
Citation: Liu, B.-J.; Yin, T.-H.; Lin,

Y.-W.; Chang, C.-W.; Yu, H.-C.; Lim,

Y.; Lee, H.; Choi, C.; Tsai, M.-K.; Choi,

Y. A Cost-Effective, Nanoporous,

High-Entropy Oxide Electrode for

Electrocatalytic Water Splitting.

Coatings 2023, 13, 1461. https://

doi.org/10.3390/coatings13081461

Academic Editor: Cristiana Alves

Received: 3 August 2023

Revised: 14 August 2023

Accepted: 17 August 2023

Published: 19 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

A Cost-Effective, Nanoporous, High-Entropy Oxide Electrode
for Electrocatalytic Water Splitting
Bu-Jine Liu 1,†, Tai-Hsin Yin 1,† , Yu-Wei Lin 1, Chun-Wei Chang 1, Hsin-Chieh Yu 1, Yongtaek Lim 2,
Hyesung Lee 2, Changsik Choi 2,*, Ming-Kang Tsai 3 and YongMan Choi 1,*

1 College of Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan;
bujine.c@nycu.edu.tw (B.-J.L.); taihsin.pt09@nycu.edu.tw (T.-H.Y.); ywlin0911.pt09@nycu.edu.tw (Y.-W.L.);
winerchang7.pt10@nycu.edu.tw (C.-W.C.); hcyu@nycu.edu.tw (H.-C.Y.)

2 Clean Energy Conversion Research Center, Institute for Advanced Engineering,
Yongin 17180, Republic of Korea; ytlim@iae.re.kr (Y.L.); hslee@iae.re.kr (H.L.)

3 Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan; mktsai@ntnu.edu.tw
* Correspondence: cschoi@iae.re.kr (C.C.); ymchoi@nycu.edu.tw (Y.C.)
† These authors contributed equally to this work.

Abstract: High-entropy materials have attracted extensive attention as emerging electrode materials
in various energy applications due to their flexible tunability, unusual outstanding activities, and
cost-effectiveness using multiple earth-abundant elements. We introduce a novel high-entropy
composite oxide with the five elements of Cu, Ni, Co, Fe, and Cr (HEO-3CNF) for use in the oxygen
evolution reaction (OER) in electrocatalytic water splitting. HEO-3CNF is composed of two phases
with a non-equimolar, deficient high-entropy spinel oxide of (Cu0.2−xNi0.2Co0.2Fe0.2Cr0.2)3O4 and
monoclinic copper oxide (CuO). Electrochemical impedance spectroscopy (EIS) with distribution of
relaxation times (DRT) analysis validates that the HEO-3CNF-based electrode exhibits faster charge
transfer than benchmark CuO. It results in improved OER performance with a lower overpotential
at 10 mA/cm2 and a Tafel slope than CuO (518.1 mV and 119.7 mV/dec versus 615.9 mV and
131.7 mV/dec, respectively) in alkaline conditions. This work may provide a general strategy for
preparing novel, cost-effective, high-entropy electrodes for water splitting.

Keywords: hydrogen production; high-entropy oxides; electrochemical impedance spectroscopy;
thin films

1. Introduction

Limited availability of fossil fuels and climate change have necessitated a search
for novel, high-efficient, and sustainable green energy technologies. Numerous green
technologies have been widely developed, such as solar energy generation [1,2], wind
power generation [3], and hydroelectric power generation [4]. In addition to developing
different power generation methods and reducing environmental risks from traditional
energy sources, the rational design of novel electrode materials and efficient energy storage
systems is crucial due to intermittent power generation using renewable energy sources [5].
Although green hydrogen production from renewable energy sources is considered a
promising approach for net-zero carbon emissions [6,7], ~95% of global hydrogen produc-
tion is based on fossil fuels [8] (i.e., gray or brown hydrogen), releasing carbon emissions [9].
Hence, developing high-efficiency green hydrogen production technologies from water (i.e.,
electrochemical [10] and photoelectrochemical (PEC) water electrolysis [11,12]) is impera-
tive. In particular, developing novel high-performance electrode materials for the oxygen
evolution reaction (OER) for electrochemical and PEC water electrolysis has attracted much
attention because its sluggish reaction kinetics retard large-scale hydrogen production [13].
Recently, the high-entropy concept has been widely applied for designing novel better
materials (i.e., high-entropy alloys) [14] and expanded to develop numerous emerging

