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Abstract: In order to explore the effect of modulation period on the structure and properties of
TiSiN/NiTiAlCoCrN nanomultilayer films, the films were deposited on 304 stainless steel via a
magnetron sputtering system. The structure and element distribution of the films were observed via
X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy
(EDS). The cavitation erosion of the films was investigated using an ultrasonic vibration cavitation
machine. The results show that the TiSiN/NiTiAlCoCrN nanomultilayer film exhibits a face-centered
cubic (FCC) structure and preferred orientation on the (200) crystal plane. TiSiN/NiTiAlCoCrN
nanomultilayer films grow in the form of columnar crystals, which grow perpendicularly to the
direction of the substrate. With increasing modulation periods, the hardness, elastic modulus,
and adhesive force firstly increase and then decrease. When the modulation period is 11 nm, the
TiSiN/NiTiAlCoCrN nanomultilayer film has the biggest hardness of (14.649 ± 0.591) GPa, elastic
modulus of (249.065 ± 10.485) GPa, and adhesive force of 11.3 N. With increasing modulation periods,
the mass loss firstly decreases and then increases. When the modulation period is 11 nm, the mass loss
is the minimum of 0.6 mg. There are two reasons for improving the cavitation erosion resistance of
the films. The TiSiN/NiTiAlCoCrN nanomultilayer film has the highest hardness, and the interfaces
of the nanomultilayer film can hinder the generation and expansion of cavitation pits.

Keywords: nanomultilayer film; cavitation erosion resistance; modulation period; magnetron sputtering

1. Introduction

Cavitation erosion is commonly found in fluid machine such as turbines and water
pumps, and is one of the main reasons of part failure [1,2]. Cavitation erosion induces
plastic deformation and micro-cracking in the surface of parts, which shorten the service
life of parts [3]. Coatings is one of the effective methods to improve the cavitation erosion
resistance of part surfaces [4–7].

The high-entropy alloy (HEA) has become a research focus because of its excellent
mechanical properties [8,9], corrosion erosion resistance [10,11], wear resistance [12–14],
high temperature oxidation resistance [14,15], and so on. Scratch resistance and wear
resistance of AlCoCrFeNi is better than the ones of the substrate [16]. The mass loss of
martensite stainless steel is 3.5 times that of the one of AlCoCrFeNi coatings in 3.5 wt%
NaCl solution, because the hardness of AlCoCrFeNi coatings is 2 times that of the hardness
of martensite stainless steel [17]. CoCrFeNiTiMo coatings have a higher hardness, better
adhesive strength, and better cavitation erosion resistance in 3.5 wt% NaCl solution than
Ti alloy [18]. Non-metallic elements such as H, N, C, and B are doped into HEA to form
HEA composite films, which have better properties due to grain boundary wetting and
second-phase strengthening [19–23]. The AlCrTiZrV coating exhibits an amorphous state,
but the (AlCrTiZrV)N coating is crystallized and exhibits preferred orientation on the
(200) plane. The hardness and elastic modulus of the (AlCrTiZrV)N coating is higher than
the ones of the AlCrTiZrV coating [24,25]. Therefore the high-entropy alloy nitride has
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excellent properties and can be a modulation layer of nanomultilayer films. The nano-
multilayer film can combine the advantages of two materials and has superhardness and
excellent properties [26,27]. CrN/CrCN multilayers have a better cavitation erosion than
the CrN monolayer [28]. The cavitation erosion resistance of CrAlYN/CrN multilayer
coatings improves by a factor of 14 times that of the Ti6Al4V substrate. The main mech-
anism of cavitation erosion is peel. The interface between multilayer effectively resists
shock waves and delays the initiation and propagation of cavitation cracks [5]. Because
of the template effect and coherent growth, the (AlCrTiZrV)N/SiC nanomultilayer film
has the better mechanical properties [29], and (TiZrNbHfTa)N/WN multilayered nitride
coatings have a higher hardness and Young’s modulus [30]. The VAlTiCrCu/WC multilayer
coating with a modulation period of 17 nm has better adhesion and wear resistance [31].
[AlTiCrNiTa/(AlTiCrNiTa)N]20 high-entropy alloy multilayer coatings have a higher hard-
ness and better high temperature oxidation corrosion [32]. The researchers studied the
mechanical properties and oxidation corrosion of HEA nitride multilayer film [30–32], but
the cavitation erosion of HEA nitrides multilayer films is less reported. Cavitation erosion
is one of main reasons for fluid machines. Therefore, the development of the novel film
with better cavitation erosion resistance is essential for fluid machines.

