Ytterbium Disilicate/Monosilicate Multilayer Environmental Barrier Coatings: Influence of Atmospheric Plasma Spray Parameters on Composition and Microstructure
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructural Characterization: SEM Micrographs and EDS Analysis
3.2. Microstructural Characterization: Porosity and Cracks Analysis
3.3. X-ray Diffraction Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aparicio, M.; Duran, A. Yttrium Silicate Coatings for Oxidation Protection of Carbon—Silicon Carbide Composites. J. Am. Ceram. Soc. 2000, 83, 1351–1355. [Google Scholar] [CrossRef]
- Kirby, G.H.; Wan, J. Compositions Containing Gallium and/or Indium and Methods of Forming the Same. U.S. Patent 10,214, 457 B2, 26 February 2019. [Google Scholar]
- Fang, G.; Gao, X.; Song, Y. A Review on Ceramic Matrix Composites and Environmental Barrier Coatings for Aero-Engine: Material Development and Failure Analysis. Coatings 2023, 13, 357. [Google Scholar] [CrossRef]
- Mehta, A.; Vasudev, H.; Singh, S.; Prakash, C.; Saxena, K.K.; Linul, E.; Buddhi, D.; Xu, J. Processing and Advancements in the Development of Thermal Barrier Coatings: A Review. Coatings 2022, 12, 1318. [Google Scholar] [CrossRef]
- Al Nasiri, N.; Patra, N.; Horlait, D.; Jayaseelan, D.D.; Lee, W.E. Thermal Properties of Rare-Earth Monosilicates for EBC on Si-Based Ceramic Composites. J. Am. Ceram. Soc. 2016, 99, 589–596. [Google Scholar] [CrossRef]
- Zhu, D. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications. NASA/TM—2018-219884. Glenn Research Center, Cleveland, Ohio. May 2018. Available online: http://www.sti.nasa.gov/ (accessed on 9 September 2023).
- Gatzen, C.; Mack, D.E.; Guillon, O.; Vaßen, R. YAlO3—A Novel Environmental Barrier Coating for Al2O3/Al2O3–Ceramic Matrix Composites. Coatings 2019, 9, 609. [Google Scholar] [CrossRef]
- Lamon, J. Chemical Vapor Infiltrated SiC/SiC Composites (CVI SiC/SiC). In Handbook of Ceramic Composites; Bansal, N.P., Ed.; Springer: Boston, MA, USA, 2005. [Google Scholar] [CrossRef]
- DiCarlo, J.A.; Yun, H.M.; Morscher, G.N.; Bhatt, R.T. SiC/SiC Composites for 1200 °C and Above. NASA/TM—2004-213048. Handbook of Ceramics Composites. 2005. Available online: http://gltrs.grc.nasa.gov (accessed on 9 September 2023).
- Corman, G.S.; Luthra, K.L. Silicon Melt Infiltrated Ceramic Composites (HiPerComp™). In Handbook of Ceramic Composites; Bansal, N.P., Ed.; Springer: Boston, MA, USA, 2005. [Google Scholar] [CrossRef]
- Ahlborg, N.L.; Zhu, D. Calcium—Magnesium aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surf. Coat. Technol. 2013, 237, 79–87. [Google Scholar] [CrossRef]
- Jacobson, N.S. Corrosion of Silicon-Based Ceramics in Combustion Environments. J. Am. Ceram. Soc. 1993, 76, 3–28. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, J.; Nian, H.; Wang, J. Phase evolution of reactive sputtering synthesized holmium silicate coatings. J. Am. Ceram. Soc. 2018, 102, 490–497. [Google Scholar] [CrossRef]
- Bakan, E.; Marcano, D.; Zhou, D.; Jung, Y. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study. J. Therm. Spray Technol. 2017, 26, 1011–1024. [Google Scholar] [CrossRef]
- Vaßen, R.; Bakan, E.; Gatzen, C.; Kim, S.; Mack, D.E.; Guillon, O. Environmental Barrier Coatings Made by Different Thermal Spray Technologies. Coatings 2019, 9, 784. [Google Scholar] [CrossRef]
- Basu, S.N.; Kulkarni, T.; Wang, H.Z.; Sarin, V.K. Functionally graded chemical vapor deposited mullite environmental barrier coatings for Si-based ceramics. J. Eur. Ceram. Soc. 2008, 28, 437–445. [Google Scholar] [CrossRef]
- Zhu, D. Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composite Turbine Components. Eng. Ceram. Curr. Status Future Prospect. 2015, 10, 187–202. [Google Scholar] [CrossRef]
- Cojocaru, C.V.; Lévesque, D.; Moreau, C.; Lima, R.S. Performance of thermally sprayed Si/mullite/BSAS environmental barrier coatings exposed to thermal cycling in water vapor environment. Surf. Coat. Technol. 2013, 216, 215–223. [Google Scholar] [CrossRef]
- Zhu, D.; Miller, R.A. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems. NASA/TM—2004-213129. In Proceedings of the 60th Annual Forum and Technology Display, Baltimore, MD, USA, 7–10 June 2004. [Google Scholar]
- Gardiner, G. Commercialization of CMCs and Developments for Next-Gen Performance. CompositesWorld. 2017. Available online: https://www.compositesworld.com/articles/the-next-generation-of-ceramic-matrix-composites (accessed on 9 September 2023).