Coatings 2023, 13, 1461. https://doi.org/10.3390/coatings13081461 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13081461
https://doi.org/10.3390/coatings13081461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0001-9166-2082
https://orcid.org/0000-0001-9189-5572
https://orcid.org/0000-0003-4276-1599
https://doi.org/10.3390/coatings13081461
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13081461?type=check_update&version=2


Coatings 2023, 13, 1461 2 of 12

energy materials in water splitting [15] and supercapacitors [16]. High-entropy materi-
als are formed by mixing equimolar [17] or non-equimolar [14] ratios of ≥five different
elements. To date, different types of high-entropy materials have been introduced in the
literature, such as high-entropy alloys (HEAs) [14], high-entropy nitrides (HENs) [18–20],
high-entropy carbides (HECs) [21], and high-entropy oxides (HEOs) [22–24]. HEOs have
demonstrated unexpected, remarkable properties for narrow band gaps [25], colossal di-
electric constants [23], and enhanced mechanical properties [26]. In this study, to select five
elements for HEO electrode materials, a fundamental concept of elements was applied,
including similar crystal structures, geometric compatibility, and oxidation states [27], simi-
lar to previous studies in supercapacitors [28], Li-ion batteries [29], and fuel cells [30]. In
addition, we initiated HEO preparation based on monoclinic CuO (space group C2/c) [31],
which is widely used in PEC water splitting [32], to search for cost-effective electrode
materials. Then, we selected four cost-effective, earth-abundant elements: Ni, Co, Fe,
and Cr. Although they are widely used in HEA applications [33–36], to our knowledge,
applying this combination of HEOs in energy applications (i.e., water electrolysis) has
not received much attention. Accordingly, in this study, we investigated their physical
and electrochemical properties after making thin-film electrodes using the drop-casting
method. We also examined their electrochemical double-layer capacitance (Cdl) and OER
activity for viable applications in electrocatalytic green hydrogen production. In addition
to the electrode material design, the substrates (i.e., metal foils [37], metal foams [38],
carbon cloths [39], and transparent conductive films [40]) play a pivotal role in accurate
and effective performance measurements at the lab scale. We applied fluorine-doped tin
oxide-coated glass (FTO), since it can be effectively employed as an electrode substrate
in photoelectrochemical (PEC) water splitting [41–43] due to excellent compatibility with
other conductive substrates for further practical applications [44] and crystallinity with a
zig-zag surface suitable for homogeneous deposition [45].

2. Experimental Details
2.1. Preparation of High-Entropy Oxides and Fabrication of Electrodes

As shown in Figure 1, a high-entropy oxide with the five elements of Cu, Ni, Co, Fe,
and Cr (HEO-3CNF) was synthesized using a citrate method. The nominal composition of
Cu(NO3)3·6H2O, Ni(NO3)2·6H2O, Co(NO3)2·6H2O, Fe(NO3)2·6H2O, and Cr(NO3)3·6H2O
(Alfa Aesar and ACROS, MA, USA) were mixed stoichiometrically with citric acid (SIGMA-
ALDRICH, Burlington, MA, USA) in deionized (DI) water. A sol-gel was formed by stirring
and heating at 90 ◦C in an oven for 6 h. Subsequently, the gel was dried at 400 ◦C for 2 h
and calcined at 700 ◦C for 3 h in air in a tube furnace (Thermo Scientific, Lindberg Blue
M, Waltham, MA, USA) with a heating rate of 10 ◦C/min to obtain HEO-3CNF powders.
HEO-3CNF powders were ground in an agate mortar for further characterization. As
mentioned, CuO (Alfa Aesar, Haverhill, MA, USA) was used as a parent phase to evaluate
the crystal structures of HEO-3CNF powders and benchmark. As depicted in Figure 1, thin-
film electrodes were fabricated using the drop-casting method after preparing a slurry with
terpineol (Alfa Aesar, Haverhill, MA, USA), ethyl cellulose (SIGMA-ALDRICH, Burlington,
MA, USA), and acetic acid with a weight ratio of 1:6:0.5:0.1. It is noted that ethyl alcohol
was added to obtain the proper viscosity for drop casting on FTO substrates. FTO substrates
were cleaned with acetone, isopropanol, ethyl alcohol, and DI water with an ultrasonic
cleaner for 5 min, then dried in an oven. The active electrode area was fixed at 1.0 cm2

