The Role of Period Modulation on the Structure, Composition and Mechanical Properties of Nanocomposite Multilayer TiAlSiN/AlSiN Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Characterization Methods
3. Results and Discussion
3.1. Thickness Determination
3.2. Composition and Structure
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ljungcrantz, H.; Hultman, L.; Sundgren, J.-E.; Håkansson, G.; Karlsson, L. Microstructural investigation of droplets in arc-evaporated TiN films. Surf. Coat. Technol. 1994, 63, 123–128. [Google Scholar] [CrossRef]
- Lackner, J.M.; Waldhauser, W.; Berghauser, R.; Ebner, R.; Major, B.; Schöberl, T. Structural, mechanical and tribological investigations of pulsed laser deposited titanium nitride coatings. Thin Solid Films 2004, 453–454, 195–202. [Google Scholar] [CrossRef]
- Sproul, W.D.; Rothstein, R. High rate reactively sputtered TiN coatings on high speed steel drills. Thin Solid Films 1985, 126, 257–263. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Choi, S.R.; Chung, W.S.; Kim, K.H. Synthesis and characterization of quaternary Ti–Si–C–N coatings prepared by a hybrid deposition technique. Surf. Coat. Technol. 2004, 188–189, 415–419. [Google Scholar] [CrossRef]
- Poláková, H.; Musil, J.; Vlček, J.; Allaart, J.; Mitterer, C. Structure-hardness relations in sputtered Ti–Al–V–N films. Thin Solid Films 2003, 444, 189–198. [Google Scholar] [CrossRef]
- Huang, M.; Chen, Z.; Wang, M.; Li, Y.; Wang, Y. Microstructure and properties of TiCrN coatings by arc ion plating. Surf. Eng. 2016, 32, 284–288. [Google Scholar] [CrossRef]
- Prabakaran, V.; Chandrasekaran, K. Characterization and corrosion resistance of TiCrN composite coating on steel by physical vapour deposition method. J. Bio-Tribo-Corros. 2016, 2, 25. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Wang, Y.; Wu, C.; Yan, Y.; Chen, Y. TiCr Transition layer promoting the growth of high-stability TiCrN coating for titanium bipolar plate. Surf. Coat. Technol. 2022, 451, 129026. [Google Scholar] [CrossRef]
- Seidl, W.; Bartosik, M.; Kolozsvári, S.; Bolvardi, H.; Mayrhofer, P. Improved mechanical properties, thermal stabilities, and oxidation resistance of arc evaporated Ti-Al-N coatings through alloying with Ta. Surf. Coat. Technol. 2018, 344, 244–249. [Google Scholar] [CrossRef]
- Lin, J.; Moore, J.J.; Mishra, B.; Pinkas, M.; Sproul, W.D. The structure and mechanical and tribological properties of TiBCN nanocomposite coatings. Acta Materialia 2010, 58, 1554–1564. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Wang, B.; Song, Q.; Ren, X.; Wan, Y. Effects of Al content in TiAlN coatings on tool wear and cutting temperature during dry machining IN718. Tribol. Int. 2022, 171, 107540. [Google Scholar] [CrossRef]
- Matei, A.A.; Turcu, R.N.; Pencea, I.; Herghelegiu, E.; Petrescu, M.I.; Niculescu, F. Comparative characterization of the TiN and TiAlN coatings deposited on a new WC-Co tool using a CAE-PVD technique. Crystals 2023, 13, 112. [Google Scholar] [CrossRef]
- Sousa, V.F.C.; Da Silva, F.J.G.; Pinto, G.F.; Baptista, A.; Alexandre, R. Characteristics and wear mechanisms of TiAlN-based coatings for machining applications: A comprehensive review. Metals 2021, 11, 260. [Google Scholar] [CrossRef]
- Wieczorowski, M.; Twardowski, P.; Wojciechowski, S. Surface texture analysis after ball end milling with various surface inclination of hardened steel. Metrol. Meas. Syst. 2014, XXI, 145–156. [Google Scholar] [CrossRef]