- Wang, P.; Liu, F.; Wang, H.; Li, H.; Gou, Y. A review of third generation SiC fibers and SiCf/SiC composites. J. Mater. Sci. Technol. 2019, 35, 2743–2750. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, X.; Xu, F.; Li, K. Rare earth silicate environmental barrier coatings: Present status and prospective. Ceram. Int. 2017, 43, 5847–5855. [Google Scholar] [CrossRef]
- Lee, K.N. Current status of environmental barrier coatings for Si-Based ceramics. Surf. Coat. Technol. 2000, 133, 1–7. [Google Scholar] [CrossRef]
- Richards, B.T.; Wadley, H.N.G. Plasma spray deposition of tri-layer environmental barrier coatings. J. Eur. Ceram. Soc. 2014, 34, 3069–3083. [Google Scholar] [CrossRef]
- Withey, E.; Petorak, C.; Trice, R.; Dickinson, G.; Taylor, T. Design of 7 wt.% Y2O3—ZrO2/mullite plasma-sprayed composite coatings for increased creep resistance. J. Eur. Ceram. Soc. 2007, 27, 4675–4683. [Google Scholar] [CrossRef]
- Lee, K.N.; Fox, D.S.; Bansal, N.P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 2005, 25, 1705–1715. [Google Scholar] [CrossRef]
- Tejero-Martin, D.; Bennett, C.; Hussain, T. A review on environmental barrier coatings: History, current state of the art and future developments. J. Eur. Ceram. Soc. 2021, 41, 1747–1768. [Google Scholar] [CrossRef]
- Lee, K.N.; Miller, R.A.; Jacobson, N.S.; Opila, E.J. Environmental durability of mullite coating/SiC and mullite-YSZ coating/SiC systems. Ceram. Eng. Sci. Proc. 1995, 1037–1044. [Google Scholar] [CrossRef]
- Lee, K.N.; Fox, D.S.; Eldridge, J.I.; Zhu, D.; Robinson, R.C.; Bansal, N.P.; Miller, R.A. Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS. J. Am. Ceram. Soc. 2003, 8, 1299–1306. [Google Scholar] [CrossRef]
- Lee, K.N.; Eldridge, J.I.; Robinson, R.C. Residual Stresses and Their Effects on the Durability of Environmental Barrier Coatings for SiC Ceramics. J. Am. Ceram. Soc. 2005, 88, 3483–3488. [Google Scholar] [CrossRef]
- Lee, K.N.; Fox, D.S.; Robinson, R.C.; Bansal, N.P. Environmental Coatings for Silicon-Based Ceramics. In Proceedings of the 4th High Temperature Ceramic Matrix Composites Conference, Munich, Germany, 1–3 January 2001. [Google Scholar]
- Sarkisov, P.D.; Popovich, N.V.; Orlova, L.A.; Anan’eva, Y.E. Barrier coatings for type C/SiC Ceramic Matrix Composites (Review). Glas. Ceram. 2008, 65, 44–49. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J. First-principles investigation on the corrosion resistance of rare earth disilicates in water vapor. J. Eur. Ceram. Soc. 2009, 29, 2163–2167. [Google Scholar] [CrossRef]
- Felsche, J. The Crystal Chemistry of the Rare-Earth Silicates. In Rare Earths. Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 1973; Volume 13, pp. 99–197. [Google Scholar] [CrossRef]
- Richards, B.T.; Young, K.A.; De Francqueville, F.; Sehr, S.; Begley, M.R.; Wadley, H.N.G. Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapor. Acta Mater. 2016, 106, 1–14. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, J.; Zhang, T.; Ren, X.; Hu, W.; Zheng, L. Towards thermal barrier coating application for rare earth silicates RE2SiO5 (RE = La, Nd, Sm, Eu, and Gd). J. Eur. Ceram. Soc. 2019, 39, 1463–1476. [Google Scholar] [CrossRef]
- Turcer, L.R.; Padture, N.P. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics. Scr. Mater. 2018, 154, 111–117. [Google Scholar] [CrossRef]
- Felsche, J. Polymorphism and crystal data of the rare-earth disilicates of type RE2Si2O7. J. Less-Common Met. 1970, 21, 1–14. [Google Scholar] [CrossRef]
