] [CrossRef]
- Buda, A.; de Place Hansen, E.J.; Rieser, A.; Giancola, E.; Pracchi, V.N.; Mauri, S.; Marincioni, V.; Gori, V.; Fouseki, K.; Polo López, C.S.; et al. Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach. Sustainability 2021, 13, 2927. [Google Scholar] [CrossRef]
- Apostolopoulou, M.; Aggelakopoulou, E.; Bakolas, A.; Moropoulou, A. Compatible Mortars for the Sustainable Conservation of Stone in Masonries. In Advanced Materials for the Conservation of Stone; Hosseini, M., Karapanagiotis, I., Eds.; Springer: Cham, Seitzerland, 2018. [Google Scholar] [CrossRef]
- Do Rosário Veiga, M.; Fragata, A.; Ana Luisa Velosa, A.L.; Magalhães, A.C.; Margalha, G. Lime-Based Mortars: Viability for Use as Substitution Renders in Historical Buildings. Int. J. Archit. Herit. 2010, 4, 177–195. [Google Scholar] [CrossRef]
- Moropoulou, A.; Bakolas, A.; Bisbikou, K. Investigation of the technology of historic mortars. J. Cult. Herit. 2000, 1, 45–58. [Google Scholar] [CrossRef]
- Moropoulou, A.; Biscontin, G.; Theoulakis, P.; Bisbikou, K.; Theodoraki, A.; Chondros, N.; Zendri, E.; Bakolas, A. Study of mortars in the Medieval City of Rhodes. In Conservation of Stone and Other Materials: Proceedings of the International RILEM/UNESCO Congress Held at the UNESCO Headquarters, Paris, France, 29 June–1 July 1993; Unesco: Paris, France, 1993; pp. 394–401. [Google Scholar]
- Matias, G.; Faria, P.; Torres, I. Lime mortars with heat treated clays and ceramic waste: A review. Constr. Build. Mater. 2014, 73, 125–136. [Google Scholar] [CrossRef]
- Torres, I.; Matias, G.; Faria, P. Natural hydraulic lime mortars-The effect of ceramic residues on physical and mechanical behaviour. J. Build. Eng. 2020, 32, 101747. [Google Scholar] [CrossRef]
- Klisińska-Kopacz, A.; Tišlova, R. The Effect of Composition of Roman Cement Repair Mortars on Their Salt Crystallization Resistance and Adhesion. Procedia Eng. 2013, 57, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Zendri, E.; Lucchini, V.; Biscontin, G.; Morabito, Z.M. Interaction between clay and lime in “cocciopesto” mortars: A study by 29Si MAS spectroscopy. Appl. Clay Sci. 2004, 25, 1–7. [Google Scholar] [CrossRef]
- Sánchez de Rojas Gómez, M.I.; Frías Rojas, M. Natural pozzolans in eco-efficient concrete. In Eco-Efficient Concrete; Woodhead Publishing: Cambridge, UK, 2013; pp. 83–104. [Google Scholar]
- Apostolopoulou, M.; Asteris, P.G.; Armaghani, D.J.; Douvika, M.G.; Lourenço, P.B.; Cavaleri, L.; Bakolas, A.; Moropoulou, A. Mapping and holistic design of natural hydraulic lime mortars. Cem. Concr. Res. 2020, 136, 106167. [Google Scholar] [CrossRef]
- Silva, B.A.; Pinto, A.F.; Gomes, A. Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr. Build. Mater. 2015, 94, 346–360. [Google Scholar] [CrossRef]
- Ashall, G.; Butlin, R.N.; Teutonico, J.M.; Martin, W. Development of Lime Mortar For-mulations for use in Historic Buildings. In Durability of Building Materials & Components 7; Routledge: London, UK, 2004; Volume 1. [Google Scholar]
- Lubelli, B.; van Hees, R.P.J.; Groot, C.J.W.P. The role of sea salts in the occurrence of different damage mechanisms and decay patterns on brick masonry. Constr. Build. Mater. 2004, 18, 119–124. [Google Scholar] [CrossRef]