The cavitation erosion resistance of NiTiAlCrN film with various nitrogen argon
flow ratios was studied. When nitrogen argon flow ratio is 1:1, the dense structure and
grain refinement of the NiTiAlCrN film strengthens the hardness and cavitation erosion
resistance of the film [33]. On that basis, the TiSiN/NiTiAlCoCrN nanomultilayer film
was deposited on the 304 stainless steel substrate. The microstructure, mechanical prop-
erties, and cavitation erosion resistance of the films with different modulation periods
were studied.

2. Experimental Procedures
2.1. Materials

TiSiN/NiTiAlCoCrN nanomultilayer films with different modulation period were
deposited on 304 stainless steel using the JCP-350M2 magnetron sputtering system (Bei-
jing Technol Science Co., Ltd., Beijing, China). The dimension of 304 stainless steel is
Φ20 mm × 3 mm and mirror polished. The substrates were cleaned sequentially in dis-
tilled water, anhydrous ethanol, and acetone, and they were dried using a blowing machine.
The substrates were fixed on the substrate holder. Si content in TiSi target is 10 at.%, and
the element content in NiTiAlCoCr target is an equimolar ratio.

2.2. Film Deposition

The vacuum chamber pressure reached 3 × 10−3 Pa, and the substrate bias power
was adjusted to −600 V. The substrates were etched by Ar+ for 15 min to remove the
impurity and oxidation of substrate surface. The targets were pre-sputtered for 10 min to
remove the oxidation of targets. The nitrogen argon flow ratio was 1:1. The TiN layer was
deposited on substrate to improve the adhesion between substrate and film. The TiSi target
and NiTiAlCoCr target were, respectively, controlled with RF power and DC power. The
thickness of TiSiN layer is 3 nm. The modulation periods of NiTiAlCoCrN layer are 5 nm,
7 nm, 9 nm, 11 nm, and 13 nm. The top layer is NiTiAlCoCrN layer, which is deposited
for 30 min. The total thickness is about 2 µm. Figure 1 shows the schematic diagram of
nanomultilayer film.

2.3. Film Characterization

The structure of the film was observed via Rigaku Ultima IV X-ray diffraction (Tokyo,
Japan) with Cu-Kα, 0.15406 nm of wavelength, 40 kV of voltage, 40 mA of current, 8◦/mm of
sweep velocity, and 20◦~100◦ of sweep angle. Surface and cross-section morphologies were
observed via Cart Zeiss Sigma-300 (Oberkochen, Germany) scanning electron microscopy
(SEM), and the distribution of elements of deposited film and wear tracks was observed
via energy-dispersive spectroscopy (EDS). The hardness and elastic modulus were tested
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using an Anton Paar nanoindenter (Graz, Austria) with Berkovich indentor (Graz, Austria),
100 nm of curvature radius, 4 mN of maximum load, and 20 mN/min of loading and
unloading speed. In order to eliminate errors, average hardness values were calculated
from 5 random points. Adhesive strength was tested using a WS-2005 scratch tester
(Zhongke Kaihua Technology Co., Ltd., Lanzhou, China) with 30 N of load, 30 N/min
of loading speed, and 3 mm of scratch length. The cavitation erosion experiment was
carried out using an ultrasonic vibration cavitation machine with 1200 W of power, 20 Hz
of frequency, and 25 µm of amplitude, which is shown in Figure 2. The fluid medium was
NaCl 3.5 wt% solution, the distance between film and ultrasonic vibrating head was 0.5 mm,
and vibration head diameter was Φ20 mm. The depth of immersion of the sample surface
into the fluid medium was about 25 mm. The ice bags were placed around the beaker
to maintain the temperature at 25 ◦C. The mass was tested using a HUAZHI electronic
balance (Fuzhou, China) every 2 h of cavitation erosion time. The total time of cavitation
erosion time was 12 h.

Coatings 2023, 13, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. Schematic diagram of nanomultilayer film. 

