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Abstract: In this paper, a solar cell based on WO3/CdTe heterojunction was analyzed and optimized,
for which the following structure of the Al/AZO/WO3/CdTe/NiO/Ni device was proposed, which
was numerically simulated by the SCAPS 1-D software. Using the software, the effect of the thickness
and carrier concentration of the absorber layer (CdTe) and the window layer (WO3) was analyzed,
and the optimal value of these parameters was found to be 2 µm and 1015 cm−3 for the CdTe layer
and 10 nm and 1019 cm−3 for the WO3 layer, respectively. The influence of the defect density of the
WO3/CdTe interface on the performance of the proposed cell was also analyzed, simulating from
1010 to 1016 cm−2, obtaining better device performance at lower interface defect density. Another
parameter analyzed was the operating temperature on the photovoltaic performance of the device,
observing that the solar cell has a better performance at lower temperatures. Finally, a maximum
optimized PCE of 19.87% is obtained with a Voc = 0.85 V, Jsc = 28.45 mA/cm2, and FF = 82.03%, which
makes the WO3/CdTe heterojunction an interesting alternative for the development of CdTe-based
solar cells.

Keywords: CdTe thin film; WO3 window layer; SCAPS-1D; WO3/CdTe; solar cell performance
optimization

1. Introduction

CdTe is a p-type semiconductor material with a band gap of ∼1.49 eV [1] and an
absorption coefficient of ∼105cm−1, which allows it to absorb more than 99% of the incident
photons with an energy greater than its band gap in films as thin as ∼2 µm [2]. In addition,
CdTe can be produced on a large scale with good cost efficiency due to its adaptability to
manufacturing processes [3]. These characteristics allow considering CdTe as a suitable
material for the development of thin-film solar cells.

Generally, a CdTe thin-film solar cell is manufactured in a superstrate configuration,
with a glass/TCO/CdS/CdTe/Back contact structure [4]. CdTe is the absorbing part of the
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cell where the most carrier generation and accumulation take place. In order to improve
the efficiency of solar cells based on this heterojunction, alternatives are being used in cell
architecture that incorporates nanostructured materials, such as the case of Di Carlo V. et al. [5],
who report the growth of CdTe nanowires with a gap energy of 1.539 eV. Meanwhile, Hongmei
Dang et al. [6] report the fabrication and characterization of a solar cell based on the CdS
nanowires/CdTe heterojunction and found substantial improvements.

The CdS, with a bandgap of ~2.4 eV, is a good choice as a window layer, since it allows
most of the incident photons of sunlight to pass through it. Until now, it has been the
most widely used semiconductor to form the pn junction together with CdTe to carry out
the photovoltaic effect [7]. However, due to its energy bandgap, photons whose energy is
above this energy bandgap value are absorbed by it, and the photogenerated carriers in
this layer are not collected, generating a parasitic absorption that harms the short-circuit
current density (Jsc) [2,8].

For its part, ZnO:Al is an ideal candidate to be used as a transparent conductive
oxide (TCO), since it has a wide band gap (3.3 eV) and excellent optical and electrical
properties [9], in addition to being abundant materials in nature.

Along with the experimental work, in recent years, simulations of solar cells have been
carried out, which has made it possible to optimize the time and cost of the experimental
processes, as in the case reported by Montoya de los Santos et al. [10], who report a
theoretical increase in the efficiency of a solar cell based on the CdS/CdTe heterojunction
using ZnO:Al and CuSCN nanolayers.

On the other hand, WO3 is a chemically stable n-type semiconductor material with a
wide band gap of ~3.15 eV [11], it can present different crystallographic phases depending
on the synthesis temperature: tetragonal, orthorhombic, and monoclinic. WO3 is a non-
toxic, low-cost, and easily evaporable material and is generally used as an ETL layer in
solar cell design [12].