- Espinosa-Marzal, R.M.; Scherer, G.W. Advances in Understanding Damage by Salt Crystallization. Acc. Chem. Res. 2010, 43, 897–905. [Google Scholar] [CrossRef]
- Falchi, L.; Corradini, M.; Balliana, E.; Zendri, E. Urban Scale Monitoring Approach for the Assessment of Rising Damp Effects. Venice Sustain. 2023, 15, 6274. [Google Scholar] [CrossRef]
- Henriques, F.M.A. Challenges and perspectives of replacement mortars in architectural conservation. In International Workshop. Repair Mortars for Historic Masonry, Rilem Technical Committee; TU Delft: Delft, The Netherland, 2009; pp. 26–28. [Google Scholar]
- Aggelakopoulou, E.; Ksinopoulou, E.; Eleftheriou, V. Evaluation of mortar mix designs for the conservation of the Acropolis monuments. J. Cult. Herit. 2022, 55, 300–308. [Google Scholar] [CrossRef]
- Falchi, L.; Zendri, E.; Capovilla, E.; Romagnoni, P.; De Bei, M. The behaviour of water-repellent mortars with regards to salt crystallization: From mortar specimens to masonry/render systems. Mater. Struct. 2017, 50, 66. [Google Scholar] [CrossRef]
- Granneman, S.J.C.; Lubelli, B.; van Hees, R.P.J. Mitigating salt damage in building materials by the use of crystallization modifiers—A review and outlook. J. Cult. Herit. 2019, 40, 183–194. [Google Scholar] [CrossRef]
- Gulotta, D.; Goidanich, S.; Tedeschi, C.; Toniolo, L. Commercial NHL-containing mortars for the preservation of historical architecture. Part 2: Durability to salt decay. Constr. Build. Mater. 2015, 96, 198–208. [Google Scholar] [CrossRef]
- Feijoo, J.; Ergenç, D.; Fort, R.; de Buergo, M. Addition of ferrocyanide-based compounds to repairing joint lime mortars as a protective method for porous building materials against sodium chloride damage. Mater. Struct. 2019, 54, 14. [Google Scholar] [CrossRef]
- Houck, J.; Scherer, G.W. Controlling stress from salt crystallization. In Fracture and Failure of Natural Building Stones; Springer: Berlin/Heidelberg, Germany, 2006; pp. 299–312. [Google Scholar]
- Bracciale, M.P.; Sammut, S.; Cassar, J.; Santarelli, M.L.; Marrocchi, A. Molecular Crystallization Inhibitors for Salt Damage Control in Porous Materials: An Overview. Molecules 2020, 25, 1873. [Google Scholar] [CrossRef] [Green Version]
- Granneman, S.J.C.; Lubelli, B.; van Hees, R.P.J. Effect of mixed in crystallization modifiers on the resistance of lime mortar against NaCl and Na2SO4 crystallization. Constr. Build. Mater. 2019, 194, 62–70. [Google Scholar] [CrossRef]
- Ustinova, Y.V.; Nikiforova, T.P. Cement Compositions with the Chitosan Additive. Procedia Eng. 2016, 153, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Lasheras-Zubiate, M.; Navarro-Blasco, I.; Fernández, J.M.; Alvarez, J.I. Studies on chitosan as an admixture for cement-based materials: Assessment of its viscosity enhancing effect and complexing ability for heavy metals. J. Appl. Polym. Sci. 2011, 120, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Lubelli, B.; Nijland, T.G.; van Hees, R.P.J.; Hacquebord, A. Effect of mixed in crystallization inhibitor on resistance of lime–cement mortar against NaCl crystallization. Constr. Build. Mater. 2010, 24, 2466–2472. [Google Scholar] [CrossRef]
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; De La Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 2017, 105, 1358–1368. [Google Scholar] [CrossRef]