- Costa, G.C.C.; Jacobson, N.S. Mass spectrometric measurements of the silica activity in the Yb2O3–SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments. J. Eur. Ceram. Soc. 2015, 35, 4259–4267. [Google Scholar] [CrossRef]
- Garcia, E.; Garces, H.F.; Turcer, L.R.; Bale, H.; Padture, N.P.; Sampath, S. Crystallization behavior of air-plasma-sprayed ytterbium-silicate-based environmental barrier coatings. J. Eur. Ceram. Soc. 2021, 41, 3696–3705. [Google Scholar] [CrossRef]
- Tian, Z.; Zheng, L.; Wang, J.; Wan, P.; Li, J.; Wang, J. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) for environmental and thermal barrier coating applications. J. Eur. Ceram. Soc. 2016, 36, 189–202. [Google Scholar] [CrossRef]
- Ricci, P.C.; Carbonaro, C.M.; Corpino, R.; Cannas, C.; Salis, M. Optical and Structural Characterization of Terbium-Doped Y2SiO5 Phosphor Particles. J. Phys. Chem. 2011, 115, 16630–16636. [Google Scholar] [CrossRef]
- Richards, B.T.; Sehr, S.; De Franqueville, F.; Begley, M.R.; Wadley, H.N.G. Fracture mechanisms of ytterbium monosilicate environmental barrier coatings during cyclic thermal exposure. Acta Mater. 2016, 103, 448–460. [Google Scholar] [CrossRef]
- Zhong, X.; Niu, Y.; Li, H.; Zhu, T.; Song, X.; Zeng, Y. Comparative study on high-temperature performance and thermal shock behavior of plasma-sprayed Yb2SiO5 and Yb2Si2O7 coatings. Surf. Coat. Technol. 2018, 349, 636–646. [Google Scholar] [CrossRef]
- Lee, K.N.; Zhu, D.; Lima, R.S. Perspectives on Environmental Barrier Coatings (EBCs) Manufactured via Air Plasma Spray (APS) on Ceramic Matrix Composites (CMCs): A Tutorial Paper. J. Therm. Spray Technol. 2021, 30, 40–58. [Google Scholar] [CrossRef]
- Jian, Y.; Wang, Y.; Liu, R.; Wan, F.; Zhang, J. Property evolutions of Si/mixed Yb2Si2O7 and Yb2SiO5 environmental barrier coatings completely wrapping up SiCf/SiC composites under 1300 °C water vapor corrosion. Ceram. Int. 2021, 47, 22373–22381. [Google Scholar] [CrossRef]
- Poerschke, L.; Hass, D.D.; Eustis, S.; Seward, G.G.E.; Van Sluytman, J.S.; Levi, C.G. Stability and CMAS Resistance of Ytterbium-Silicate/Hafnate EBCs/TBC for SiC Composites. J. Am. Ceram. Soc. 2015, 98, 278–286. [Google Scholar] [CrossRef]
- Kawai, E.; Kakisawa, H.; Kubo, A.; Yamaguchi, N.; Yokoi, T.; Akatsu, T.; Kitaoka, S.; Umeno, Y. Crack Initiation Criteria in EBC under Thermal Stress. Coatings 2019, 9, 697. [Google Scholar] [CrossRef]
- Anton, R.; Leisner, V.; Laska, N.; Schulz, U. Reactive Sputtered Ytterbium Silicate Environmental Barrier Coatings for Protection of Mo-Si-Based Alloys. Coatings 2022, 12, 1086. [Google Scholar] [CrossRef]
- Zhong, X.; Niu, Y.; Li, H.; Zhou, H.; Dong, S.; Zheng, X.; Ding, C.; Sun, J. Thermal shock resistance of tri-layer Yb2SiO5/Yb2Si2O7/Si coating for SiC and SiC-matrix composites. J. Am. Ceram. Soc. 2018, 101, 4743–4752. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, Q.; Li, J.; Guo, H.; Xu, H. Microstructure and high-temperature oxidation behavior of plasma-sprayed Si/Yb2SiO5 environmental barrier coatings. Chin. J. Aeronaut. 2019, 32, 1994–1999. [Google Scholar] [CrossRef]
- Richards, B.T.; Zhao, H.; Wadley, H.N.G. Structure, composition, and defect control during plasma spray deposition of ytterbium silicate coatings. J. Mater. Sci. 2015, 50, 7939–7957. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Sun, L.; Wang, J. Microstructure and phase composition evolution of dual-phase ytterbium silicate coatings plasma sprayed from stoichiometric Yb2Si2O7 feedstock powder. Surf. Coat. Technol. 2022, 437, 128373. [Google Scholar] [CrossRef]