- Zaleski, K. A study on the properties of surface—Active fluids used in burnishing and shot peening processes. Adv. Sci. Technol. Res. J. 2016, 10, 235–239. [Google Scholar] [CrossRef]
- Rodríguez-Barrero, S.; Fernández-Larrinoa, J.; Azkona, I.; López de Lacalle, L.N.; Polvorosa, R. Enhanced performance of nanostructured coatings for drilling by droplet elimination. Mater. Manuf. Process. 2016, 31, 593–602. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Fischer, F.D.; Böhm, H.J.; Mitterer, C.; Schneider, J.M. Energetic balance and kinetics for the decomposition of supersaturated Ti1−xAlxN. Acta Mater. 2007, 55, 1441–1446. [Google Scholar] [CrossRef]
- Abrikosov, I.A.; Knutsson, A.; Alling, B.; Tasnádi, F.; Lind, H.; Hultman, L.; Odén, M. Phase stability and elasticity of TiAlN. Materials 2011, 4, 1599–1618. [Google Scholar] [CrossRef]
- Rachbauer, R.; Gengler, J.J.; Voevodin, A.A.; Resch, K.; Mayrhofer, P.H. Temperature driven evolution of thermal, electrical, and optical properties of Ti–Al–N coatings. Acta Mater. 2012, 60, 2091–2096. [Google Scholar] [CrossRef]
- Franz, R.; Mitterer, C. Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review. Surf. Coat. Technol. 2013, 228, 1–13. [Google Scholar] [CrossRef]
- Xu, Y.X.; Chen, L.; Pei, F.; Yue, J.L.; Du, Y. Thermal stability and oxidation resistance of V-alloyed TiAlN coatings. Ceram. Int. 2018, 44, 1705–1710. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Rachbauer, R.; Holec, D. Influence of Nb on the phase stability of Ti–Al–N. Scr. Mater. 2010, 63, 807–810. [Google Scholar] [CrossRef]
- Glatz, S.A.; Hollerweger, R.; Polcik, P.; Rachbauer, R.; Paulitsch, J.; Mayrhofer, P.H. Thermal stability and mechanical properties of arc evaporated Ti–Al–Zr–N hard coatings. Surf. Coat. Technol. 2015, 266, 1–9. [Google Scholar] [CrossRef]
- Chen, L.; Yang, B.; Xu, Y.; Pei, F.; Zhou, L.; Du, Y. Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition. Thin Solid Films 2014, 556, 369–375. [Google Scholar] [CrossRef]
- Pei, F.; Liu, H.J.; Chen, L.; Xu, Y.X.; Du, Y. Improved properties of TiAlN coating by combined Si-addition and multilayer architecture. J. Alloys Compd. 2019, 790, 909–916. [Google Scholar] [CrossRef]
- Das, P.; Anwar, S.; Bajpai, S.; Anwar, S. Structural and mechanical evolution of TiAlSiN nanocomposite coating under influence of Si3N4 power. Surf. Coat. Technol. 2016, 307, 676–682. [Google Scholar] [CrossRef]
- Kim, G.S.; Kim, B.S.; Lee, S.Y.; Hahn, J.H. Effect of Si content on the properties of TiAl–Si–N films deposited by closed field unbalanced magnetron sputtering with vertical magnetron sources. Thin Solid Films 2006, 506–507, 128–132. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Kong, Y. The Microstructural, Mechanical and thermal properties of TiAlVN, TiAlSiN monolithic and TiAlVN/TiAlSiN multilayered coatings. J. Alloys Compd. 2022, 899, 163332. [Google Scholar] [CrossRef]
- Liew, W.Y.H.; Lim, H.P.; Melvin, G.J.H.; Dayou, J.; Jiang, Z.-T. Thermal Stability, Mechanical properties, and tribological performance of TiAlXN coatings: Understanding the effects of alloying additions. J. Mater. Res. Technol. 2022, 17, 961–1012. [Google Scholar] [CrossRef]
- Veprek, S.; Jilek, M. Superhard Nanocomposite coatings. from basic science toward industrialization. Pure Appl. Chem. 2002, 74, 475–481. [Google Scholar] [CrossRef]
- Park, I.-W.; Choi, S.R.; Suh, J.H.; Park, C.-G.; Kim, K.H. Deposition and mechanical evaluation of superhard Ti–Al–Si–N nanocomposite films by a hybrid coating system. Thin Solid Films 2004, 447–448, 443–448. [Google Scholar] [CrossRef]