- Franzoni, E.; Sassoni, E.; Marrone, C. Development of hydroxyapatitechitosan-based treatments for the mitigation of salt damage in globigerina limestone. In Proceedings of the SWBSS 2021–Fifth International Conference on Salt Weathering of Buildings and Stone Sculptures Edited by Barbara Lubelli Ameya Kamat Wido Quist, Delft, The Netherlands, 22–24 September 2021; pp. 233–240. [Google Scholar]
- Mohamed, M.F.; Bayat, P.; Kelland, M.A. Environmentally Friendly Phosphonated Polyetheramine Scale Inhibitors—Excellent Calcium Compatibility for Oilfield Applications. Inpowderrial Eng. Chem. Res. 2020, 59, 9808–9818. [Google Scholar]
- Ochoa, N.; Baril, G.; Moran, F.; Pébère, N. Study of the properties of a multi-component inhibitor used for water treatment in cooling circuits. J. Appl. Electrochem. 2002, 32, 497–504. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Lubelli, B.; Sawdy, A.; van Hees, R.; Price, C.; Rodriguez-Navarro, C. An integrated methodology for salt damage assessment and remediation: The case of San Jerónimo Monastery (Granada, Spain). Environ. Earth Sci. 2011, 63, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- Kamat, A.; Palin, D.; Lubelli, B.; Schlangen, E. Tunable chitosan-alginate capsules for a controlled release of crystallisation inhibitors in mortars. MATEC Web Conf. 2023, 378, 02011. [Google Scholar] [CrossRef]
- Lafarge White Lime Technical Data Sheet. Available online: https://www.ctseurope.com/img/cms/documentazione/23/INGLESE/LAFARGE%20WHITE%20LIME_TDS.pdf (accessed on 12 January 2022).
- UNI-EN 1015-3:2007; Ente Italiano di Normazione, Metodi di Prova per Malte per Opere Murarie-Parte 3: Determinazione della Consistenza della Malta Fresca (Mediante Tavola a Scosse). Ente Nazionale Italiano di Unificazione (UNI): Rome, Italy, 2007.
- UNI-EN 1015/19:2008; Ente Italiano di Normazione, Metodi di Prova per Malte per Opere Murarie-Parte 19: Determinazione della Permeabilità al Vapore D’acqua delle Malte da Intonaco Indurite. Ente Nazionale Italiano di Unificazione (UNI): Rome, Italy, 2008.
- UNI-EN-1015/18:2004; Ente Italiano di Normazione, Metodi di Prova per Malte per Opere Murarie–Determinazione del Coefficiente di Assorbimento D’acqua per Capillarità della Malta Indurita. Ente Nazionale Italiano di Unificazione (UNI): Rome, Italy, 2004.
- EN 10859:2000; Beni Culturali-Materiali Lapidei Naturali ed Artificiali-Determinazione Dell’assorbimento D’acqua per Capillarità. Ente Nazionale Italiano di Unificazione (UNI): Rome, Italy, 2000.
- EN 1015-11:2019; Metodi di Prova per Malte per Opere Murarie–Parte 11: Determinazione della Resistenza a Flessione e a Compressione della Malta Indurita. Ente Nazionale Italiano di Unificazione (UNI): Rome, Italy, 2019.
- UNI EN 12371:2003; Ente Italiano di Normazione, Metodi di Prova per Pietre Naturali–Determinazione della Resistenza al Gelo. Ente Nazionale Italiano di Unificazione (UNI): Rome, Italy, 2003.
- UNI EN 12370:2001; Ente Italiano di Normazione, Metodi di Prova per Pietre Naturali–Determinazione della Resistenza alla Cristallizzazione dei Sali. Ente Nazionale Italiano di Unificazione (UNI): Rome, Italy, 2001.
- UNI EN 459-1:2015; Ente Italiano di Normazione, Calci da costruzione - Parte 1: Definizioni, specifiche e criteri di conformità. Ente Nazionale Italiano di Unificazione (UNI): Rome, Italy, 2015.