2.3. Film Characterization 
The structure of the film was observed via Rigaku Ultima IV X-ray diffraction (Tokyo, 

Japan) with Cu-Kα, 0.154 06 nm of wavelength, 40 kV of voltage, 40 mA of current, 8°/mm 
of sweep velocity, and 20°~100° of sweep angle. Surface and cross-section morphologies 
were observed via Cart Zeiss Sigma-300 (Oberkochen, Germany) scanning electron mi-
croscopy (SEM), and the distribution of elements of deposited film and wear tracks was 
observed via energy-dispersive spectroscopy (EDS). The hardness and elastic modulus 
were tested using an Anton Paar nanoindenter (Graz, Austria) with Berkovich indentor 
(Graz, Austria), 100 nm of curvature radius, 4 mN of maximum load, and 20 mN/min of 
loading and unloading speed. In order to eliminate errors, average hardness values were 
calculated from 5 random points. Adhesive strength was tested using a WS-2005 scratch 
tester (Zhongke Kaihua Technology Co., Ltd., Lanzhou, China) with 30 N of load, 30 
N/min of loading speed, and 3 mm of scratch length. The cavitation erosion experiment 
was carried out using an ultrasonic vibration cavitation machine with 1200 W of power, 
20 Hz of frequency, and 25 µm of amplitude, which is shown in Figure 2. The fluid me-
dium was NaCl 3.5 wt% solution, the distance between film and ultrasonic vibrating head 
was 0.5 mm, and vibration head diameter was Φ20 mm. The depth of immersion of the 
sample surface into the fluid medium was about 25 mm. The ice bags were placed around 
the beaker to maintain the temperature at 25 °C. The mass was tested using a HUAZHI 
electronic balance (Fuzhou, China) every 2 h of cavitation erosion time. The total time of 
cavitation erosion time was 12 h. 

 
Figure 2. Schematic diagram of ultrasonic vibration machine. 

Figure 1. Schematic diagram of nanomultilayer film.

Coatings 2023, 13, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. Schematic diagram of nanomultilayer film. 

2.3. Film Characterization 
The structure of the film was observed via Rigaku Ultima IV X-ray diffraction (Tokyo, 

Japan) with Cu-Kα, 0.154 06 nm of wavelength, 40 kV of voltage, 40 mA of current, 8°/mm 
of sweep velocity, and 20°~100° of sweep angle. Surface and cross-section morphologies 
were observed via Cart Zeiss Sigma-300 (Oberkochen, Germany) scanning electron mi-
croscopy (SEM), and the distribution of elements of deposited film and wear tracks was 
observed via energy-dispersive spectroscopy (EDS). The hardness and elastic modulus 
were tested using an Anton Paar nanoindenter (Graz, Austria) with Berkovich indentor 
(Graz, Austria), 100 nm of curvature radius, 4 mN of maximum load, and 20 mN/min of 
loading and unloading speed. In order to eliminate errors, average hardness values were 
calculated from 5 random points. Adhesive strength was tested using a WS-2005 scratch 
tester (Zhongke Kaihua Technology Co., Ltd., Lanzhou, China) with 30 N of load, 30 
N/min of loading speed, and 3 mm of scratch length. The cavitation erosion experiment 
was carried out using an ultrasonic vibration cavitation machine with 1200 W of power, 
20 Hz of frequency, and 25 µm of amplitude, which is shown in Figure 2. The fluid me-
dium was NaCl 3.5 wt% solution, the distance between film and ultrasonic vibrating head 
was 0.5 mm, and vibration head diameter was Φ20 mm. The depth of immersion of the 
sample surface into the fluid medium was about 25 mm. The ice bags were placed around 
the beaker to maintain the temperature at 25 °C. The mass was tested using a HUAZHI 
electronic balance (Fuzhou, China) every 2 h of cavitation erosion time. The total time of 
cavitation erosion time was 12 h. 

 
Figure 2. Schematic diagram of ultrasonic vibration machine. Figure 2. Schematic diagram of ultrasonic vibration machine.

3. Results and Discuss
3.1. Microstructure

Table 1 shows the element distribution of TiSiN/NiTiAlCoCrN nanomultilayer films
with different modulation periods. The N element content is from 40.52 at.% to 45.6 at.%
in the films. The contents of all metal elements are approximately evenly distributed and
consistent with the elemental contents in the targets.
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Table 1. Element contents of TiSiN/NiTiAlCoCrN nanomultilayer films.

Modulation
Period/nm

Ni
/at.%

Error
/at.%

Ti
/at.%

Error
/at.%

Al
/at.%

Error
/at.%

Cr
/at.%

Error
/at.%

Co
/at.%

Error
/at.%

N
/at.%

Error
/at.%

5 mm 10.60 0.03 10.78 0.02 11.1 0.03 11.38 0.04 10.54 0.03 45.60 0.02
7 mm 10.88 0.06 14.53 0.05 10.77 0.06 12.10 0.02 10.54 0.06 41.18 0.03
9 mm 11.39 0.05 12.31 0.03 11.31 0.05 12.58 0.05 11.11 0.04 41.30 0.06

11 mm 11.59 0.07 12.02 0.03 11.65 0.04 12.47 0.08 11.35 0.02 40.92 0.04
13 mm 11.66 0.04 12.18 0.08 11.52 0.07 12.76 0.03 11.36 0.05 40.52 0.03