with a chemical-tolerant tape. After dropping the slurry and carefully removing the tape,
the fabricated electrodes were placed in a high-temperature oven (Panchum, Kaohsiung,
Taiwan) at 400 ◦C for 30 min to remove organics. CuO and IrO2 powders (Alfa Aesar,
Haverhill, MA, USA) were used as a reference to evaluate the OER activity.
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Figure 1. Schematic illustration of the synthesis of HEO-3CNF powders using a citrate method and 
fabricating electrodes on FTO using the drop-casting method. The slurry is a mixture of HEO-3CNF, 
terpineol, ethyl cellulose, acetic acid, and ethyl alcohol. 
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nm) in the range of 10–80°. An X-ray photoelectron spectrometer (XPS, Thermo Scientific 
K-Alpha, Waltham, MA, USA) was applied using Al Kα radiation. Scanning electron mi-
croscopy (SEM, Zeiss Gemini 450, Jena, Germany) was used to examine the surface mor-
phology. An inductively coupled plasma-mass spectrometer (ICP-MS, Thermo fisher sci-
entific iCAP TQ, Waltham, MA, USA) was used to investigate the molar ratio of HEO-
3CNF powders. As-prepared HEO-3CNF powders were dissolved in the aqua regia and 
hydrofluoric acid with the microwave digestion method. The solution was heated with 
the microwave digestion system (CEM MARS 6, Matthews, NC, USA) for 1 h at ~180 °C. 
Electrochemical property measurements, including cyclic voltammetry (CV), linear sweep 
voltammetry (LSV), and electrochemical impedance spectroscopy (EIS), were carried out 
using a potentiostat (SP-150e, BioLogic, Seyssinet-Pariset, France). Thin-film electrodes 
prepared on FTO with HEO-3CNF, CuO, and IrO2 were applied as the working electrode, 
while a graphite rod was used as the counter electrode. Hg/HgO was used as the reference 
electrode in 1.0 M KOH. The Nernst equation was used to convert different reference po-
tentials to the reversible hydrogen electrode (RHE), Vୖୌ =  Vୖୣ + 0.059 × pH + Vୖୣ , 
where VRHE is the converted potential in RHE, pH is the pH value of the electrolyte, Vref is 
the measured potential against the reference electrode, and Vୖୣ  is the constant for 
Hg/HgO (0.098). EIS measurements were conducted from 100 kHz to 10 mHz with 5 mV 
sinusoidal amplitude with six data points per frequency decade to examine CuO and 
HEO-3CNF electrodes deposited on FTO. In this study, polarization curves were meas-
ured at the scan rate of 5 mV/s after conditioning the working electrode at 100 mV/s. The 
overpotential (η) was calculated at 10 mA/cm2 by η = ERHE − 1.23 at ambient temperature. 
The Tafel slope (A) was obtained using the Tafel equation of η = A·log(j) + B. The double-
layer capacitance (Cdl) was obtained by continuously measuring CVs at scan rates of 10, 
25, 50, 75, and 100 mV/s in the double-layer region (a non-Faradic, OER potential range). 
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3.1. Characterization of High-Entropy Oxides 
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and 68.2° can be assigned to the monoclinic phase (COD ID: 1011148) [47]. The lattice pa-
rameters of the oxides of various metal cations that make up HEO-3CNF are shown in 
Table S1 [48–52] to investigate and understand the lattice structure of HEO-3CNF. It was 
reported that HEO materials could exist as a multiphase composite [53–55], similar to our 
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Figure 1. Schematic illustration of the synthesis of HEO-3CNF powders using a citrate method and
fabricating electrodes on FTO using the drop-casting method. The slurry is a mixture of HEO-3CNF,
terpineol, ethyl cellulose, acetic acid, and ethyl alcohol.