Sample | Composition |
---|---|
MS | Natural hydraulic lime NHL + Sand (1:2) |
MSCL05 | Natural hydraulic lime NHL + Sand (1:2) + Chitosan (liquid) 0.5% |
MSCL025 | Natural hydraulic lime NHL + Sand (1:2) + Chitosan (liquid) 0.25% |
MSD05 | Natural hydraulic lime NHL + Sand (1:2) + DTPMP 0.5% |
MSD025 | Natural hydraulic lime NHL + Sand (1:2) + DTPMP 0.25% |
MSCS05 | Natural hydraulic lime NHL + Sand (1:2) + Chitosan (powder) 0.5% |
MSCS025 | Natural hydraulic lime NHL + Sand (1: 2) + Chitosan (powder) 0.25% |
MSC | Natural hydraulic lime NHL + Sand + Brick powder (1:1.7: 0.3) |
MSCCL05 | Natural hydraulic lime NHL + Sand + Brick powder (1:1.7:0.3) + Chitosan (liquid) 0.5% |
MSCCL025 | Natural hydraulic lime NHL + Sand + Brick powder (1:1.7:0.3) + Chitosan (liquid) 0.25% |
MSCD05 | Natural hydraulic lime NHL + Sand + Brick powder (1:1.7:0.3) + DTPMP 0.5% |
MSCD025 | Natural hydraulic lime NHL+ Sand + Brick powder (1:1.7:0.3) + DTPMP 0.25% |
MSCCS05 | Natural hydraulic lime NHL + Sand + Brick powder (1:1.7:0.3) + Chitosan (powder) 0.5% |
MSCCS025 | Natural hydraulic lime NHL + Sand + Brick powder (1:1.7:0.3) + Chitosan (powder) 0.25% |
Sample | Slump Diameter (mm) | ∆(mm) | ||
---|---|---|---|---|
t = 0′ | t = 30′ | t = 60′ | ||
MS | 180 | 171 | 156 | 169 |
MSD05 | 260 | 244 | 212 | 239 |
MSD025 | 243 | 225 | 209 | 226 |
MSCL05 | 160 | 142 | 126 | 143 |
MSCL025 | 164 | 153 | 122 | 146 |
MSCS05 | 175 | 158 | 145 | 159 |
MSCS025 | 162 | 152 | 144 | 153 |
MSC | 179 | 169 | 154 | 167 |
MSCD05 | 184 | 175 | 171 | 177 |
MSCD025 | 164 | 157 | 149 | 157 |
MSCCL05 | 150 | 147 | 143 | 147 |
MSCCL025 | 160 | 153 | 145 | 153 |
MSCCS05 | 166 | 156 | 145 | 156 |
MSCCS025 | 165 | 152 | 141 | 153 |
Water Vapor Permeability | Capillary Water Absorption | |||||||
---|---|---|---|---|---|---|---|---|
Sample | Apparent density | TOP * | WDD | µ | sd | CA | IC | |
g/cm3 | % | g/(m2·s) | m | mg/cm2*s1/2 | ||||
MS | mean | 1.71 | 16.6 | 58.16 | 14.23 | 0.30 | 2.33 | 1.09 |
σ | 0.03 | 0.6 | 3.24 | 0.87 | 0.01 | 0.60 | 0.23 | |
MSD05 | mean | 1.64 | 17.7 | 59.64 | 13.81 | 0.30 | 2.50 | 1.19 |
σ | 0.05 | 0.2 | 0.55 | 0.14 | 0.003 | 0.11 | 0.03 | |
MSD025 | mean | 1.68 | 15.6 | 57.16 | 14.48 | 0.31 | 2.33 | 1.32 |
σ | 0.06 | 0.3 | 1.86 | 0.53 | 0.01 | 0.16 | 0.13 | |
MSCL05 | mean | 1.61 | 19.0 | 53.13 | 15.69 | 0.34 | 3.44 | 1.17 |
σ | 0.03 | 0.4 | 1.87 | 0.61 | 0.01 | 0.35 | 0.07 | |