- Zhu, L.; Song, C.; Ni, W.; Liu, Y. Effect of 10% Si Addition on cathodic arc evaporated TiAlSiN coatings. Trans. Nonferrous Met. Soc. China 2016, 26, 1638–1646. [Google Scholar] [CrossRef]
- Tillmann, W.; Dildrop, M. Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures. Surf. Coat. Technol. 2017, 321, 448–454. [Google Scholar] [CrossRef]
- Hsu, T.-W.; Greczynski, G.; Boyd, R.; Kolozsvári, S.; Polcik, P.; Bolz, S.; Bakhit, B.; Odén, M. Influence of Si content on phase stability and mechanical properties of TiAlSiN films grown by AlSi-HiPIMS/Ti-DCMS co-sputtering. Surf. Coat. Technol. 2021, 427, 127661. [Google Scholar] [CrossRef]
- Yu, D.; Wang, C.; Cheng, X.; Zhang, F. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD Technology. Thin Solid Films 2009, 517, 4950–4955. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.L.; Ong, S.-E.; Sun, D.; Bui, X.L. Hard yet tough nanocomposite coatings—Present status and future trends. Plasma Process. Polym. 2007, 4, 219–228. [Google Scholar] [CrossRef]
- Ritchie, R.O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822. [Google Scholar] [CrossRef]
- Wang, J.; Misra, A. An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 2011, 15, 20–28. [Google Scholar] [CrossRef]
- Kainz, C.; Schalk, N.; Tkadletz, M.; Mitterer, C.; Czettl, C. Microstructure and mechanical properties of CVD TiN/TiBN multilayer coatings. Surf. Coat. Technol. 2019, 370, 311–319. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Chen, J.; Wang, C.; He, G. Anisotropic deformation and fracture mechanisms of physical vapor deposited TiN/ZrN multilayers. Ceram. Int. 2020, 46, 15502–15509. [Google Scholar] [CrossRef]
- Ma, H.; Miao, Q.; Zhang, G.; Liang, W.; Wang, Y.; Sun, Z.; Lin, H. The influence of multilayer structure on mechanical behavior of TiN/TiAlSiN multilayer coating. Ceram. Int. 2021, 47, 12583–12591. [Google Scholar] [CrossRef]
- Sui, X.; Li, G.; Qin, X.; Yu, H.; Zhou, X.; Wang, K.; Wang, Q. Relationship of microstructure, mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool. Ceram. Int. 2016, 42, 7524–7532. [Google Scholar] [CrossRef]
- Wang, T.-C.; Hsu, S.-Y.; Lai, Y.-T.; Tsai, S.-Y.; Duh, J.-G. Microstructure and high-temperature tribological characteristics of self-lubricating TiAlSiN/VSiN multilayer nitride coatings. Mater. Chem. Phys. 2023, 295, 127149. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Han, M.; Luo, S.; Jin, J.; Wang, L.; Gu, J.; Miao, H. The performance of TiAlSiN coated cemented carbide tools enhanced by inserting Ti interlayers. Metals 2019, 9, 918. [Google Scholar] [CrossRef]
- Getachew, B.A.; Wang, T.-G. Effect of modulation period on the structure and properties of AlTiN/AlTiSiN multilayers. Int. Res. J. Eng. Technol. 2020, 9, 62–68. [Google Scholar]
- Chen, W.; Lin, Y.; Zheng, J.; Zhang, S.; Liu, S.; Kwon, S.C. Preparation and characterization of CrAlN/TiAlSiN nano-multilayers by cathodic vacuum arc. Surf. Coat. Technol. 2015, 265, 205–211. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Kong, Y.; Hu, C.; Liu, Z.; Du, Y.; Zhang, S. Microstructure, mechanical and thermal properties of TiAlTaN/TiAlSiN multilayer. Vacuum 2021, 187, 110138. [Google Scholar] [CrossRef]
- Kolaklieva, L.; Kakanakov, R.; Stefanov, P.; Kovacheva, D.; Atanasova, G.; Russev, S.; Chitanov, V.; Cholakova, T.; Bahchedjiev, C. Mechanical and structural properties of nanocomposite CrAlSiN–AlSiN coating with periodically modulated composition. Coatings 2020, 10, 41. [Google Scholar] [CrossRef]