With the aim of seeking alternatives, in this paper, we propose to introduce WO3
to replace CdS as a window layer due to its low toxicity and wide band gap, seeking
to reduce the absorption of incident photons in the window layer and thus study the
feasibility of a substrate-type solar cell at CdTe base performing a heterojunction with
WO3 as layer n. Figure 1 shows the quantum efficiency (QE) of simulated CdS/CdTe
and WO3/CdTe heterojunctions, where it can be seen that when using WO3 as a window
layer, a QE of practically 100% is obtained at wavelengths of 300–520 nm. When using
CdS as a window layer, there is a reduction in the simulated QE due to the band gap
of the CdS, decreasing to 90% at wavelengths corresponding to incident photons with
energy greater than 2.4 eV. The results obtained in this study reflect that using WO3 as a
window layer reduces parasitic absorption in this layer, obtaining a higher Jsc than when
using CdS as a window layer, as reported in the following investigations: 23 mA/cm2 [3],
24.18 mA/cm2 [13], 23.75 mA/cm2 [14], and 25.5 mA/cm2 [15].
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In this study, the effect of varying the thickness and carrier concentration of the CdTe
layer and WO3, as well as the effect of defect density at the WO3/CdTe interface was
simulated and analyzed on the device’s photovoltaic performance, and the operating
temperature using SCAPS 1-D software. Said analysis was carried out through the main
photovoltaic parameters: open circuit voltage (Voc), short-circuit current density (Jsc), fill
factor (FF), and efficiency (PCE) under standard lighting (AM 1.5 G 1000 W/m2, 300 K).

2. Device Modeling and Simulation
2.1. Numerical Method

A numerical simulation is a tool that allows us to understand and analyze the influence
of different physical parameters on the performance of a solar cell, which allows us to
analyze and optimize different structures of solar cells based on crystalline, polycrystalline,
and amorphous materials [16], minimizing the cost and time of manufacturing prototypes.
SCAPS 1-D, being a software intended for the simulation of semiconductor material prop-
erties, allows us to analyze the influence of each layer that makes up the structure of the
solar cell to be simulated.

Simulator of the capacitance of solar cells-1 dimension (SCAPS-1D) is a numerical modeling
software designed to simulate the DC and AC electrical characteristics of thin-film heterojunction
solar cells and has been specially developed for Cu(In,Ga)Se2 and CdTe solar cells [16].

The working principle of SCAPS-1D is based on Poisson’s equations, steady-state
electron–hole continuity and the electron and hole current densities [17].

∂2ψ(x)
∂x2 +

q
εrε0

[
p(x)− n(x) + N+

D (x)− N−
A (x) + pt(x)− nt(x)

]
= 0 (1)

where ψ is the electrostatic potential; N+
D is the ionized donor concentration; N−

A is the
ionized acceptor density; n and p are, respectively, hole and electron density; εr and ε0 are,
respectively, relative and vacuum permittivity; pt and nt represent the holes and electrons
trapped, respectively; q is the electron charge; and x is the position in the x-coordinate.

−∂Jn

∂x
+ G − R = 0 (2)

−
∂Jp

∂x
+ G − R = 0 (3)

G is the carrier generation rate, R is the net recombination from direct and indirect band,
and Jp and Jn are, respectively, hole and electron current densities

Jn = qnµnE + qDn
∂n
dx

(4)

Jp = qpµpE − qDp
∂p
dx

(5)

Dp and Dn are, respectively, hole and electron diffusion coefficients; E is the electric field;
and µp and µn are, respectively, hole and electron mobilities. In this research work, software
version 3.3.10 was used.

2.2. Device Structure and Simulation Parameters

Figure 2 shows the structure of the simulated device, at the top of the aluminum front
contact, with AZO as transparent conductive oxide (TCO), the n-type layer or window layer
of WO3, the CdTe absorber layer, a hole transporter layer (HTL) of NiO, and Ni as back
contact at the bottom of the device. Due to the high work function of CdTe (∼5.5 eV) [2], a
metal with a higher work function than CdTe is required to achieve an ohmic contact, so
NiO was incorporated as an HTL layer between the CdTe absorber layer and the Ni back
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contact. The high concentration of acceptor carriers and work function (∼5.2 eV) of NiO
help to extract the carrier from the back contact, improving the quality of the ohmic contact.
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Figure 2. Schematic representation of the simulated device (Al/AZO/WO3/CdTe/NiO/Ni).