Figure 3 shows XRD patterns of TiSiN/NiTiAlCoCrN nanomultilayer films. The films
exhibit a face-centered cubic (FCC) structure. The NiTiAlCoCrN film shows preferred
orientation on the (111) and (200) planes. The peak of (111) plane of nanomultilayer films
disappears, and the nanomultilayer films show preferred orientation on the (200) plane.
The nanomultilayer films are mainly composed of Ni3AlN, Co5.47N, TiN, VN, AlN, and CrN
phases. The diffraction angle of the (200) plane is from 43.360◦ to 43.457◦, which is close to
TiAlN/CrN coatings [34], AlCrN/TiSiN nanomultilayer coatings [26], and AlTiCrN/TiSiN
hard coatings [27]. The coherent epitaxial growth appears easily at small modulation
periods because of the small mismatch between lattice parameters of NiTiAlCoCrN layer
and TiSiN layer [34].
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Figure 3. XRD patterns of TiSiN/NiTiAlCoCrN nanomultilayer films (Blue lines show the peak of
(200) plane and red lines show the peak of substrate.).

Table 2 shows the diffraction angle, plane spacing, and half-width height of the (200)
plane of TiSiN/NiTiAlCoCrN nanomultilayer films. The diffraction angle of the (200) plane
first increases and then decreases. The reason is that the TiSiN layer and NiTiAlCoCrN layer
grow epitaxially during the deposition process and form a coherent structure on the (200)
plane when the modulation period is lower than 11 nm. Lattice distortion appears because
of the inconsistent lattice constants of two layer materials. The lattice constant of TiSiN
layers increases, and the lattice constant of NiTiAlCoCrN layers decreases. Therefore the
tensile compressive alternating stress field is formed during alternating deposition process,
which strengthens the properties of the films. With the thickness of the NiTiAlCoCrN
layer further increasing, dislocations cannot penetrate the NiTiAlCoCrN layer, and the
TiSiN layer and NiTiAlCoCrN layer grow alternatively in a “brick wall” structure during
deposition process, which results in properties degradation of the films.
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Figure 4 shows the cross-sectional morphologies of the TiSiN/NiTiAlCoCrN nanomul-
tilayer film with different modulation periods. The cross-sectional morphology shows the
orderly TiSiN/NiTiAlCoCrN nanomultilayer film, TiN transition layer, and 304 stainless
steel substrate from top to bottom. TiSiN/NiTiAlCoCrN nanomultilayer films grow in
the form of columnar crystals, which grow perpendicularly to the direction of substrate.
When the modulation period is 11 nm, the cross-sectional morphologies exhibit a fine and
dense columnar grain structure. However, the cross-sectional morphologies with the other
modulation periods show a coarse columnar grain. Therefore, the nanomultilayer film with
11 nm modulation period has the best cross-section.
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Table 2. Diffraction angle, plane spacing, and half-width height of (200) plane.

Modulation
Period/nm

Diffraction Angle
2θ/(◦)

Plane Spacing
d/nm

Half-Width Height
B/rad

5 nm 43.360 2.0851 0.173
7 nm 43.400 2.0833 0.184
9 nm 43.457 2.0807 0.186

11 nm 43.381 2.0841 0.153
13 nm 43.360 2.0851 0.176

3.2. Mechanical Properties

Figure 5 shows the hardness and elastic modulus. With increasing modulation periods,
the hardness and elastic modulus firstly increases and then decreases. When the modulation
period is 11 nm, the nanomultilayer film has the highest hardness of (14.649 ± 0.591) GPa
and the highest elastic modulus of (249.065 ± 10.485) GPa.
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modulation periods.

The strengthening mechanisms of nanomultilayer films include alternating stress field
theory [35–37], modulus difference theory [38,39], Hall–Petch theory [40], etc. Accord-
ing to these theories and the results of the microstructure analysis, the plane spacing of
TiSiN/NiTiAlCoCrN nanomultilayer films first decreases and then increases. When the
plane spacing is lower than 11 nm, the TiSiN layer and NiTiAlCoCrN grow coherently. The
TiSiN layer is subjected to compressive stress, while the NiTiAlCoCrN layer is subjected to
tensile stress. Therefore, the alternating stress field is formed during the alternating deposi-
tion process of two materials, which strengthens the properties of nanomultilayer film. At
the same time, the interface between the layers hinders the expansion of dislocations due
to the mirror effect of the interlayer interface, which limits the generation and expansion of
dislocation and strengthens the properties of the films. With the modulation period further
increasing, the template effect disappears. The dislocations move within a monolayer film
and accumulate easily in the lower elastic modulus layer. Therefore, the properties of the
films decline [38,41].