- Kolaklieva, L.; Kakanakov, R.; Kovacheva, D.; Chitanov, V.; Cholakova, T.; Bahchedjiev, C.; Kolchev, S. Effect of the post-deposition thermal treatment on the mechanical properties of a compositionally modulated CrAlSiN-AlSiN coating. Coatings 2021, 11, 1311. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A. Multilayer coatings on tools for woodworking. Wear 2011, 271, 2812–2820. [Google Scholar] [CrossRef]
- Cai, F.; Wang, J.; Zhou, Q.; Zhang, S.; Zheng, J.; Wang, Q.; Kim, K.H. Reduced delamination and improved cutting performance of TiAlSiN multilayer coated cutter by tailoring the adhesion layers and intermediate layers. Wear 2022, 488–489, 204135. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Zhao, F.; Ge, Y.; Wang, L.; Wang, X. Tribological and mechanical properties of hardness-modulated TiAlSiN multilayer coatings fabricated by plasma immersion ion implantation and deposition. Surf. Coat. Technol. 2020, 402, 126475. [Google Scholar] [CrossRef]
- Soni; Sharma, S.K.; Mishra, S.K. The Effect of Si content on structural, mechanical and optical behaviour of magnetron sputtered Al–Si–N nanocomposite thin films. J. Alloys Compd. 2020, 831, 154686. [Google Scholar] [CrossRef]
- Flink, A.; Andersson, J.M.; Alling, B.; Daniel, R.; Sjölén, J.; Karlsson, L.; Hultman, L. Structure and thermal stability of arc evaporated (Ti0.33Al0.67)1−xSixN thin films. Thin Solid Films 2008, 517, 714–721. [Google Scholar] [CrossRef]
- Pélisson, A.; Parlinska-Wojtan, M.; Hug, H.J.; Patscheider, J. Microstructure and mechanical properties of Al–Si–N transparent hard coatings deposited by magnetron sputtering. Surf. Coat. Technol. 2007, 202, 884–889. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Zhang, L.; Yan, W.Q.; Zhang, Y.F.; Yuan, H.; Shen, Y.Q.; Liao, B.; Zhang, X.; Zhang, F.S.; Ouyang, X.; et al. Effect of self-ion with high-energy irradiation on the surface morphology, microstructure and mechanical properties of nanocrystalline TiAlN coating. Mater. Charact. 2022, 190, 112041. [Google Scholar] [CrossRef]
- Chen, J.T.; Wang, J.; Zhang, F.; Zhang, G.A.; Fan, X.Y.; Wu, Z.G.; Yan, P.X. Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering. J. Alloys Compd. 2009, 472, 91–96. [Google Scholar] [CrossRef]
- Saha, N.C.; Tompkins, H.G. Titanium nitride oxidation chemistry: An X-ray photoelectron spectroscopy Study. J. Appl. Phys. 1992, 72, 3072–3079. [Google Scholar] [CrossRef]
- Taylor, J.A.; Rabalais, J.W. Reaction of N2+ beams with aluminium surfaces. J. Chem. Phys. 1981, 75, 1735–1745. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chen, L.; Yang, B.; Chang, K.K.; Du, Y.; Li, J.; Gang, T. Effect of Si addition on microstructure and mechanical properties of Ti–Al–N Coating. Int. J. Refract. Met. Hard Mater. 2010, 28, 593–596. [Google Scholar] [CrossRef]
- Alcalá, J.; Barone, A.C.; Anglada, M. The influence of plastic hardening on surface deformation modes around Vickers and spherical indents. Acta Materialia 2000, 48, 3451–3464. [Google Scholar] [CrossRef]
- Veprek, S.; Veprek-Heijman, M.G.J.; Karvankova, P.; Prochazka, J. Different approaches to superhard coatings and nanocomposites. Thin Solid Films 2005, 476, 1–29. [Google Scholar] [CrossRef]
- Niederhofer, A.; Bolom, T.; Nesladek, P.; Moto, K.; Eggs, C.; Patil, D.S.; Veprek, S. The role of percolation threshold for the control of the hardness and thermal stability of super- and ultrahard nanocomposites. Surf. Coat. Technol. 2001, 146–147, 183–188. [Google Scholar] [CrossRef]