MSCL025 | mean | 1.74 | 14.7 | 58.51 | 14.11 | 0.30 | 2.28 | 1.23 |
σ | 0.04 | 0 | 0.37 | 0.1 | 0.002 | 0.12 | 0.11 | |
MSCS05 | mean | 1.69 | 16.5 | 54.10 | 15.42 | 0.33 | 2.17 | 1.31 |
σ | 0.01 | 0.3 | 3.42 | 1.03 | 0.02 | 0.09 | 0.14 | |
MSCS025 | mean | 1.72 | 17.4 | 74.43 | 10.81 | 0.23 | 2.44 | 1.21 |
σ | 0.03 | 0.3 | 3.45 | 0.55 | 0.01 | 0.43 | 0.05 | |
MSC | mean | 1.62 | 21.8 | 52.29 | 15.96 | 0.34 | 2.20 | 0.71 |
σ | 0.18 | 0.9 | 0.70 | 0.23 | 0.004 | 0.45 | 0.01 | |
MSCD05 | mean | 1.62 | 17.4 | 59.08 | 15.55 | 0.33 | 2.43 | 0.90 |
σ | 0.13 | 0.7 | 25.55 | 7.33 | 0.16 | 0.19 | 0.17 | |
MSCD025 | mean | 1.65 | 16.9 | 72.60 | 11.18 | 0.24 | 2.44 | 1.15 |
σ | 0.07 | 2.7 | 8.18 | 1.42 | 0.03 | 0.19 | 0.24 | |
MSCCL05 | mean | 1.55 | 21.1 | 61.35 | 13.95 | 0.30 | 2.17 | 0.95 |
σ | 0.05 | 0.6 | 16.55 | 4.14 | 0.09 | 0.09 | 0.10 | |
MSCCL025 | mean | 1.51 | 23.3 | 77.48 | 10.49 | 0.23 | 2.74 | 0.95 |
σ | 0.07 | 0.8 | 13.43 | 2.06 | 0.04 | 0.66 | 0.11 | |
MSCCS05 | mean | 1.54 | 23.3 | 48.34 | 17.37 | 0.38 | 3.43 | 0.96 |
σ | 0.11 | 4.4 | 0.65 | 0.25 | 0.01 | 0.36 | 0.15 | |
MSCCS025 | mean | 1.63 | 19.9 | 40.58 | 21.05 | 0.45 | 2.28 | 1.01 |
σ | 0.02 | 0.5 | 3.50 | 1.94 | 0.041 | 0.12 | 0.04 |
Sample | Weight Variation (%) |
---|---|
MS | −18.48% |
MSCL05 | −16.73% |
MSCL025 | / |
MSD05 | −9.76% |
MSD025 | / |
MSCS05 | −10.34% |
MSCS025 | −14.03% |
MSC | −7.92% |
MSCCL05 | −0.10% |
MSCCL025 | −4.02% |
MSCD05 | −1.10% |
MSCD025 | −4.99% |
MSCCS05 | −6.08% |
MSCCS025 | −4.94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Destefani, M.; Falchi, L.; Zendri, E. Proposal of New Natural Hydraulic Lime-Based Mortars for the Conservation of Historical Buildings. Coatings 2023, 13, 1418. https://doi.org/10.3390/coatings13081418
Destefani M, Falchi L, Zendri E. Proposal of New Natural Hydraulic Lime-Based Mortars for the Conservation of Historical Buildings. Coatings. 2023; 13(8):1418. https://doi.org/10.3390/coatings13081418
Chicago/Turabian StyleDestefani, Marco, Laura Falchi, and Elisabetta Zendri. 2023. "Proposal of New Natural Hydraulic Lime-Based Mortars for the Conservation of Historical Buildings" Coatings 13, no. 8: 1418. https://doi.org/10.3390/coatings13081418
APA StyleDestefani, M., Falchi, L., & Zendri, E. (2023). Proposal of New Natural Hydraulic Lime-Based Mortars for the Conservation of Historical Buildings. Coatings, 13(8), 1418. https://doi.org/10.3390/coatings13081418