Figure 3a shows the energy band diagram of the simulated structure using WO3 as a
window layer the difference between the conduction and valence bands between the CdTe
and WO3 layers are ∆Ec = 0.27 and ∆Ev = 1.93 eV, respectively. The thickness of the depletion
zone (W) is 0.731 µm. The power barrier Vbi is 1.03 V. The Fermi level for CdTe and WO3 with
respect to the valence band is 0.195 and 3.14 eV, respectively. The work function of CdTe is
5.5 eV, while the work function of WO3 is 4.5 eV. Figure 3b shows the band diagram using
CdS as a window layer, where we have an ∆Ec = 0.38 eV, ∆Ev = 0.55 eV, Vbi = 1.32 V, and
W = 0.817 µm. It can also be seen that using WO3 as a window layer does not generate a
peak in the conduction band because WO3 has a higher electron affinity than CdTe, favoring
transport by diffusion. On the other hand, when using CdS as a window layer, a peak is
generated in the conduction band, which limits the transport of electrons by diffusion from
the n region to the p region, having as the dominant transport mechanism, potential barrier
overcoming, tunneling and recombination at the interface. The work function of CdS is ~4 eV,
so to have an ohmic contact with this material, a metal with a work function of less than 4 eV
is needed. However, given the work function of WO3, it allows us to obtain an ohmic contact
when using metals like Al and Ag as front contacts.
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To carry out the simulation process, the SCAPS-1D software requires the input of physical
parameters of the layers that make up the device to be simulated (Figure 2), which are
described in Table 1. SCAPS-1D also allows the electrical properties of the back and front
contacts to be incorporated into the simulation process, as well as the defect density (Nt) of
the WO3/CdTe interface (Table 2), which are generated by the network mismatch between
both layers, promoting free links that favor the appearance of recombination centers [18].

Table 1. Parameters used in the simulation of the structure Al/AZO/WO3/CdTe/NiO/Ni.

Parameters CdTe
[1]

WO3
[12,18,19]

NiO
[1,20]

AZO
[20,21]

Thickness (µm) 0.5–3 0.01–0.15 0.020 0.050
Bandgap, Eg (eV) 1.49 3.15 3.8 3.3

Electron Affinity, x (eV) 4.28 4.55 1.46 4.55
8.12Relative permittivity, εr 9.4 10 10

Effective CB density of states, Nc (cm−3
)

8 × 1017 4.2 × 1018 2.8 × 1019 4.1 × 1018

Effective VB density of states, Nv
(
cm−3) 1.8 × 1019 9 × 1018 1 × 1019 8.2×1018

Electron mobility, µn (cm 2/ Vs) 500 20 12 100
Hole mobility, µp (cm 2/ Vs) 60 10 2.8 20

Electron Thermal Velocity (cm/s) 107 107 107 2.2 × 107

Hole Thermal Velocity (cm/s) 107 107 107 1.5 × 107

Donor concentration, ND (cm−3
)

0 1013–1019 0 1021

Acceptor concentration, NA
(
cm−3) 1013–1017 0 1021 0

Defect density, Nt (1/ cm3)
Defect type

1015

acceptor
1012

donor
1014

acceptor
5 × 1014

acceptor

Table 2. Simulation Parameters for Interface Defects and Contacts.

Interface Defect Density [12,19] -
WO3/CdTe 1010–1016 cm−2

Defect type Acceptor
Capture cross-section electrons/holes 10−15 cm−2

Back Contact Electrical Properties [22,23] -
Work function of Ni 5.15 eV

Surface recombination velocity of electrons 105 cm/s
Surface recombination velocity of holes 107 cm/s

Front Contact Electrical Properties [22,23] -
Work function of Al 4.2 eV

Surface recombination velocity of electrons 107 cm/s
Surface recombination velocity of holes 105 cm/s

Regarding the working conditions of the simulation, it was performed with AM 1.5 G
standard illumination and a temperature of 300 K, except in the section where these
parameters are discussed. A default mesh of 51 points with a step size of 0.02 V was used
for the I-V analysis since the SCAPS-1D algorithm is designed in such a way that it provides
a larger number of points in the mesh in regions where the materials properties experience
a greater variation (near interfaces/contacts), but in areas where the properties are expected
to remain practically constant (in the bulk), the algorithm provides fewer points for the
discretization of the mesh [17]. SCAPS-1D allows an increase or decrease in the number of
points to optimize the mesh; however, in this investigation, we work with the number of
points in the mesh predetermined by the software because when increasing or decreasing
the number of points in the mesh, there were practically no changes in the results obtained.
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3. Results and Discussion
3.1. Effect of the Thickness and Concentration of Carriers (ND) of the Window Layer WO3

To analyze the effect of the thickness and concentration of carriers (ND ) of the window
layer WO3 on the performance of the devices, these were varied from 10 to 150 nm and from
1013 to 1019 cm−3, respectively. The other parameters were kept constant during the simulation.

In Figure 4a, it can be seen that Jsc decreases from 28.45 to 28.33 mA/cm2 when
the thickness of the window layer increases from 10 to 150 nm, since having a greater
thickness in this layer favors a greater absorption of the incident photons, transmitting
fewer photons to the absorbing CdTe layer and thus decreasing Jsc. Voc remains practically
constant (Figure 4a) as the thickness of the window layer increases since the carrier diffusion
length allows the carriers separated by the electric field generated by the pn junction to
reach frontal contact, thus maintaining the separation of charges. FF has a small decrease
when the window layer’s thickness increases, going from 81.95 to 81.13%. Since Jsc and
FF decrease, PCE also decreases (Equation (6)) with increasing window layer thickness,
decreasing from 19.87 to 18.97% (Figure 4a).