2.2. Characterization of Electrode Materials

The crystal structure of HEO-3CNF powders was examined via X-ray diffraction
(XRD, Brucker D8 DISCOVER, Billerica, MA, USA) with Cu Kα radiation (λ = 0.154184 nm)
in the range of 10–80◦. An X-ray photoelectron spectrometer (XPS, Thermo Scientific
K-Alpha, Waltham, MA, USA) was applied using Al Kα radiation. Scanning electron
microscopy (SEM, Zeiss Gemini 450, Jena, Germany) was used to examine the surface
morphology. An inductively coupled plasma-mass spectrometer (ICP-MS, Thermo fisher
scientific iCAP TQ, Waltham, MA, USA) was used to investigate the molar ratio of HEO-
3CNF powders. As-prepared HEO-3CNF powders were dissolved in the aqua regia and
hydrofluoric acid with the microwave digestion method. The solution was heated with
the microwave digestion system (CEM MARS 6, Matthews, NC, USA) for 1 h at ~180 ◦C.
Electrochemical property measurements, including cyclic voltammetry (CV), linear sweep
voltammetry (LSV), and electrochemical impedance spectroscopy (EIS), were carried out
using a potentiostat (SP-150e, BioLogic, Seyssinet-Pariset, France). Thin-film electrodes
prepared on FTO with HEO-3CNF, CuO, and IrO2 were applied as the working electrode,
while a graphite rod was used as the counter electrode. Hg/HgO was used as the reference
electrode in 1.0 M KOH. The Nernst equation was used to convert different reference
potentials to the reversible hydrogen electrode (RHE), VRHE = V0

Ref + 0.059 × pH + VRef,
where VRHE is the converted potential in RHE, pH is the pH value of the electrolyte, Vref is
the measured potential against the reference electrode, and V0

Ref is the constant for Hg/HgO
(0.098). EIS measurements were conducted from 100 kHz to 10 mHz with 5 mV sinusoidal
amplitude with six data points per frequency decade to examine CuO and HEO-3CNF
electrodes deposited on FTO. In this study, polarization curves were measured at the scan
rate of 5 mV/s after conditioning the working electrode at 100 mV/s. The overpotential (η)
was calculated at 10 mA/cm2 by η = ERHE − 1.23 at ambient temperature. The Tafel slope
(A) was obtained using the Tafel equation of η = A·log(j) + B. The double-layer capacitance
(Cdl) was obtained by continuously measuring CVs at scan rates of 10, 25, 50, 75, and
100 mV/s in the double-layer region (a non-Faradic, OER potential range).

3. Result and Discussion
3.1. Characterization of High-Entropy Oxides

Figure 2a shows a Rietveld refinement of XRD patterns of HEO-3CNF powders,
exhibiting the distinctive diffraction peaks at 18.5◦, 30.5◦, 35.9◦, 37.5◦, 38.8◦, 43.6◦, 48.7◦,
54.2◦, 57.8◦, 63.5◦, and 75.2◦. The peaks at 18.5◦, 30.5◦, 35.9◦, 37.5◦, 43.7◦, 54.3◦, 63.5◦, and
75.3◦ are matched well with the spinel phase (COD ID: 1533162) [46], and those at 35.9◦,
38.8◦, and 68.2◦ can be assigned to the monoclinic phase (COD ID: 1011148) [47]. The lattice
parameters of the oxides of various metal cations that make up HEO-3CNF are shown
in Table S1 [48–52] to investigate and understand the lattice structure of HEO-3CNF. It
was reported that HEO materials could exist as a multiphase composite [53–55], similar
to our nanoporous synthesis condition at 700 ◦C. Then, the Rietveld refinement analysis
was performed using the FullProf Software suite [56]. The initial phase information was
obtained from the Crystallography Open Database [57]. It resulted in the R-pattern (Rp)
parameter of 5.19%, R-weighted pattern (Rwp) parameter of 7.16%, and χ2 of 1.03, indicating
acceptable refinement results. Based on the refinement result, we confirmed that HEO-
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3CNF powders consist of the 78.5% spinel phase (Fd3m, a = b = c = 8.2681 Å, α = β = γ = 90◦)
and the 21.5% monoclinic phase (C2/m, a = 4.6817 Å, b = 3.4155 Å, c = 5.1215 Å, α = γ = 90◦,
β = 99.4◦). The refinement parameters of the HEO-3CNF composite were summarized and
shown in Table S2. Besides, the crystal size of the HEO-3CNF powders was calculated using
the Debye–Scherrer relation (Equation (1)), and the average crystallite size was ~47.61 nm.