- Nakonechna, O.; Cselle, T.; Morstein, M.; Karimi, A. On the behaviour of indentation fracture in TiAlSiN hard thin films. Thin Solid Films 2004, 447–448, 406–412. [Google Scholar] [CrossRef]
- Vereschaka, S.; Grigoriev, A.; Chigarev, F.; Milovich, F.; Sitnikov, N.; Andreev, N.; Sotova, C.; Bublikov, J. Development of a model of crack propagation in multilayer hard coatings under conditions of stochastic force impact. Materials 2021, 14, 260. [Google Scholar] [CrossRef] [PubMed]
Coating | Element Concentration, (at. %) | ||||
---|---|---|---|---|---|
Ti | Al | Si | N | C | |
ml3-TiAlSiN/AlSiN | |||||
Matrix | 14.01 | 28.80 | 6.83 | 48.23 | 3.13 |
Droplet | 15.37 | 23.07 | 5.33 | 52.43 | 3.80 |
ml30-TiAlSiN/AlSiN | |||||
Matrix | 15.82 | 30.45 | 7.18 | 43.55 | 3.00 |
Droplet | 15.50 | 27.70 | 6.70 | 46.70 | 3.40 |
sl-TiAlSiN | |||||
Matrix | 28.00 | 19.00 | 4.35 | 45.30 | 2.72 |
Droplet | 27.00 | 18.50 | 4.40 | 46.95 | 3.15 |
sl-AlSiN | - | ||||
Matrix | - | 43.27 | 11.59 | 41.07 | 4.07 |
Droplet | - | 40.04 | 11.04 | 44.44 | 4.48 |
Coating | Element Concentration, (at. %) | Composition | |||
---|---|---|---|---|---|
Ti | Al | Si | N | ||
ml3-TiAlSiN/AlSiN | 14.25 ± 0.29 | 29.10± 0.44 | 7.62 ± 0.19 | 49.20 ± 1.53 | Ti0.28Al0.58Si0.14N |
ml30-TiAlSiN/AlSiN | 14.00 ± 0.28 | 29.00 ± 0.44 | 7.50 ± 0.19 | 49.48 ± 1.53 | Ti0.28Al0.57Si0.15N |
sl-TiAlSiN | 28.45 ± 0.57 | 17.45 ± 0.26 | 4.02 ± 0.10 | 49.48 ± 1.53 | Ti0.57Al0.35Si0.09N |
sl-AlSiN | - | 41.55 ± 0.62 | 8.45 ± 0.21 | 50.00 ± 1.55 | Al0.83Si0.17N |
Coatings | H (GPa) | E (GPa) | H/E* | H3/E*2 (GPa) | We (%) | Ref. |
---|---|---|---|---|---|---|
ml3-TiAlSiN/AlSiN | 49.5 | 430 | 0.11 | 0.58 | 68 | This study |
ml30-TiAlSiN/AlSiN | 43.5 | 403 | 0.10 | 0.45 | 65 | This study |
TiAlN/TiAlSiN | 35.6 | 473.2 | - | - | - | [25] |
TiAlVN/TiAlSiN | 35.2 | 498.5 | - | - | - | [28] |
TiAlN/TiAlSiN | 20.8 | - | - | - | - | [42] |
TiN/TiAlSiN | 26.3 | 366.5 | 0.0717 | 0.135 | 38.799 | [41] |
TiAlSiN/VSiN | 29.07 | 259.78 | - | 0.36† | - | [43] |
TiAlSiN/Ti | 31 | 277 | 0.112 † | - | - | [44] |
CrAlN/TiAlSiN | 35.4 | 377.6 | 0.094 † | 0.258 | - | [46] |
TiAlTaN/TiAlSiN | 36.7 | 445.9 | - | - | - | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolchev, S.; Kolaklieva, L.; Chitanov, V.; Cholakova, T.; Zlatareva, E.; Kovacheva, D.; Atanasova, G.; Kakanakov, R. The Role of Period Modulation on the Structure, Composition and Mechanical Properties of Nanocomposite Multilayer TiAlSiN/AlSiN Coatings. Coatings 2023, 13, 1546. https://doi.org/10.3390/coatings13091546
Kolchev S, Kolaklieva L, Chitanov V, Cholakova T, Zlatareva E, Kovacheva D, Atanasova G, Kakanakov R. The Role of Period Modulation on the Structure, Composition and Mechanical Properties of Nanocomposite Multilayer TiAlSiN/AlSiN Coatings. Coatings. 2023; 13(9):1546. https://doi.org/10.3390/coatings13091546
Chicago/Turabian StyleKolchev, Stefan, Lilyana Kolaklieva, Vasiliy Chitanov, Tetiana Cholakova, Ekaterina Zlatareva, Daniela Kovacheva, Genoveva Atanasova, and Roumen Kakanakov. 2023. "The Role of Period Modulation on the Structure, Composition and Mechanical Properties of Nanocomposite Multilayer TiAlSiN/AlSiN Coatings" Coatings 13, no. 9: 1546. https://doi.org/10.3390/coatings13091546
APA StyleKolchev, S., Kolaklieva, L., Chitanov, V., Cholakova, T., Zlatareva, E., Kovacheva, D., Atanasova, G., & Kakanakov, R. (2023). The Role of Period Modulation on the Structure, Composition and Mechanical Properties of Nanocomposite Multilayer TiAlSiN/AlSiN Coatings. Coatings, 13(9), 1546. https://doi.org/10.3390/coatings13091546