PCE =
JscVocFF

Pin
(6)
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carriers in the window layer.

Figure 4b shows the behavior of Voc, which increases from 0.73 to 0.85 V by increasing
ND from 1013 to 1019 cm−3 because the depletion zone increases on the side of the absorber
layer by increasing ND, which favors a greater generation and separation of photogenerated
carriers. Jsc increases from 28.03 to 28.46 mA/cm2 when ND increases from 1013 to 1019

cm−3 (Figure 4b). This is also due to the increase in the depletion zone in the absorber layer
as ND increases, favoring an increase in the number of photogenerated carriers collected
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by the contacts. FF increases from 78.36 to 81.95% (Figure 4b) when ND increases from
1013 to 1019 cm−3. This is due (Equation (7)) to the fact that the maximum cell voltage (Vm)
increases from 0.64 to 0.75 V generating that the maximum power (Pm) of the simulated
device increases with the increase in ND. In the same figure, the PCE increases as ND
increases, going from 16.20 to 19.87%, since the photogenerated electrons in the absorber
layer will have a higher probability of passing through the junction and being collected by
the frontal contact.

FF =
Pm

Voc Jsc
(7)

3.2. Effect of the Thickness and Acceptor Carrier Concentration (NA) in CdTe Absorber Layer

In this section, the effect of the thickness and carrier concentration (NA) in the CdTe
absorber layer was studied, for which the thickness of the CdTe layer was varied from 0.5
to 3 µm, while the carrier´s concentration was varied from 1013 to 1017 cm−3. The other
parameters were kept constant during the simulation.

In Figure 5a, it can be seen that Jsc has a value of 25.80 mA/cm2 at a thickness of
0.5 µm, reaching a maximum value of 28.45 mA/cm2 from 2 µm, since having a thicker
film has a higher absorption [2] because the probability that the photons are absorbed
is higher due to a longer optical path. The behavior of Voc remains practically constant
when varying the thickness of the absorbent layer, having a negligible decrease in Voc
of 0.01 V as the thickness increases from 0.5 to 1 µm. This behavior can be explained by
the fact that (Equation (8)) Jsc remains constant from 1.5 µm, and the saturation current
density (J0) is not affected by the increase in the thickness of the absorber layer. Since FF
is inversely proportional (Equation (7)) to Jsc and Voc, and since there is a greater increase
in Jsc compared to the decrease in Voc when increasing the thickness of the absorber layer,
FF decreases from 85.78 to 81.97% when increasing the thickness of the absorbent layer
from 0.5 to 3 µm (Figure 5a). PCE increases from 19.02 to 19.87% when the thickness of the
absorber layer increases since there is a greater generation of electron–hole pairs given by a
greater absorption capacity by having a thicker CdTe layer.

Voc =
kT
q

ln
(

Jsc

J0
+ 1

)
(8)

Figure 5b shows the behavior of Jsc as a function of the concentration of NA carriers in
the absorber layer, which increases from 21.38 to 28.45 mA/cm2 as NA increases from 1013

to 1015 cm−3 since having a higher concentration of carriers improves the conductivity of
the material, thus favoring a better extraction of the carrier from the back contact; however,
Jsc decreases when exceeding a NA of 1015 cm−3, decreasing its value to 24.57 mA/cm2

with a NA of 1017 cm−3, since the fermi level of the holes on the p side decreases, thus
increasing the power barrier Vbi making it difficult for carriers to flow through the junction.
Voc decreases from 1.12 to 0.93 V when NA increases from 1013 to 1017 cm−3. This is because
the mobility of the carriers decreases when NA increases [24], which reduces the diffusion
length of the carrier (Ln) and the equilibrium electron density on the p side (np0) thus
increasing an increase in the saturation current J0 (Equation (9)).