D =
Kλ

β cos θ
(1)

where D is the average crystal size, K is the Scherrer constant (0.9), λ is the wavelength of
the incident X-ray, β is the full-width half maximum value, and θ is the Bragg angle.
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in Figure 2b,c, exhibiting the HEO-3CNF thin film uniformly coated on the FTO substrate. 
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lustrates the morphology of the electrode at the nanoscale, confirming the nanoporous 
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of as-prepared HEO-3CNF powders used for the energy-dispersive X-ray spectroscopy 
(EDS) analysis used to verify the element distribution of HEO-3CNF at the nanoscale. The 
five elements of Cu, Ni, Co, Fe, and Cr are uniformly distributed, as presented in Figure 
2d. Furthermore, to precisely examine the equimolar ratio of HEO-3CNF, ICP-MS was 
applied, as shown in Table S3. Then, we performed high-resolution XPS analysis (Figure 
3) to investigate the element composition further and confirm the chemical state. Figure 
S2 shows the XPS full survey spectrum, while Figure 3a demonstrates the O 1s spectrum. 
The peaks are attributed to lattice oxygen in metal oxide (OL) and vacancy oxygen (OV) 
(529.6 and 530.6 eV, respectively [58]). Oxygen vacancies are generated to maintain the 
electroneutrality of the crystal structure of the sample using five metal elements with 

Figure 2. (a) Rietveld refinement of XRD patterns, (b) side view, and (c) enlarged view of HEO-3CNF-
based electrodes on FTO using the drop-casting method, and (d) SEM image used for EDS analysis
and EDS mapping results for as-prepared HEO-3CNF powders.

Figure 2b–d demonstrate representative SEM images of the prepared electrode and
HEO-3CNF powders. The side and enlarged views of the HEO-3CNF electrode are shown
in Figure 2b,c, exhibiting the HEO-3CNF thin film uniformly coated on the FTO substrate.
The thickness of the HEO-3CNF thin film was around ~800 nm (Figure 2b). Figure 2c
illustrates the morphology of the electrode at the nanoscale, confirming the nanoporous
structure with a particle size of 58.7 ± 14.5 nm (Figure S1). Figure 2d shows an SEM image
of as-prepared HEO-3CNF powders used for the energy-dispersive X-ray spectroscopy
(EDS) analysis used to verify the element distribution of HEO-3CNF at the nanoscale. The
five elements of Cu, Ni, Co, Fe, and Cr are uniformly distributed, as presented in Figure 2d.
Furthermore, to precisely examine the equimolar ratio of HEO-3CNF, ICP-MS was applied,
as shown in Table S3. Then, we performed high-resolution XPS analysis (Figure 3) to
investigate the element composition further and confirm the chemical state. Figure S2
shows the XPS full survey spectrum, while Figure 3a demonstrates the O 1s spectrum.
The peaks are attributed to lattice oxygen in metal oxide (OL) and vacancy oxygen (OV)
(529.6 and 530.6 eV, respectively [58]). Oxygen vacancies are generated to maintain the
electroneutrality of the crystal structure of the sample using five metal elements with
different oxidation states, as shown in Figure 3b–f. We assumed that oxygen vacancies
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could play a vital role in the electrochemical performance of HEO-3CNF electrodes [59].
For Cu 2p, its deconvolution was performed, as displayed in Figure 3b. The peaks at
933.5 eV (Cu 2p3/2) and 953.7 eV (Cu 2p1/2) can be assigned to Cu2+ [60]. Furthermore,
we observed that the shake-up satellite peak is at 945.7 eV and proved the existence of
CuO [61,62]. Figure 3c shows the Ni 2p XPS spectrum with two spin-orbit peaks. Ni 2p3/2
can be further deconvoluted into Ni2+ (854.2 eV) and Ni3+ (855.6 eV), and Ni 2p1/2 into
Ni2+ (871.7 eV) and Ni3+ (873.6 eV) [63]. The Co 2p XPS spectrum is displayed in Figure 3d,
resulting in Co3+ at 779.7 eV (Co 2p3/2) and 794.8 eV (Co 2p1/2), and Co2+ at 780.5 eV (Co
2p3/2) and 796.5 eV (Co 2p1/2) [64,65]. Figure 3e illustrates the Fe 2p spectrum composed
of two spin-orbit peaks and a satellite peak. The peaks at 712.0 eV (Fe 2p3/2) and 725.9 eV
(Fe 2p1/2) are related to Fe3+, and those at 710.0 eV (Fe 2p3/2) and 722.5 eV (Fe 2p1/2) are
associated with Fe2+ [66]. Figure 3f demonstrates the Cr 2p spectrum. While the peaks
at 575.9 eV (Cr 2p3/2) and 585.5 eV (Cr 2p1/2) are attributed to Cr3+, those at 578.5 eV (Cr
2p3/2) and 587.8 (Cr 2p1/2) are assigned to Cr6+ [65,67].
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Figure 3. High-resolution XPS analysis for HEO-3CNF powders. Deconvoluted XPS spectra of (a) O
1s, (b) Cu 2p, (c) Ni 2p, (d) Co 2p, (e) Fe 2p, and (f) Cr 2p Dots (gray) and lines (red) are the measured
data and fitted results. Deconvoluted lines represent different oxidation states (blue and pink) and
satellite peaks (olive).
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3.2. Electrochemical Impedance Studies of High-Entropy Metal Oxide Electrodes