- Han, J.; Wang, Y.; Liu, R.; Cao, Y. Thermal shock behavior of mixed ytterbium disilicates and ytterbium monosilicates composite environmental barrier coatings. Surf. Coat. Technol. 2018, 352, 348–353. [Google Scholar] [CrossRef]
- Vardelle, M.; Vardelle, A.; Fauchais, P. Spray Parameters and Particle Behavior Relationships During Plasma Spraying. ASM Int. 1993, 2, 79–91. [Google Scholar] [CrossRef]
- Garcia, E.; Sotelo-Mazon, O.; Poblano-Salas, C.A.; Trapaga, G.; Sampath, S. Characterization of Yb2Si2O7–Yb2SiO5 composite environmental barrier coatings resultant from in situ plasma spray processing. Ceram. Int. 2020, 46, 21328–21335. [Google Scholar] [CrossRef]
- Ito, K.; Kuriki, H.; Araki, H.; Kuroda, S.; Enoki, M. Detection of segmentation cracks in top coat of thermal barrier coatings during plasma spraying by non-contact acoustic emission method. Sci. Technol. Adv. Mater. 2014, 15, 1–11. [Google Scholar] [CrossRef]
- Taniguchi, K.; Enoki, M. In situ monitoring of cracking behaviors of plasma-sprayed coatings by the laser acoustic emission technique. Mater. Res. Soc. 2009, 24, 3182–3189. [Google Scholar] [CrossRef]
- Huelsenberg, D.; Harnisch, A.; Bismarck, A. Microstructuring Glasses Using Lasers. In Microstructuring of Glasses; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 87. [Google Scholar] [CrossRef]
- Jarligo, M.O.; Mack, D.E.; Mauer, G.; Vaßen, R.; Stover, D. Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application. J. Therm. Spray Technol. 2010, 9, 303. [Google Scholar] [CrossRef]
- Zhu, T.; Niu, Y.; Zhong, X.; Zhao, J.; Li, Q.; Zeng, Y.; Zheng, X. Influence of phase composition on thermal aging behavior of plasma sprayed ytterbium silicate coatings. Ceram. Int. 2018, 44, 17359–17368. [Google Scholar] [CrossRef]
Torch Power (kW) | Primary Ar (L/min) | Secondary H2 (L/min) | Current (A) | Voltage (V) | YbDS YbMS Si Thickness per pass (μm/pass) | ||
---|---|---|---|---|---|---|---|
16 | 45 | 0.5 | 380 | 41 | 15.2 ± 0.8 | 10.6 ± 1.5 | --- |
20 | 45 | 2 | 380 | 51 | 24.9 ± 1.3 | 11.3 ± 1.5 | --- |
25 | 45 | 6 | 380 | 75 | 27.5 ± 1.0 | 11.5 ± 1.7 | --- |
25 | 42 | 3 | 450 | 55 | --- | --- | 14.7 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Iorio, G.; Paglia, L.; Pedrizzetti, G.; Genova, V.; Marra, F.; Bartuli, C.; Pulci, G. Ytterbium Disilicate/Monosilicate Multilayer Environmental Barrier Coatings: Influence of Atmospheric Plasma Spray Parameters on Composition and Microstructure. Coatings 2023, 13, 1602. https://doi.org/10.3390/coatings13091602
Di Iorio G, Paglia L, Pedrizzetti G, Genova V, Marra F, Bartuli C, Pulci G. Ytterbium Disilicate/Monosilicate Multilayer Environmental Barrier Coatings: Influence of Atmospheric Plasma Spray Parameters on Composition and Microstructure. Coatings. 2023; 13(9):1602. https://doi.org/10.3390/coatings13091602
Chicago/Turabian StyleDi Iorio, Giulia, Laura Paglia, Giulia Pedrizzetti, Virgilio Genova, Francesco Marra, Cecilia Bartuli, and Giovanni Pulci. 2023. "Ytterbium Disilicate/Monosilicate Multilayer Environmental Barrier Coatings: Influence of Atmospheric Plasma Spray Parameters on Composition and Microstructure" Coatings 13, no. 9: 1602. https://doi.org/10.3390/coatings13091602
APA StyleDi Iorio, G., Paglia, L., Pedrizzetti, G., Genova, V., Marra, F., Bartuli, C., & Pulci, G. (2023). Ytterbium Disilicate/Monosilicate Multilayer Environmental Barrier Coatings: Influence of Atmospheric Plasma Spray Parameters on Composition and Microstructure. Coatings, 13(9), 1602. https://doi.org/10.3390/coatings13091602