J0 =
qDp pn0

Lp
+

qDnnp0

Ln
(9)

FF increases from 33.97 to 82.03% (Figure 5b) by increasing NA from 1013 to 1015 cm−3

mainly due to the behavior of Voc (Equation (7)); however, by increasing NA to 1017 cm−3,
FF decreases to 76.74% mainly due to the maximum current density of the device (Jm)
decreasing from 26.44 to 21.68 mA/cm2, causing Pm to decrease, for which FF decreases
(Equation (7)). PCE has its maximum value of 19.87% at a NA of 1015 cm−3 due to the
increase in Jsc and FF; however, PCE decreases when NA exceeds 1015 cm−3. This is due to
the decrease in Jsc and FF.
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3.3. Effect of Defect Density (Nt) at the WO3/CdTe Interface

To understand the effect of the density of states of the WO3/CdTe interface, it was
varied from 1010 to 1016 cm−2, the other parameters were kept constant during the simula-
tion. Figure 6 shows that the performance of the solar cell is negatively affected by a higher
defect density in the interface. Voc is the one that has a greater decrease when increasing
the density of defects in the interface, decreasing from 0.85 to 0.60 V, since having a greater
density of defects has a greater number of recombination centers [18], which generates that
the probability that the photogenerated carriers are separated is lower. Jsc has a decrease
of 0.26 mA/cm2 with increasing defect density from 1010 to 1016 cm−2. By increasing Nt,
there is a greater probability that the photogenerated carriers recombine at the junction
interface, causing Vm to decrease from 0.75 to 0.51 V, therefore the maximum power (Pm) of
the cell decreases and, consequently FF decreases (Equation (7)) from 82.03 to 77.93% even
if Jsc and Voc decrease. PCE decreases from 19.87 to 13.27% as Nt increases, mainly due to
the decrease in Voc.

3.4. Effect of Operating Temperature

To study the behavior of the solar cell depending on the temperature to which it will
be subjected. This was varied from 270 to 370 K since the solar cells in their applications
can be exposed to this temperature range outdoors. The other parameters analyzed were
kept constant at their optimized values.

Being more specific, Voc decreases by 0.15 V when the operating temperature increases
by 100 K, as can be seen in Figure 7d. This behavior may be due to the fact that, as the
temperature increases the density of carriers increases, which reduces their mobility as
observed in Equation (8), thus increasing J0 and consequently decreasing Voc (Equation (8)).
Jsc has a practically constant behavior when increasing the temperature from 270 to 370 K
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(Figure 7c). Figure 7b shows that FF has a small decrease of 0.73% when the operating
temperature increases by 100 K, due to the behavior of Voc and to the fact that Vm decreases
from 0.77 to 0.62 V with increasing temperature. In Figure 7a, it can be seen that PCE
decreases from 20.27 to 16.82% when the temperature increases by 100 K, given that when
the temperature of a material is increased, its conductivity is affected and that phonons are
generated [23], which cause scattering in charge carriers thus affecting PCE.
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4. Conclusions

In this paper, we simulate and analyze the photovoltaic performance of a CdTe-based solar
cell using WO3 as a window layer, with a device structure of Al/AZO/WO3/CdTe/NiO/Ni,
using the SCAPS 1-D software. It was found that the concentration of NA carriers in the absorber
layer plays an important role in the solar cell´s performance, obtaining the maximum PCE at a
NA of 1015 cm−3. It was also observed that the photovoltaic performance of the simulated solar
cell has an almost constant behavior from 1.5 µm thick on the absorber layer. As the thickness
of the window layer increases, PCE decreases; however, it is not such a determining factor for
the photovoltaic performance of the cell. On the other hand, the concentration of ND carriers of
the window layer is a very determining factor, obtaining a maximum PCE at a ND of 1019 cm−3.
The increase in the density of Nt defects at the WO3/CdTe interface negatively affects PCE,
decreasing by 6.60% when increasing Nt from 1010 to 1016 cm−2. The solar cell´s performance
is impaired with the increase in operating temperature, since at lower temperatures, a higher
efficiency is obtained, such that at 270 K, a PCE of 20.27% is obtained. PCE decreases by 3.45%
as the operating temperature increases until 370 k, having an acceptable performance at extreme
temperatures. The other sections were simulated at standard temperatures of 300 K.

A maximum PCE of 19.87% was obtained with a Voc = 0.85 V, Jsc = 28.45 mA/cm2, and
FF = 82.03%, achieved with a thickness and carrier concentration of 2 µm and 1015 cm−3,
respectively, for the absorber layer and the window layer a thickness of 10 nm and a carrier
concentration of 1019 cm−3. CdS remains theoretically and experimentally one of the best
options to be used as a window layer in heterojunction with CdTe; however, based on the
results obtained in this research, WO3 has the potential to become a viable alternative as a
window layer for the development of CdTe-based solar cells, since it can favor the increase
in Jsc due to its wide band gap, in addition to being a non-toxic and low-cost material.
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