EIS measurements were first carried out to investigate the electrical properties of
the electrodes further. The Nyquist plots of the CuO and HEO-3CNF electrodes in the
Ar-purged 1.0 M KOH electrolyte are shown in Figure 4a,b. The electrical equivalent
circuit (EEC) model to fit the impedance data is also illustrated in Figure 4a, including
the system resistance (Rs), charge transfer resistance (Rct), constant phase element (CPE),
Warburg impedance (W), and pseudocapacitance capacitance (C). EIS spectra (Figure 4a,b)
exhibit a stable slope for CuO at 11.49–0.99 Hz and HEO-3CNF at 7.68–0.99 Hz, denoting
reflection boundary conditions of Warburg elements [68,69]. Table 1 compiles the fitting
parameters of each circuit component for CuO and HEO-3CNF electrodes. The HEO-3CNF
(Rct = 18.7 Ω) [70–72] electrode has a lower charge transfer resistance with a capacitance
value than the CuO (Rct = 2.7 × 104 Ω) [73,74] electrode, denoting easier ion access on the
HEO-3CNF electrode/electrolyte interface [75]. It also indicates enhanced capacitance [76]
and OER activity [77] of HEO-3CNF compared to CuO. Meanwhile, the pseudocapacitance
of CuO (C = 6.4 × 10−5 F) is much lower than that of HEO-3CNF (C = 2.6 × 10−3 F),
potentially resulting in the better capacitance of HEO-3CNF than CuO [78]. The capacitance
formed by the semicircular charge transfer mechanism is not apparent at the high frequency
of EIS, and it is replaced by CPE to investigate the current distribution on electrode surfaces.
α can be used to characterize the capacitive response of the electrode material. According to
its value of 0.92 to 0.80 (Table 1), the two electrodes show a pseudocapacitive response [79].
In addition, we carried out a distribution of relaxation times (DRT) analysis that defines the
physical processes as an infinite series of RC circuits represented by a distribution function
in the time domain [80]. The DRT method can be applied to analyze the electrochemical
reaction process at each frequency decade [81–83]. As shown in Figure 4c,d, the DRT
plot consists of three types of peaks, which can be characterized by different polarization
processes based on relaxation time (τ), including series resistance and active material
resistance in the high-frequency (HF) region (low τ), charge transfer resistance in the middle-
frequency region (MF) (middle τ), interactions of the electrode interface/electrolyte, and the
influence of Warburg impedance in the low-frequency (LF) region (high τ) [84]. Figure 4c,d
show the DRT analysis resulting in distinctive peaks for the CuO (τ = 2.49 × 10−3 s with
γ(τ) = 643.3 Ω) and HEO-3CNF (τ = 2.37 × 10−3 s with γ(τ) = 16.3 Ω) electrodes. Due to
the high time constant in the low-frequency (LF) region, the highest peak intensity in the
DRT spectrum can be interpreted as the diffusion of ions [85]. The peak of CuO in the LF
region shifts to a higher time constant, indicating that the diffusion of CuO ions becomes
slower compared to HEO-3CNF. At the same time, the lower peak intensity of HEO-3CNF
(γ(τ) = 16.3 Ω) than CuO (γ(τ) = 643.3 Ω) demonstrates its better catalytic performance
and conductivity [84], which agrees with the Rct values in the Nyquist plots (Figure 4a,b).
The DRT analysis of CuO (τ = 9.84 × 10−5 s with γ(τ) = 74.9 Ω) in the mid-frequency
(MF) region indicate a less efficient charge transfer than HEO-3CNF (τ = 1.92 × 10−4 s
with γ(τ) = 6.1 Ω). It can be verified with the Rct value using the EEC model. In the high-
frequency (HF) region, CuO (τ = 1.47 × 10−5 s with γ(τ) = 15.7 Ω) shows a higher peak
than HEO-3CNF (τ = 2.46 × 10−4 s with γ(τ) = 3.8 Ω), owing to the higher resistance [86].
In summary, the EIS analysis with the DRT method verified the faster charge transfer and
better capacitance performance of the HEO-3CNF electrode than the CuO electrode.
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Table 1. EIS fitting parameters of CuO and HEO-3CNF electrodes.