Figure 6 shows the adhesive force between the nanomultilayer film and substrate.
When the modulation period is 11 nm, the adhesive force is at the highest value of 11.3 N.
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Figure 6. Adhesion force of TiSiN/NiTiAColCrN nanomultilayer film with different modulation
periods.

3.3. Corrosion Erosion Resistance

Figure 7 shows relationship between mass loss and time of the TiSiN/NiTiAlCoCrN
nanomultilayer film. With increasing modulation period, the mass loss of the films firstly
decreases and then increases. When the modulation period of nanomultilayer film is 11 nm,
the mass loss is the smallest of 0.6 mg, and the cavitation erosion rate is the smallest of
0.05 mg/h. The nanomultilayer film with 5 nm show the biggest mass loss after 4 h of
cavitation erosion. The nanomultilayer film with 7 nm show the biggest mass loss after
12 h of cavitation erosion.
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There are two reasons for the strengthening of the cavitation erosion resistance of the
nanomultilayer. Firstly, the nanomultilayer film with an 11 nm modulation period has the
highest hardness and adhesive force. Secondly, the films are deposited periodically and
alternately by two layers, and therefore, there are many interfaces in the nanomultilayer
film. The interfaces prevent the initiation and expansion of cavitation pits, which also
improve the cavitation erosion resistance. However, the nanomultilayer film with 5 nm and
7 nm has a lower hardness and elastic modulus, so the mass losses of the nanomultilayer
film are bigger than those of the other modulation periods.

Figure 8 shows the surface morphologies of TiSiN/NiTiAlCoCrN nanomultilayer
films after 12 h of cavitation erosion. As the modulation period increases, the number of
cavitation pits firstly decrease and then increase. When the modulation periods are 5 nm
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and 7 nm, there are many cavitation pits, and the expansion of the cavitation pits causes
film detachment. When the modulation period is 11 nm, the number of cavitation pits of
the TiSiN/NiTiAlCoCrN nanomultilayer film is the least, and the film has not peeled off.
So, the film has the best cavitation erosion resistance, which is consistent with the results in
Figure 7.
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Figure 9 shows the element distributions of the cavitation pit of the TiSiN/NiTiAlCoCrN
nanomultilayer film with 11 nm of modulation period. The Fe element appears, and Ni,
Ti, Al, Co, and N elements disappear at the bottom of the cavitation pit, so the film breaks
down. The O element appears in the wall of the cavitation pits, which means the oxidation
reaction occurs during the cavitation process. Ni, Ti, Al, Co, and Cr elements react with
oxygen to produce TiO2, Al2O3, CoO, Cr2O3, etc. Cr2O3 and Al2O3 have a dense structure
and higher hardness, which can better resist cavitation erosion during the experimental
process. As the cavitation time increases, CoO reacts with oxygen to produce Co3O4, which
also improves the cavitation erosion resistance.
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4. Conclusions

TiSiN/NiTiAlCoCrN nanomultilayer films with different modulation periods were
deposited on 304 stainless steel using a magnetron sputtering system. The metal elements
were distributed evenly on the surface of the films. The N element content was from
40.52 at.% to 45.6 at.% in the films.

The TiSiN/NiTiAlCoCrN nanomultilayer films exhibit preferred orientation on the
(200) plane. The plane spacing firstly decreases and then increases with increasing modula-
tion periods. The alternating stress field is formed during the deposition process, which
strengthens the film properties.

As the modulation period increases, the hardness, elastic modulus, and adhesive
force firstly increase and then decrease. Firstly, the alternating stress field strengthens
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the properties. Secondly, the interface between the TiSiN layer and NiTiAlCoCrN layer
prevents dislocation expansion, which also improves the properties of the films.

As the modulation period increases, the cavitation erosion resistance firstly increases
and then decreases. When the modulation period is 11 nm, the mass loss is the minimum,
the number of cavitation pits is the least, and no film peeling occurs. The reason for this
is that the nanomultilayer film with 11 nm modulation period has highest hardness and
adhesive force, and the interfaces in the nanomultilayer film prevent the initiation and
expansion of the cavitation pits. The oxidation generated during the cavitation process also
improves the cavitation erosion resistance.

The TiSiN/NiTiAlCoCrN nanomultilayer film with a 11 nm modulation period exhibit
the best properties. The film can be used as the coating of blades of turbines and water
pumps, which can improve the corrosion erosion and prolong the life of blades.
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