Electrode Rs (Ω) Rct (Ω) Q (F × s(α − 1)) α CPE (F) W (Ω/s1/2) C (F)

CuO 16.1 2.7 × 104 1.3 × 10−4 0.92 1.4 × 10−4 1169 6.4 × 10−5

HEO-3CNF 15.7 18.7 1.2 × 10−4 0.80 2.6 × 10−5 30.4 2.6 × 10−3

3.3. Electrochemical Measurements of High-Entropy Metal Oxide Electrodes

After the characterization of HEO-3CNF, we investigated its potential applications
in water electrolysis (Figure 5). Figure 5a,b show CV results of the HEO-3CNF and CuO
electrodes at different scan rates, indicating the presence of electric double-layer capacitance.
The scan-rate-dependent increase in integrated areas describes the possibility of reacting
with electrolytes. The double-layer capacitance (Cdl) was calculated by plotting the current
density and scan rate at a selected potential. As shown in Figure 5c, HEO-3CNF has
a much better capacitive capability for potential supercapacitors than CuO. Then, the
applicability of HEO-3CNF for electrocatalytic water splitting was examined by measuring
OER activities. As summarized in Figure 5d, the iR-corrected polarization curve [87] of
HEO-3CNF was compared with those of CuO and IrO2. The overpotentials at 10 mA/cm2

of IrO2, HEO-3CNF, and CuO are 351.9, 518.1, and 615.9 mV (Figure 5e), which agree with
previous results (IrO2: 351 mV and CuO: 580 mV) [88,89]. Shown in Figure 5f are their
Tafel slopes with 75.2, 119.7, and 131.7 mV/dec. As reported, multi-phase catalysts can
increase active adsorption sites and boost charge transfer between catalyst surfaces and
adsorbents [90,91], leading to higher OER performance. This study demonstrated that the
novel HEO-3CNF-based OER electrodes enhance their performance compared to CuO,
which can be applied in various energy devices (i.e., supercapacitors and alkaline water
electrolyzers).
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Figure 5. CVs at different scan rates (10, 25, 50, 75, and 100 mV/s) in 1.0 M KOH for (a) HEO-3CNF
and (b) CuO electrodes. (c) Relation of the current against the scan rates to estimate double-layer
capacitance (Cdl) in a non-faradaic range of 0.89–0.9 V (IrO2), 1.24–1.26 V (CuO), and 1.25–1.26 V
(HEO-3CNF). OER activity measurements of IrO2, HEO-3CNF, and CuO in 1.0 M KOH. (d) LSV
polarization curves, (e) overpotentials measured at 10 mA/cm2, and (f) Tafel slopes. CV and LSV
measurements were performed in an Ar-saturated solution, while OER measurements were in an
O2-saturated solution. The potentials are iR-corrected.

4. Conclusions

A high-entropy composite with spinel and monoclinic phases was synthesized using
a citrate acid method at 700 ◦C as the OER electrode for electrocatalytic water splitting.
Various characterization approaches verified the equimolar high-entropy oxide and its
composite formation. In particular, the EIS analysis with the DRT method clarified faster
charge transfer and better capacitance performance of the HEO-3CNF electrode than the
CuO electrode. The two-phase heterostructure improved the OER activity under alkaline
conditions compared to CuO, with the overpotentials at 10 mA/cm2 of 518.1 mA and
615.9 mA, respectively. In addition, we observed that the Tafel slope of the HEO-3CNF
electrode (119.7 mV/dec) is lower than that of the CuO electrode (131.7 mV/dec). Its
comparison with previous studies is compiled in Table S4 [92,93]. This work may provide
a general strategy for preparing novel, cost-effective, high-entropy electrodes for water
splitting, as well as for use as energy storage materials.
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